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Preface

Mathematics and mathematical methods hold a central role in the scientific pursuit. It
is the language we use in order to describe Nature and make quantifiable and testable
predictions, the cornerstone of the scientific principle. Compiling all of the mathematics
used in physics today would be a daunting task. Instead, this book focuses on common
mathematical methods needed to confront modern theoretical physics that are also used in
many branches of engineering. The target audience of the book is physics or engineering
students that have already taken basic courses in mathematics including linear algebra,
multi-variable calculus, and introductory differential equations, typically in the third year
of university or later. Unlike many other textbooks on mathematical methods in physics
that often use examples from quantum mechanics or other advanced subjects, I have tried to
use examples from subjects that should be more familiar to the student as much as possible.
With this approach, the student will hopefully be able to see these examples in a new light
and prepare his or her intuition for using the new tools in advanced topics at the same time.
I have also attempted to introduce some new concepts as needed for the discussion.

It should be noted that this book is not intended to be mathematically rigorous. Instead,
the idea is to convey mathematics as a tool for describing physical systems and therefore
focus more on the intuition behind the mathematics and its application to physics. You will
therefore not find the typical theorem-proof-corollary structure that you might expect from
a textbook in mathematics.

The topics covered in the different chapters of this book and their applications are:

1. Scalars and Vectors: A basic treatment of vector analysis, which is a fundamental
piece of mathematics used in almost every branch of modern physics. The chapter
introduces the concepts of fields, their derivatives, and integration. Furthermore, we
will work through both non-Cartesian coordinate systems and potential theory, which
are often useful tools for solving particular problems. Examples of theories relying
heavily on vector analysis include Newtonian mechanics and Maxwell’s theory of elec-
tromagnetism.

2. Tensors: Tensor analysis builds upon the concepts introduced in Chapter 1 and ex-
pands them to involve general linear transformations between vectors (and tensors).
The approach taken in this chapter is slightly different from what is usually found
in textbooks. Instead of starting out with tensors in Cartesian coordinates, we will
start by introducing tensors in general coordinates systems already from the begin-
ning as this provides a deeper insight to what tensors are all about. We later treat the
special case of Cartesian coordinates and discuss tensor integration and how tensors
are applied in solid mechanics, electromagnetism, and classical mechanics. Apart from
this, tensor analysis also plays a central role in, for example, fluid mechanics and the
special and general theories of relativity.

3. Partial Differential Equations and Modelling: Modelling is at the core of physics. With-
out a mathematical model for a system, no amount of mathematical techniques will
help us make predictions about it. The chapter covers the most basic ideas in mathe-
matical modelling using differential equations, starting from the continuity equation,

xix



xx � Preface

and discusses techniques important for dealing with them. We will also discuss dimen-
sional analysis, which is central to modelling any physical system and lets us draw
conclusions about how they scale, and how delta functions may be used to provide
idealised models.

4. Symmetries and Group Theory: Symmetry arguments are a powerful tool for simplify-
ing and solving many physical systems. In some particular applications, fundamental
symmetries even lie at the heart of the theory itself. The natural language for describ-
ing symmetries is that of group theory and this chapter gives a basic introduction to
these concepts. The resulting mathematical theory is useful for drawing conclusions
about the behaviour of any physical system and is applicable across a wide range of
topics.

5. Function Spaces: This chapter introduces and treats function spaces as a more abstract
form of vector space. We discuss operators acting on these function spaces and their
eigenvalues. In particular, we look at Sturm–Liouville theory and its applications.
By using separation of variables, we arrive at a large number of different Sturm–
Liouville problems whose solutions will be important when approaching the models
constructed in Chapter 3. These functions will turn out to appear also in many other
physics applications as they are the solutions to very particular differential equations.
The framework developed here will be particularly useful in the study of continuous
mechanical systems as well as in basic quantum mechanics.

6. Eigenfunction Expansions: The methods of Chapter 5 are applied in order to solve
many of the models introduced in Chapter 3. In particular, we apply eigenfunction
expansions in order to reduce partial differential equations to ordinary differential
equations for the expansion coefficients. This is used to treat both homogeneous and
inhomogeneous problems in general with additional treatment of critical systems and
resonances in driven systems. We also discuss the effects of terminating series solutions
using only a finite number of terms to approximate the solution. Furthermore, we dis-
cuss the case of infinite domains, where series expansions are replaced by transforms.
Methods of this sort are used in the treatment of continuous mechanical systems.

7. Green’s Functions: The use of Green’s functions to solve differential equations is based
on the principle of superposition. In particular, it is useful as a method for expressing
the solution to a general inhomogeneous linear differential equation in terms of the
solution to the fundamental case with a delta function inhomogeneity. We discuss
different ways of finding Green’s functions for specified problems and applying them
to models. Finally, we apply them to the case of non-linear systems by introducing and
using perturbation theory. These methods are applicable in a wide range of different
fields, from automated control to quantum field theory.

8. Variational Calculus: Functionals are maps from sets of functions to real or complex
numbers. Variational calculus deals with finding stationary values of such functionals
and is applicable to finding the shortest path between two points in a general space
or the stable configurations of different physical systems. Many physical principles
can be formulated in terms of variational problems and we will use Fermat’s principle
for light propagation and Hamilton’s principle in classical mechanics as examples.
Variational methods are also useful as a tool for modelling systems based upon energy
methods rather than finding differential equations by analysing infinitesimal elements
of a system.

9. Calculus on Manifolds: Many physical systems cannot be described in terms of Eu-
clidean spaces. We here introduce the concept of manifolds and describe how calculus
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works on them, discussing both derivatives and integrals. The generalisation of the
vector and tensor concepts to manifolds holds a central role in the discussion and we
treat general curved spaces. The calculus on manifolds is applicable to generalisations
of several theories, including classical mechanics, and essential in the study of general
relativity.

10. Classical Mechanics and Field Theory: The main aim of this chapter is not to in-
troduce new mathematical tools. Instead, it is intended to serve as an example of
the application of several of the concepts treated throughout the book. The Newto-
nian, Lagrangian, and Hamiltonian approaches are introduced and discussed to some
extent. In particular, the realisation of the connection between symmetries and con-
served quantities through Noether’s theorem is fundamental to modern theoretical
physics. We also introduce the Lagrangian approach to field theory, starting by tak-
ing a continuous classical mechanical system as an example.

To the student
This book will introduce you to many of the fundamental mathematical methods used in
modern physics. The range of topics covered is rather broad and the difficulty level will
gradually increase. Throughout the book, you will find many examples that are intended
to illustrate applications of the more abstract notions that are discussed in the main text.
In particular, I strongly recommend reading through the examples if you feel that you are
in need of more concrete realisations in order to shape your understanding.

Note that reading this material will only get you so far. In reality, there is no substi-
tute for actually working through the material yourself. I therefore recommend reading the
material with pen and paper readily available in order to fill in any steps you do not find
immediately evident. Obtaining an intuition for the different topics also requires you to
apply the theory to different problems. Each chapter in this book therefore comes with a
large number of problems, listed at the end of the chapter, intended to illustrate the appli-
cation of the theory. In order to master the material, I therefore also suggest that you work
through the problems rather than continuing straight on to the next topic.

You should also note that there is a lot of material in this book. You should not be
surprised if your course only covers part of the material or your instructor excludes some of
the more advanced topics in any given chapter depending on the length of your course. This
is intentional and the more advanced topics are also intended to serve as additional input
for students who find the material interesting and want to go deeper. If your instructor
excludes parts of the material, pay close attention to what problems he or she recommends,
as they will likely be representative of what is included in your particular course.

I hope you will enjoy reading this book as much as I have enjoyed writing it.

To the instructor
The material covered in this book is extensive and likely sufficient to last for several courses.
Depending on your intentions with your course, you may want to select different parts of the
material to present. In many cases, understanding of the earlier chapters is not necessary,
but often helpful. Be mindful when you select the material and also make sure to recommend
problems that are appropriate and representative of the material that you wish to cover.
You can always recommend parts of the book that you do not cover to interested students
who wish to obtain a deeper knowledge. For reference, the approximate prerequisites for
each chapter are listed below. Obviously, the knowledge of the content for any given chapter
may also be acquired elsewhere.
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1. Scalars and Vectors: Being the first chapter in the book, no knowledge apart from the
prerequisites mentioned earlier should be necessary.

2. Tensors: Understanding the first chapter is necessary. In particular, the notation intro-
duced in the discussion of non-Cartesian coordinate systems will be used extensively.
The potential theory part of the first chapter is not crucial.

3. Partial Differential Equations and Modelling: The first chapter is required knowledge
as many of the tools of vector analysis will be applied. The second chapter is helpful
as some models will be introduced in their general form using tensors, but it is not
crucial for most of the basic understanding.

4. Symmetries and Group Theory: Again, the first chapter is crucial for a basic under-
standing. The second chapter is mainly used for some of the discussion on tensor
product representations.

5. Function Spaces: The first chapter is recommended, in particular the discussion on
different coordinate systems. However, much of the material stands on its own and
mainly requires basic linear algebra. The discussion of group representations on func-
tion spaces requires that the representation theory part of Chapter 4 has been covered.

6. Eigenfunction Expansions: Chapters 1, 3, and 5 should be considered as prerequisites
as well as basic knowledge on the solution of ordinary differential equations.

7. Green’s Functions: Chapter 3 is a prerequisite, mainly for the introduction of the
models that we will solve. The discussion on distributions in Chapter 5 is helpful,
but not crucial. The series method for finding the Green’s function of a problem also
requires the theory developed in Chapter 5, but may generally be skipped without
losing the main message of the chapter.

8. Variational Calculus: Requires the knowledge from Chapter 1 and the discussion about
the metric tensor in Chapter 2 is helpful. The modelling part refers back to discussions
in Chapter 3.

9. Calculus on Manifolds: Chapters 1 and 2 are crucial and cannot be skipped. Chapter 8
is necessary for the discussion on geodesics and the Levi-Civita connection. Chapter 3
is necessary for the discussion of the continuity equation in a general manifold.

10. Classical Mechanics and Field Theory: Chapter 1 is crucial for all of this chapter. For
the discussions on tensors such as the moment of inertia, Chapter 2 is also necessary.
The Lagrangian and Hamiltonian mechanics parts, as well as the field theory part,
require the knowledge from Chapter 8 and the discussion on the use of manifolds in
classical mechanics requires the methods developed in Chapter 9.
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C H A P T E R 1

Scalars and Vectors

Essentially everyone who has come into contact with physics at a higher education level
is familiar with the concepts of scalars and vectors. The concept of a scalar is easy to
grasp as a quantity that has a particular value, such as the kinetic energy of an object,
the air pressure at sea level, or the temperature in your oven. The concept of a vector is
also relatively straightforward, generally being presented as a directional quantity that has
magnitude as well as direction. The typical examples of vector quantities include kinematic
quantities such as velocities and accelerations. For example, when flying from New York
to Paris, not only the speed (being the magnitude of the velocity) but also the direction
of the aircraft velocity is of importance. Flying in the wrong direction we might end up in
Anchorage instead, which is not necessarily a bad thing, but probably not what we intended
when boarding the flight.

While a scalar quantity can be represented by a single number and a suitable unit of
dimension (such as meters, feet, or light years for a distance), a vector needs to be described
by several numbers. The most convenient way of doing this is to define a number of linearly
independent directions by choosing a set of basis vectors ~ei. The number of such vectors
should be equal to the dimension of the space we want to describe, normally three when
discussing classical physics, but sometimes less if some directions can be ignored or more
in the case where not only the spatial position of a single object is of interest. Some of
the concepts in this text, such as the vector cross product, are particularly constructed for
three-dimensional space, while others, such as the scalar product or divergence of a vector
field, have straightforward generalisations to more or fewer dimensions. The requirement of
linear independence of the basis vectors states that it is impossible to write a basis vector
as a linear combination of other basis vectors. As a consequence, we can write any vector ~v
in an N -dimensional space as

~v =

N∑
i=1

vi~ei. (1.1)

In particular, in three dimensions, ~v = v1~e1 + v2~e2 + v3~e3 (note that the superscripts here
are indices, not powers!). The N numbers vi uniquely define the vector ~v and it is common
to select basis vectors in such a way that they have magnitude one and are orthogonal. Such
a set of basis vectors is referred to as an orthonormal basis.

1.1 VECTORS AND ARITHMETICS
The concepts of scalars and vectors come with some basic arithmetic rules. Scalar quanti-
ties may be multiplied together, resulting in a new scalar quantity of a different physical
dimension, or added (if they have the same physical dimension), resulting in a new scalar

1
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quantity of the same dimension. Naturally, such multiplications or additions do not nec-
essarily have a physical meaning and theories of physics are essentially based on how to
apply mathematical operations in order to describe the world we live in and make useful
predictions.

When it comes to vectors, there is a natural definition of multiplication with a scalar
quantity, we multiply the magnitude of the vector by the same amount. In fact, we have
already used this in Eq. (1.1) when decomposing the vector ~v into a sum of scalar multiples
of the unit vectors ~ei. The same goes for a sum of two vectors, where we can add the
coefficients multiplying each of the basis vectors in order to obtain the coefficient of the
corresponding basis vector for the vector sum. As in the case of a scalar addition, vector
addition also requires the vectors to have the same physical dimension in order to produce
meaningful results. In terms of the basis vectors, we therefore have

a~v = a
N∑
i=1

vi~ei =
N∑
i=1

(avi)~ei, (1.2a)

~v + ~w =
N∑
i=1

(vi + wi)~ei. (1.2b)

There is no way of defining an addition of a scalar and a vector, but there are different
possibilities of creating vector products and these are useful tools when constructing physical
theories.

The scalar product (also called dot product or inner product) ~v · ~w of two vectors ~v and
~w is a scalar and is linear in both vectors. It has an intuitive geometrical interpretation (see
Fig. 1.1) as the product of the magnitudes of the vectors multiplied by the cosine of the
angle between their directions. The vectors are orthogonal if ~v · ~w = 0. Thus, if the basis
vectors ~ei are chosen to be orthonormal, i.e., ~ei · ~ej equals one if i = j and zero otherwise,
then

~v · ~w =
N∑
i=1

N∑
j=1

vi~ei · wj~ej =
N∑
i=1

N∑
j=1

viwj(~ei · ~ej) =
N∑
i=1

viwi. (1.3)

We can also use the scalar product in order to define the magnitude (or norm) of a vector
as

|~v| =
√
~v · ~v =

√√√√ N∑
i=1

(vi)2. (1.4)

It is very common to denote ~v · ~v = ~v 2. Note that this is compatible with the definition of
a scalar vector multiplication yielding a new vector with a magnitude which is the original
vector magnitude multiplied by the scalar. The geometrical interpretation of the scalar
product can now be written in the form

~v · ~w = |~v| |~w| cos(α), (1.5)

where α is the angle between the vector directions. It is also common to denote the mag-
nitude of a vector using a scalar with the same letter, but omitting the vector arrow, i.e.,
|~v| = v.

In three dimensions, we can also define the anti-symmetric cross product (or vector
product) ~v × ~w = −~w × ~v of two vectors as a new vector. Just as the scalar product, the
cross product is linear in both of the vectors. This means that we can completely define it
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~v ×
~w

α
~v

|~v| |~w
| sin(α)

|~w| cos(α)

α

~w

~v

~w

Figure 1.1 Visual of the geometrical interpretation of the scalar (left) and cross (right) products.
In the scalar product, the value of the scalar product is the length of ~v multiplied by |~w| cos(α).
Note that this value does not depend on whether we project ~w on ~v or the other way around. The
shaded vectors have the same scalar product with ~v as ~w has. For the cross product, the shaded
area is equal to the modulus of the cross product ~v× ~w, which is also orthogonal to both ~v and ~w.

in terms of how it acts on an orthonormal set of basis vectors in a right-handed basis as

~e1 × ~e2 = ~e3, (1.6a)

~e2 × ~e3 = ~e1, (1.6b)

~e3 × ~e1 = ~e2, (1.6c)

~ei × ~ei = 0, for all i. (1.6d)

This defines the ordering of the basis vectors. For a left-handed basis, the definitions come
with a minus sign on one side. In terms of the vector components, we obtain

~v × ~w = (v2w3 − v3w2)~e1 + (v3w1 − v1w3)~e2 + (v1w2 − v2w1)~e3. (1.7)

The squared magnitude of ~v × ~w can now be found using the scalar product and after
simplification

|~v × ~w| = |~v| |~w| sin(α), (1.8)

where α again is the angle between the vectors ~v and ~w. Furthermore, the cross product
~v × ~w is orthogonal to both ~v and ~w (see Problem 1.5). Combining these properties, the
cross product also has a geometrical interpretation as a vector orthogonal to both of the
arguments and a magnitude equal to the area spanned by them, see Fig. 1.1.

In addition to the scalar and cross products, there is an additional product called the
outer product that is defined regardless of the number of dimensions. This product is a
second rank tensor and we will return to it in Chapter 2.

1.2 ROTATIONS AND BASIS CHANGES
The choice of basis vectors ~ei is not unique. In fact, we can select any three linearly inde-
pendent vectors as the basis and work from there. However, as we have done, it is often
convenient to work in terms of an orthonormal basis, where the basis vectors are orthogonal
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~e ′2′

~e ′3′ ~e3

~e2

~e1~e ′1′

Figure 1.2 A left- and a right-handed set of vectors. When held as in the image, the vectors ~e1,
~e2, ~e3, pointing in the directions of the thumb, index finger, and middle finger of the right hand,
respectively, and ordered in that specific order, constitute a right-handed system. On the left part
of the image, the vectors ~e ′1′ , ~e

′
2′ , ~e

′
3′ constitute a left-handed system.

and have magnitude one. Still, there is a freedom of choice of different orthonormal bases.
In general, an orthonormal basis ~ei can be related to a different orthonormal basis ~e ′i′ by
means of a rotation, assuming that the two bases have the same handedness. Note here that
we have chosen to use primed indices for the primed basis. This is a notational convention
that is useful to keep track of what indices belong to which basis. As mentioned previously,
the handedness of a basis is based on the ordering of the basis vectors as illustrated in
Fig. 1.2. In order to transform a right-handed basis into a left-handed one, or vice versa, a
reflection is needed in addition to the rotation.

The properties of a vector do not depend on the basis chosen. Regardless of the chosen
basis, a vector pointing to the Moon will always point at the Moon, independent of whether
one of our basis vectors point to the Sun or not. As mentioned in the beginning of this
chapter, the vector ~v may be written in the basis ~ei according to Eq. (1.1). By the fact that
we could just as well use the basis ~e ′i′ , we must therefore have

~v =
N∑
i=1

vi~ei =
N ′∑
i′=1′

vi
′
~e ′i′ . (1.9)

Here we have chosen to use a prime only in the index of vi
′

to denote that this component
belongs to the primed basis. Alternatives to this include using a prime only for the symbol
itself v′i (and at the same time using ~e ′i ) or using double primes v′i

′
. However, using one

prime only is sufficient and our choice is coherent with using primed indices for the primed
basis vectors.

With orthonormal bases, the coefficients vi and vi
′

can be found through the scalar
product with the basis vectors themselves

vi = ~ei · ~v, vi
′

= ~e ′i′ · ~v. (1.10)

As we can express ~v using either basis, this leads to

vi
′

= ~e ′i′ ·
N∑
i=1

vi~ei =
N∑
i=1

vi~e ′i′ · ~ei ≡
N∑
i=1

viai
′

i , (1.11)
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α

α

~e2

~e1

~e ′2

~e ′1

Figure 1.3 Two possible bases in two dimensions related by a rotation with an angle α.

where we have defined the transformation coefficients ai
′

i = ~e ′i′ · ~ei. From Eq. (1.10), it

follows that ai
′

i is the component of ~ei in the ~e ′i′ direction. In a similar fashion, we have

vi =
N ′∑
i′=1′

vi
′
~ei · ~e ′i′ ≡

N ′∑
i′=1′

vi
′
aii′ , (1.12)

where aii′ = ~ei·~e ′i′ . Due to the symmetry of the scalar product, the transformation coefficients
are related as

aii′ = ai
′

i . (1.13)

They may be thought of as the elements of an N ×N rotation matrix.

Example 1.1 With N = 2, we may choose bases according to Fig. 1.3. The transformation
coefficients are given by(

a1
1′ a1

2′

a2
1′ a2

2′

)
=

(
cos(α) − sin(α)
sin(α) cos(α)

)
=

(
a1′

1 a1′

2

a2′

1 a2′

2

)T
. (1.14)

This is the general expression for a rotation in two dimensions. In three dimensions, a
general rotation is given by three angles (e.g., the Euler angles) and in N dimensions, the
number of rotation angles is N(N − 1)/2.

Scalars are just numbers and their values, unlike the vector components, are the same
regardless of the choice of basis. From the requirement that the scalar product ~v · ~w is a
scalar quantity, i.e., independent of the choice of basis, we obtain the following relations for
the transformation coefficients

N∑
i′=1

aii′a
i′

j =

{
1, (i = j)

0, (i 6= j)
,

N∑
i=1

ai
′

i a
i
j′ =

{
1, (i′ = j′)

0, (i′ 6= j′)
. (1.15)

In words, this is the requirement that the magnitude of a vector as well as the angle between
two vectors cannot depend on the choice of basis. These relations for the transformation
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coefficients are the relations imposed on the components of a rotation matrix. Apart from a
scalar, the scalar product between two vectors is our first example of an invariant , which is a
quantity that does not change with the choice of basis vectors even though the representation
of the underlying objects, in this case two vectors, may change. Invariants are of fundamental
importance to physics as measurable quantities will generally be invariant under changes of
basis.

1.3 INDEX NOTATION
We have already encountered several objects with one or two indices, namely the vector
components vi, the basis vectors ~ei, and the transformation coefficients ai

′

i . It is time to
introduce some notational conventions that will turn out to be very powerful and allow us
to write our expressions in a more minimalistic fashion, without repeated sums like those
in Eq. (1.3). The first convention is the Einstein summation convention, which states that
whenever an index is repeated twice, it should be summed over from 1 to N . Thus, with
this convention, Eq. (1.10) can be expressed as

~v = vi~ei ≡
N∑
i=1

vi~ei (1.16)

and Eq. (1.3) as
~v · ~w = viwj~ei · ~ej = viwi. (1.17)

Indices that appear twice, and thus are summed over, are called summation indices or
dummy indices. The latter name comes from the fact that it generally does not matter
what letter is used to represent such an index as it is only a summation variable (as long
as the same letter is used for both occurrences of course). For example, the expressions vi~ei
and vj~ej are equivalent. However, it is important to make sure that each summation index
is used for one sum only. Thus, we should be suspicious if an index appears more than twice
in an expression. If a particular set of basis vectors is chosen or inferred, then it is sometimes
common to refer to the components vi and the vector ~v interchangeably as they represent
the same information. This will be particularly true when dealing with tensors later on.

Unlike summation indices, free indices are indices that appear only once. If an expression
in an equation has a free index, then the expression on the other side of the equal sign must
have the same free index. Such an expression is valid for all possible values of the free index.
For example, the vector components vi can be expressed as

vi = ~ei · ~v (1.18)

regardless of whether i is equal to one, two, or three. In this equation, we are not allowed
to change the i on one side of the equation into a j. On the other hand, we are allowed
to change the i to a j on both sides simultaneously, provided that there is not already a
different index that has been denoted by j. In the remainder of the book, we will use the
Einstein summation convention unless explicitly stated otherwise, e.g., by stating “no sum”
in connection to an equation where an index is repeated twice, or by explicitly writing the
sum in case of a sum where the index does not appear two times.

1.3.1 The Kronecker delta and the permutation symbol
We have already seen the transformation coefficients as examples of objects with two indices
and, in Chapter 2, we will encounter tensors that have several indices. However, before we
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get there, it is convenient to introduce two objects with two and three indices, respectively.
These are the Kronecker delta and the permutation symbol . The Kronecker delta δij is
defined by

δij =

{
1, (i = j)

0, (i 6= j)
. (1.19)

Whenever one of the indices of the Kronecker delta appears as a summation index, the sum
can be easily performed as it is just selecting the term of the sum where the summation
index is equal to the other index of the Kronecker delta. Thus, this is equivalent to replacing
the other occurrence of the summation index with the other index from the Kronecker delta
and removing the δij , e.g.,

δijv
j = vi. (1.20)

Note that the i in this equation is a free index and therefore appears on both sides of the
equation.

The Kronecker delta is particularly useful in describing some relations in orthonormal
bases. In particular, the requirement for a basis to be orthonormal can be expressed as

~ei · ~ej = δij , (1.21)

leading to a more shorthand version of Eq. (1.3)

~v · ~w = viwj~ei · ~ej = viwjδij = viwi, (1.22)

while Eq. (1.15) takes the form

aii′a
i′

j = δij , ai
′

i a
i
j′ = δi′j′ . (1.23)

The permutation symbol in N dimensions, also called the Levi-Civita symbol , has N in-
dices and is denoted εij.... It is defined in such a way that ε12...N = 1 and it is anti-symmetric
in all indices. This means that if any two indices change positions, the permutation symbol
changes sign. In particular, this means that if any two indices are the same, the permutation
symbol takes the value zero. In three dimensions, the permutation symbol εijk has three
indices and six non-zero components

ε123 = ε231 = ε312 = −ε132 = −ε321 = −ε213 = 1, (1.24)

corresponding to the six possible permutations of the indices 1, 2, and 3.
Much like how the Kronecker delta can be used to express the scalar product ~v · ~w =

viwjδij , the permutation symbol can be used to express the cross product. In particular,
we note that Eqs. (1.6) take the form

~ej × ~ek = εijk~ei (1.25)

and linearity then gives

~v × ~w = vjwk(~ej × ~ek) = ~eiεijkv
jwk. (1.26)

1.3.2 Vector algebra using index notation
The fact that δij and εijk can be used to express the scalar and cross products can be used
in order to write different vector expressions in terms of vector components starting from
the basic definitions. For example, the triple product ~u · (~v × ~w) can be rewritten as

~u · (~v × ~w) = uiεijkv
jwk. (1.27)
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~v

~u

~w

Figure 1.4 The volume of the parallelepiped spanned by the three vectors ~u, ~v, and ~w can be
computed using the triple product ~u · (~v × ~w).

Although this may not seem as much, we can use the cyclic property of εijk = εjki, which
follows from the anti-symmetry, to change the expression to

~u · (~v × ~w) = vjεjkiw
kui = ~v · (~w × ~u). (1.28)

From this follows directly that the triple product is invariant under cyclic permutations of
the three vectors ~u→ ~v → ~w → ~u.

Example 1.2 We have earlier seen that the cross product ~v × ~w has a magnitude which
is equal to the area spanned by the vectors ~v and ~w and in addition is orthogonal to both
of them. Noting that the volume of a parallelepiped spanned by ~u, ~v, and ~w is equal to the
area spanned by ~v and ~w multiplied by the projection of ~u on the normal direction of that
area (see Fig. 1.4), the volume of the parallelepiped is given by

V = ~u · (~v × ~w). (1.29)

There is a subtlety here, which is that this volume might turn out to be negative. This
happens if the vector ordering is chosen such that it describes a left-handed system rather
than a right-handed one. If we are only interested in the actual volume of the parallelepiped
and not the handedness of our selected ordering, we may take the absolute value of the
resulting scalar.

Understanding the above example in terms of the properties of the permutation symbol
turns out to be helpful, not only in three but in an arbitrary number of dimensions. Assume
that our space has N dimensions and that we have N vectors ~vn, with n = 1, 2, . . . , N . Let
us study the object

VN = εi1i2...iN v
i1
1 v

i2
2 . . . viNN , (1.30)

where we notice that we can always make the replacement

~vn → ~vn +
∑
m6=n

αm~vm (1.31)

without changing the value of VN due to the anti-symmetry of the permutation symbol. For
example, in two dimensions we have, after changing ~v2 → ~v2 − α1~v1,

εijv
i
1(vj2 + α1v

j
1) = εijv

i
1v
j
2 − α1εijv

i
1v
j
1. (1.32)
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~w

~w
−
α
~v

~v

Figure 1.5 A two-dimensional example of changing the vectors spanning a parallelogram without
changing the total volume. The original area spanned by the vectors ~v and ~w is composed of the
two darker regions. Upon replacing ~w by ~w − α~v, the lighter of the two is replaced by the light
shaded area between ~w and ~w − α~v, leaving the total area unchanged.

The anti-symmetric property of εij = −εji now gives

εijv
i
1v
j
1 = −εjivi1v

j
1 = −εijvi1v

j
1, (1.33)

where in the last step we have renamed the dummy indices i↔ j and used the fact that vi1
and vj1 are numbers that commute. Therefore εijv

i
1v
j
1 = 0 and

εijv
i
1(vj2 − α1v

j
1) = εijv

i
1v
j
2 = V2. (1.34)

It follows that if the vectors ~vn are not linearly independent, then VN = 0. We can take the
argument even further and replace all vectors ~vn with n < N by ~vn → ~vn−~vN (~vN ·~vn)/~v 2

N .
These new vectors fulfil

~vN ·
(
~vn − ~vN

~vN · ~vn
~v 2
N

)
= ~vN · ~vn − ~v 2

N

~vN · ~vn
~v 2
N

= 0 (1.35)

and are thus orthogonal to ~vN just changing the ~vn by a vector parallel to ~vN . It follows
that the new vectors still span the same total volume, see Fig. 1.5 for a two-dimensional
example. We can now perform the same procedure using the new ~vN−1, then ~vN−2, and so
forth, until we are left with a set of N orthogonal vectors spanning the same total volume as
the original set. Selecting a right-handed system such that ~vn = ~en |~vn| (no sum), it follows
that VN is the volume spanned by the original vectors.

In addition, given N − 1 vectors ~vn, we can form the new vector

~S = ~ejεji1i2...iN−1
vi11 v

i2
2 . . . v

iN−1

N−1 , (1.36)

as a generalisation of the cross product as it maps N−1 vectors linearly to a new vector and
is completely anti-symmetric. By the same line of argumentation we used for the volume
above, it is easy to show (see Problem 1.22) that ~S is orthogonal to all of the ~vn with a
magnitude which is equal to the N − 1 dimensional volume spanned by the ~vn (i.e., in the

case of N = 3, the two-dimensional area). The vector ~S can therefore be interpreted as an
N − 1 dimensional volume multiplied by its normal vector in N dimensions.
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Example 1.3 In two dimensions, the permutation symbol has the non-zero components
ε12 = −ε21 = 1. An arbitrary vector can be written as ~v = v1~e1 + v2~e2. The vector ~S above
is constructed using N − 1 = 2− 1 = 1 vector and we therefore have

~S(~v) = ~e1ε12v
2 + ~e2ε21v

1 = ~e1v
2 − ~e2v

1. (1.37)

Squaring ~S, we obtain
~S2 = (v1)2 + (v2)2 = ~v 2, (1.38)

which is to be expected since the N − 1 dimensional volume is a line element spanned by
~v. Furthermore, we have

~v · ~S = (v1~e1 + v2~e2) · (~e1v
2 − ~e2v

1) = v1v2 − v2v1 = 0, (1.39)

satisfying the claim that ~S is orthogonal to ~v.

Another important relation in vector algebra is the bac-cab rule

~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b). (1.40)

In order to arrive at this result, we use the ε-δ-relation

εijkεk`m = δi`δjm − δimδj`. (1.41)

Proving this relation and using it to deduce the bac-cab rule is left as an exercise for the
reader (see Problem 1.9). Similar arithmetic can also be applied to rewrite expressions
containing more than two or three vectors.

It is also worthwhile to check that the components of the cross product ~v × ~w actually
transform as we would expect a vector to under changes of basis. If we have chosen the new
basis vectors ~e ′i′ such that they form an orthonormal set of unit vectors, then the volume
they span should be given by

~e ′i′ · (~e ′j′ × ~e ′k′) = εi′j′k′ = aii′a
j
j′a

k
k′εijk, (1.42)

where we have used that the ~ei component of ~e ′i′ is aii′ . Under the assumption that the
components of ~v × ~w should transform as the components of a vector, we then have

~e ′i′ · (~v × ~w) = ai
′

i εijkv
jvk = aii′εijka

j
j′v

j′akk′v
k′ = εi′j′k′v

j′wk
′
, (1.43)

which is what we would expect if writing down the cross product in the primed basis from
the beginning.

1.4 FIELDS
A central concept to many applications in physics is the notion of a field . We will often deal
with quantities that are defined throughout space, but may vary from point to point. The
usage of fields is found in all branches of physics, from electromagnetism and gravitation to
fluid dynamics and material science. The quantised version of classical field theory, quantum
field theory (QFT) is the basis for the Standard Model of particle physics, one of the more
successful physical theories to date.

In order to define a field, we must first consider the base space, i.e., the space that
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x1p

p
q

x2

o

q

Figure 1.6 In the left figure, a part of a two dimensional affine space with the points p, q, and o
marked. In the right figure, we have imposed a coordinate system on the space by selecting the
earlier point o as the origin as well as a set of basis vectors. The coordinates of p and q can be
deduced by projecting the points on the coordinate axes.

supplies the points where the field is defined. For our current purposes, we will take this to
be a part of an affine space, which is a space that has the same geometrical structure as RN
without a fixed origin. As an example, we can consider three-dimensional space, where we,
if so willing, can define an origin and base a selection of coordinates on the displacement
vector from the origin and a fixed set of basis vectors.

Example 1.4 A two-dimensional affine space is an infinitely extended plane without a
fixed origin, see Fig. 1.6. We can define a set of coordinates on this space by selecting an
origin and a set of basis vectors ~e1 and ~e2 and using the vector components x1 and x2 of
the displacement ~x from the origin as coordinates.

Once the base space has been defined, a field assigns a quantity to each point in the base
space. The nature of this quantity is always the same for a given field but may be different
for different fields. A scalar field assigns a scalar value to each point, while a vector field
assigns a vector value. In the same fashion, a tensor field assigns a tensor value to each
point, but for the time being we will restrict ourselves to scalar and vector fields. Thus, a
field is technically a map from the base space B to a space V (which, for example, may
be a scalar or vector space) and we use the notations φ(p), ~v(p), where p is an point in
the base space, for scalar and vector fields, respectively. Naturally, we can call our fields
whatever we like and if an origin and/or coordinate system is chosen, we may replace p
by the position vector ~x = xi~ei or the coordinates xi. Until Section 1.6, we will work in a
Cartesian coordinate system with coordinates xi. It is also very common to instead use x,
y, and z to denote the Cartesian coordinates in three dimensions, but we will keep the xi

notation to reduce the number of conventions used.
While the above may sound slightly intimidating, you are probably already familiar with

a large number of different fields. In all of the below examples, the base space is our ordinary
three dimensional space

Example 1.5 The temperature field T (~x) is a scalar field that assigns a temperature to
each point in space. For each point it takes the value of the temperature at that point. The
temperature may vary throughout a room or a city, assigning different values to different
locations, such as the south pole and the Sahara desert. A typical value of the temperature
field may be T (position of my chair) = 300 K.
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Example 1.6 The pressure field p(~x) takes the value of the ambient pressure of the given
spatial point. Since pressure is a scalar quantity, p(~x) is a scalar field. Generally, the pressure
will increase in the direction of the gravitational field. A typical value of the pressure field
is p(point in outer space) = 0 Pa.

Example 1.7 The gravitational field is a vector field and associates a gravitational accel-
eration ~g(~x) to each point in space. Acceleration has a magnitude and a direction, which is
the reason why ~g(~x) is a vector field. The gravitational field outside a spherically symmetric
mass distribution has the value

~g(~x) = −~er
GM

r2
, (1.44)

where G is Newton’s gravitational constant (i.e, G ' 6.67 · 10−11 Nm2/kg2), M the total
mass, r the distance from the center of the body, and ~er is a unit vector directed away from
the center of the body.

Upon choosing a coordinate system with coordinates xi, we can write a scalar field as a
single function of these coordinates

φ(x1, x2, . . .) = φ(p(x1, x2, . . .)) (1.45a)

and a vector field as a collection of N functions

vi(x1, x2, . . .) = vi(p(x1, x2, . . .)) = ~ei · ~v(p(x1, x2, . . .)). (1.45b)

We have here assumed that the basis vectors ~ei do not depend on the spatial point p.
However, it is worth already noting that this will not be generally true once we reach
our discussion of curvilinear coordinate systems in Section 1.6. In these settings, the basis
vectors will instead be replaced by a set of vector fields that are linearly independent at
each point p, but more on that later.

1.4.1 Locality
Just as arithmetic operations can be performed on scalars and vectors, they may also be
performed on scalar and vector fields. This is done in such a fashion that the operation is
performed for the field values in each point separately. For example, we may multiply a
scalar field φ(p) with a vector field ~v(p). The result of this multiplication will be a vector
field ~w(p) that fulfils

~w(p) = φ(p)~v(p) (1.46)

for all points p. In particular, the value of the product field ~w at any given point p does not
depend on the values of φ or ~v at points different from p. This property is called locality
and is a cornerstone in many physical theories.

Example 1.8 If we have a point mass m and know the gravitational field ~g(p), the force on

the mass as a function of the spatial point p is given by ~F (p) = m~g(p). As long as we know
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the gravitational field, we can compute the force without knowing anything else about the
distribution of gravitational sources.

There is a conceptual pitfall here, namely that the gravitational field ~g(p) itself seemingly
depends on quantities that are not local. For example, the gravitational field outside a
spherically symmetric mass distribution of mass M was given in Eq. (1.44). Clearly, the
mass M is not located at the point we are considering the field at. Does this indicate non-
locality? The answer is that it does not and that the value of the field follows from physical
relations in the form of differential equations that can be written on local form. However,
the solution to these equations may and will depend on the distribution of gravitational
sources and is obtained by solving the differential equations, a task that we will soon set
out to do.

1.4.2 Field integrals
There are several possibilities for integrating fields over the entire or parts of the base space.
The integrals may be line integrals, which are integrations along a curve in the base space,
surface integrals, which are integrations over a surface in the base space, or volume integrals
that integrate over a volume of the base space. In general N dimensional spaces, the integrals
can be over a subset of the full base space where the subset has any fixed dimension n ≤ N .
We will here mostly restrict our discussion to a three-dimensional base-space.

1.4.2.1 Volume integrals

Volume integrals are relatively straightforward. The volume element dV at ~x0 is the volume
enclosed in the parallelepiped described by the coordinates xi0 < xi < xi0 + dxi. This
parallelepiped is spanned by the infinitesimal vectors

d~x i ≡ ∂~x

∂xi
dxi. (no sum) (1.47)

Note that d~x 1 is the infinitesimal difference vector ~x(x1 + dx1, x2, x3) − ~x(x1, x2, x3) and
similarly for d~x 2 and d~x 3. As described in Example 1.2, the volume element will be given
by

dV =
∣∣d~x 1 · (d~x 2 × d~x 3)

∣∣ = dx1dx2dx3, (1.48)

assuming a Cartesian coordinate system such that ~x = xi~ei. The integration domain can be
specified by defining the set Ω of coordinates that describe the points in the base space that
are included in it and the resulting integral is a triple integral over this set of coordinates.
The integral I of a scalar field φ(~x) is therefore given by

I =

∫
Ω

φ(~x) dx1dx2dx3. (1.49)

This integral is a single number and is independent of the Cartesian coordinate system
chosen to represent Ω. Note that when we will deal with curvilinear coordinate systems,
this will change slightly due to a more general form of the volume element. In a similar
fashion, the integral ~I of a vector field ~v(~x) is given by

~I =

∫
Ω

~v(~x) dx1dx2dx3. (1.50)
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As long as we restrict ourselves to a Cartesian coordinate system, ~v(~x) can be written in
terms of the constant basis vectors ~ei according to

~v(~x) = vi(~x)~ei, (1.51)

where the vi are functions of the coordinates. Since the ~ei are constant, they can be moved
out of the integral to obtain

~I = ~ei

∫
Ω

vi(~x) dx1dx2dx3, (1.52)

which means that the components of the vector may be integrated separately to provide the
components of the integrated field. This is another aspect that will no longer be true once we
deal with curvilinear coordinate systems as the basis will then depend on the coordinates.

Example 1.9 The mass of a sphere of radius R depends on the density ρ(~x), which is a
scalar field defined in the sphere. The mass of a small volume dV at a point ~x is

dm = ρ(~x)dV (1.53)

and the total mass of the sphere can be computed by summing the mass of all such elements,
i.e., by performing the integral

m =

∫
Ω

dm =

∫
~x2≤R2

ρ(~x) dx1dx2dx3. (1.54)

Here, Ω is the sphere ~x 2 ≤ R2, which assumes that the origin is chosen to be at the center
of the sphere.

Example 1.10 The gravitational force on the sphere in the previous example can be
computed by summing up the forces on each small volume dV . The force on each volume
element is

d~F = ~g(~x)dm = ρ(~x)~g(~x)dV ≡ ~f(~x)dV, (1.55)

where f(~x) = ρ(~x)~g(~x) is the force density . The total gravitational force on the sphere is
therefore

~F =

∫
Ω

d~F =

∫
~x2≤R2

~f(~x) dx1dx2dx3. (1.56)

1.4.2.2 Surface integrals

Surface integrals appear whenever we have a surface and we need to sum up a set of
infinitesimal contributions to a quantity that is defined on that surface. A two dimensional
surface may be parametrised by a set of two parameters s and t such that ~x(s, t) describes a
point on the surface and the coordinates xi(s, t) are functions of s and t. The infinitesimal
parallelogram described by the parameters s0 < s < s0 + ds and t0 < t < t0 + dt is spanned
by the vectors

d~xs =
∂~x

∂s
ds, d~xt =

∂~x

∂t
dt (1.57)
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evaluated at (s, t) = (s0, t0) and its area dS is thus given by

dS = |d~xs × d~xt| =
∣∣∣∣∂~x∂s × ∂~x

∂t

∣∣∣∣ ds dt. (1.58)

In many applications, the surface normal ~n is also of importance. Remembering that the
cross product is normal to both of the arguments, we will therefore define the directed
surface element

d~S = ~n dS =
∂~x

∂s
× ∂~x

∂t
ds dt. (1.59)

It is important to remember that there are two possible directions (related to each other
by a minus sign) of the surface normal and in each application we must order our param-
eters s and t in such a way that the normal points in the intended direction. This can be
done by remembering that, with the definition above, ~xs, ~xt, and ~n (in that order) form a
right-handed system. However, it may be possible to compute ~n through other means than
the cross product, in which case it may be more convenient to use ~n dS rather than the ex-
pression in terms of the cross product without the absolute value. The final double integral
is performed over the set of parameters s and t that describe the surface of integration.

Example 1.11 The pressure on a small part of the surface of an object results in a force

d~F = −p(~x)~n dS, (1.60)

where the normal direction ~n is chosen to point out of the object. In order to compute the
total force on the object, we evaluate the integral

~F =

∫
S

d~F = −
∫
S

p(~x) d~S, (1.61)

where S is the surface of the object. For instance, if we wish to compute the force exerted
on the half-space x3 < 0, the surface x3 = 0 defines the integration domain and we can use
s = x1 and t = x2 as coordinates. We would find that

d~xs =
∂~x

∂x1
ds = ~e1ds, d~xt =

∂~x

∂x2
dt = ~e2dt (1.62)

leading to
d~S = (~e1 × ~e2)ds dt = ~e3 ds dt. (1.63)

On the chosen surface, this vector points out of the half-space on which we wish to compute
the force (see Fig. 1.7) as intended. The total force is thus given by

~F = −~e3

∫ ∞
s,t=−∞

p(~x(s, t)) ds dt. (1.64)

Had we instead chosen s = x2 and t = x1, we would still have parametrised the surface,
but obtained a surface normal pointing in the opposite direction and would have had to
account for this.
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~e2

x3 = 0

~e3

~e1

x3 < 0

Figure 1.7 The vector ~e3 points out of the half-space x3 < 0 on the surface x3 = 0. This defines
the surface normal in the correct direction.

Example 1.12 The convective flow of a substance may be described by the current
~j(~x) = ρ(~x)~v(~x) where ρ(~x) is the density of the substance and ~v(~x) its velocity field.
The amount of substance dΦ that flows through an infinitesimal area per unit time is given
by the component of the current in the direction of the surface normal multiplied by the
infinitesimal area, i.e.,

dΦ = ~j(~x) · ~n dS = ~j(~x) · d~S = ρ~v · d~S. (1.65)

The reason for this is that only the flow in the direction perpendicular to the surface results
in a flow through the surface. This dΦ is thus the amount of substance flowing through the
surface in the direction of the surface normal ~n. The total flow through a surface is obtained
through the integral

Φ =

∫
S

~j(~x) · d~S, (1.66)

which is a scalar quantity as expected.

In general, for any given vector field ~v(~x), the surface integral

Φ =

∫
S

~v(~x) · d~S (1.67)

is called the flux of the field ~v(~x) through the surface S, see Fig. 1.8.

1.4.2.3 Line integrals

Line integrals are in many ways reminiscent of surface integrals with the exception that the
integration curve is one-dimensional rather than two-dimensional and therefore only needs
one parameter. Calling this parameter t, the infinitesimal displacement between ~x(t) and
~x(t+ dt) is given by

d~x =
d~x

dt
dt = ẋi~eidt, (1.68)
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~n

~v(~x)

dS

Figure 1.8 The flux of the vector field ~v(~x) through the small surface element d~S can be geomet-
rically thought of as the volume spanned by ~v(~x) and the surface element. As such it is given by
~v(~x) · d~S. Integrating over a larger surface we find the flux integral of Eq. (1.67).

where the ˙denotes the derivative with respect to the curve parameter t and the last equality
holds as long as the basis vectors ~ei are fixed. As in the case of the surface integral, where
we might only need to consider dS rather than d~S, we may be interested only in the
magnitude of d~x. However, there are several physical applications where the directionality
of d~x, which by construction is in the tangent direction of the curve, is of importance. As
in the previous cases, once the curve is parametrised, the integral may be performed as any
ordinary integral.

Example 1.13 The most prominent use of line integrals in physics is related to the amount
of work done by a force field on an object travelling through it. As discussed previously, the
gravitational force on a mass at a position ~x is given by ~F (~x) = m~g(~x). The work performed
by the force on the object over an infinitesimal displacement d~x is given by (see Fig. 1.9)

dW = ~F · d~x. (1.69)

Summing up the total work done on the object while travelling through the gravitational
field results in the integral

W =

∫
Γ

dW = m

∫
Γ

~g(~x) · d~x, (1.70)

where Γ is the path taken by the object.

1.4.3 Differential operators and fields
Differential equations are at the very heart of physics. They describe how physical quantities
evolve and change with space and time, and formulating and solving them will be a major
theme in this book. There are a number of differential operators that will be of importance
as we go on to model physical systems and they appear in many different contexts.
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d~x

~F‖

~F⊥

~F

Figure 1.9 The work on an object by a force ~F over a displacement d~x is given by dW = ~F ·d~x. As

such, the work done only depends on the force component ~F‖, which is parallel to the displacement

d~x and independent of the perpendicular component ~F⊥.

1.4.3.1 The gradient

Any scalar field φ is a function of the coordinates xi. If we want to consider the change of
this scalar field as we make small changes to the coordinates, we can consider the difference

δφ = φ(~x+ ε~a)− φ(~x), (1.71)

where ε is a small parameter and ~a is any finite vector. Assuming that φ is a differentiable
function of the coordinates, we can Taylor expand it to first order in ε and obtain

δφ = φ(~x) + εai∂iφ(~x)− φ(~x) +O(ε2) = εai∂iφ(~x) +O(ε2), (1.72)

where we are using the notation ∂if = ∂f/∂xi. Taking the limit as ε→ 0, we obtain

lim
ε→0

δφ

ε
= ai∂iφ = ~a · ∇φ. (1.73)

The quantity
∇φ = ~ei∂iφ (1.74)

is the gradient of the scalar field φ and completely describes the change of the field for small
changes in the coordinates as changing the coordinates by xi → xi + dxi for small dxi will
result in a change of the field value dφ = d~x · ∇φ.

As evident from its definition, the gradient is a vector field, assigning a vector to each
point in space based on the behaviour of the scalar field φ in its vicinity. Consequently,
the gradient has both a magnitude and a direction. The direction can be interpreted as the
direction in which the scalar field grows faster, while the magnitude can be interpreted as
how fast it grows in this direction.

The gradient is also important in terms of descriptions of different surfaces. In particular,
a scalar field φ(~x) defines level surfaces according to

φ(~x) = c, (1.75)
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Figure 1.10 The gradient of the height above sea level in a mountain range describes the steepness
and direction of the slope. The left figure shows the mountain range and the right shows the gradient
field and the level curves. Closer level curves imply a larger gradient.

where c is a constant. This imposes a single constraint on the N coordinates xi and therefore
describes an N − 1 dimensional surface. By definition, the value of φ does not change if we
move within the level surface. This implies that any infinitesimal displacement d~x such that
~x and ~x+ d~x both lie within the surface must fulfil

dϕ = d~x · ∇φ = 0. (1.76)

It follows that ∇φ is orthogonal to all infinitesimal displacement within the surface and
therefore is orthogonal to the surface itself and thus proportional to the surface normal
vector ~n, which is defined to be a unit vector orthogonal to the surface.

Example 1.14 In a mountain range, the height above sea level h can be described as a
function of the position on the Earth surface (and thus is a scalar field on the Earth surface).
The magnitude of the gradient describes the steepness of the slope at each given point and
is pointing in the direction of the slope, see Fig. 1.10. A cartographer making a map of the
mountain range draws the level curves of the field h, which correspond to the curves with
constant height above sea level. The gradient is orthogonal to these curves.

1.4.3.2 The divergence

While the gradient is a differential operator mapping a scalar field to a vector field, the
divergence does the opposite and maps a vector field to a scalar field. The divergence of the
vector field ~v expressed in Cartesian coordinates is defined as

∇ · ~v = ∂iv
i. (1.77)
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Note that the ∇ symbol is here used as if it were a vector with partial derivatives as
components, “∇ = ~ei∂i”. While this can be done in a Cartesian coordinate system, it will
no longer be the case in a general curvilinear coordinate system.

As we shall see in the next section, the divergence has an interpretation as the source
of a vector flux. The essential meaning of this is that for any small volume dV around a
point p, the net flux of the vector field ~v(~x) through the closed surface of the volume (with
outward pointing normal vector) is ∇ · ~v dV . If this quantity is positive, there is a net flux
source at p while if it is negative, there is a net flux sink .

Example 1.15 In electrostatics, the flux of the electric field ~E(~x) has the charge density
ρ(~x) divided by the permittivity in vacuum ε0 as its source density. This is described through
the differential form of Gauss’s law

∇ · ~E =
ρ

ε0
. (1.78)

Solving this differential equation for a point charge results in the familiar form

~E =
q~er

4πε0r2
= k

q~er
r2
, (1.79)

where q is the charge, ~er is a unit vector in the direction away from the charge to the point
where the field is evaluated, r is the distance from the charge, and k is Coulomb’s constant ,
i.e., k ' 8.99 · 109 Nm2/C2.

Example 1.16 We can compute the divergence for the position vector ~x in N dimensions
by noting that its ith component is xi. It follows that

∇ · ~x = ∂ix
i = δii = N. (1.80)

We have here used the fact that ∂ix
j = δij and the results of Problem 1.7. Note that

the Einstein summation convention indicates that the i in δii is summed over. Thus, the
divergence of the position vector in any vector space is equal to the dimension of the vector
space.

1.4.3.3 The curl

Yet another differential operator of importance is the curl , which in Cartesian coordinates
is defined as

∇× ~v(~x) = ~eiεijk∂jv
k(~x), (1.81)

where again the notation comes from the similarity with a cross product of the vector
differential operator ∇ and the vector field on which it acts. The curl completes our set of
differential operators acting on fields and maps a vector field to a new vector field.

The interpretation of the curl is somewhat more subtle than that of the gradient and
divergence operators. The circulation of a vector field with respect to a closed curve is
defined as the line integral around the curve

C =

∮
Γ

~v(~x) · d~x. (1.82)
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Figure 1.11 The velocity field of a rotating solid object (left). With the origin in the center of
rotation, the field is given by ~v = ω(−x2~e1 +x1~e2), where ω is the angular velocity of the rotation.
The middle part of the figure shows a curl free vector field with constant divergence, while the
right figure shows a vector field that is the sum of the other two.

In the same fashion as the divergence describes the net flux through the surface of a small
volume, the curl describes the circulation of a vector field around a small loop. The circu-
lation integral for the small loop is proportional to the area of the surface spanned by the
loop and to the scalar product between the surface normal and the curl, i.e.,

dC = (∇× ~v) · d~S. (1.83)

Note that this circulation depends on both the area of the infinitesimal surface as well as
its orientation, reaching a maximum when the surface normal aligns with the direction of
the curl.

Example 1.17 The force on a point mass m when going around a small loop Γ is given
by the force field ~F (~x). The total work done on the mass for one pass through the loop is
given by

dW =

∮
Γ

~F · d~x (1.84)

but is also given by the curl of ~F and the area spanned by the loop

dW = (∇× ~F ) · d~S. (1.85)

If this quantity is positive, it means that the net force along the loop on the mass is adding
energy to the mass and if it is negative, energy is taken away. If dW 6= 0, the force field is
therefore called non-conservative.

Example 1.18 An example of a vector field with a non-zero curl is the local velocity
field ~v(~x) of the matter inside a rotating solid object. Such a velocity field is given by (see
Fig. 1.11)

~v = ω(−x2~e1 + x1~e2), (1.86)
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which in this case is a rotation around ~e3. Consequently, the curl of this field is

∇× ~v = ω[~e1(−∂3x
1) + ~e2(−∂3x

2) + ~e3(∂1x
1 + ∂2x

2)] = 2ω~e3. (1.87)

1.4.3.4 The directional derivative

The directional derivative is defined for any type of field and results in a field of the same
type. In order to define it, we first need to specify a direction ~n. The directional derivative
of any field F at ~x is then defined as

dF

d~n
= lim
ε→0

F (~x+ ε~n)− F (~x)

ε
. (1.88)

Similar to what we did for the gradient, we can Taylor expand F (~x+ ε~n) and obtain

dF

d~n
= ni∂iF ≡ (~n · ∇)F. (1.89)

In complete analogy, the directional derivative with respect to ~n of a scalar field is just the
scalar product of ~n with the gradient of the scalar field. The difference here is that F may
be any type of field. When we discuss tensors, this will also hold for a generalised form of
the gradient that works for any type of tensor field. It is sometimes preferred to define the
the directional derivative only for unit vectors, i.e., for ~n such that |~n| = 1.

1.4.3.5 Second order operators

Given the properties of the gradient, divergence, and curl, there is a finite number of ways we
could think of combining them into second order differential operators. With φ an arbitrary
scalar field and ~v an arbitrary vector field, we could construct the following second order
differential operations

∇ · ∇φ, ∇×∇φ, (∇ · ∇)~v, ∇(∇ · ~v), ∇ · (∇× ~v), ∇× (∇× ~v). (1.90)

For the second and fifth of these, we can argue that

∇×∇φ = ~eiεijk∂j∂kφ = 0, (1.91a)

∇ · (∇× ~v) = εijk∂i∂jv
k = 0, (1.91b)

just by the assumption that the partial derivatives commute and using the anti-symmetric
property of the permutation symbol. Although this may make these second order operators
seem trivial and rather uninteresting, these relations will play a crucial role when we discuss
potential theory in Section 1.7. The first and third of the listed operators are very similar
and only differ in that the first acts on a scalar field and the third acts on a vector field.
In both cases, they return a field of the same type and in a Cartesian coordinate system
the third operator may be considered to be the first acting on each of the components of ~v
separately. This operator is known as the Laplace operator and is usually written in one of
the following ways

∇ · ∇ = ∂i∂i = ∇2 = ∆. (1.92)

The Laplace operator appears in many applications in physics and is often the generalisation
of a second derivative in one dimension to similar problems in several dimensions.
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Example 1.19 The electric field of a point charge q at the origin may be written as

~E =
q~er

4πε0r2
, (1.93)

where r is the distance from the origin and ε0 is the permittivity in vacuum. It may also
be expressed in terms of the electrostatic potential φ by use of the gradient

~E = −∇φ, φ =
q

4πε0r
. (1.94)

Since the electric field satisfies the relation ∇ · ~E = 0 away from the point charge, we find
that the potential satisfies

∇2φ = 0 (1.95)

for r > 0. For a general charge distribution, the relation instead becomes

∇2φ = −∇ · ~E = − ρ

ε0
. (1.96)

The fourth and sixth operators of Eq. (1.90) are related by

∇× (∇× ~v) = ∇(∇ · ~v)−∇2~v. (1.97)

Thus, they can both be written in terms of each other and the Laplace operator and in
total we have two independent second order differential operators.

1.4.3.6 Coordinate independence

So far, we have only discussed the form of the differential operators in one set of Cartesian
coordinates. Let us therefore take some time to discuss their expression in a different set
of Cartesian coordinates x′i

′
. In a general affine space, we can select new coordinates by

choosing a new origin as well as a new set of basis vectors. If the difference vector between
the origin of the x′ and x coordinates is denoted by ~d, any point may be described by either

~x = ~eix
i or ~x ′ = ~e ′i′x

′i′ , (1.98)

where ~x ′ = ~x + ~d. We can now use the chain rule to find out how the partial derivatives
transform and the result is

∂i =
∂

∂xi
=
∂x′i

′

∂xi
∂

∂x′i′
=
∂x′i

′

∂xi
∂i′ . (1.99)

From the relation between the coordinates we have

∂x′i
′

∂xi
=

∂

∂xi
[~e ′i′ · (~x+ ~d)] =

∂

∂xi
(xj~e ′i′ · ~ej) = ai

′

j δij = ai
′

i (1.100)

and therefore
∂i = ai

′

i ∂i′ . (1.101)

It now follows that
~ei∂i = ai

′

i ~e
′
i′a

j′

i ∂j′ = ~e ′i′δi′j′∂j′ = ~e ′i′∂i′ (1.102)
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which means that ∇ is expressed in the same way regardless of which Cartesian coordinate
system is imposed on the base space. This holds for any expression that ∇ appears in,
i.e., for the gradient, divergence, and curl, respectively. The crucial step is the realisation
that the partial derivatives ∂i follow the exact same transformation rules as any vector
component.

1.5 INTEGRAL THEOREMS
A central part of many physical considerations deals with rewriting the integral of a deriva-
tive of a scalar or vector over a region in terms of an integral of the scalar or vector itself
over the region boundary or vice versa. The corresponding relation in one dimension is∫ b

a

df

dx
dx = f(b)− f(a), (1.103)

where the integral of the derivative of f is related to the values of f at the boundary points
x = a and x = b. In this section we will introduce theorems that are the higher-dimensional
equivalents of this relation.

1.5.1 Line integral of a gradient
Assume that we have a scalar field φ(~x) and wish to compute the line integral

L =

∫
Γ

∇φ · d~x, (1.104)

where Γ is a curve starting in ~x0 and ending in ~x1. This curve may be parametrised by a
parameter t such that the position vector is a continuous function ~x(t) with ~x(0) = ~x0 and
~x(1) = ~x1. Rewriting the line integral in terms of this parameter, we obtain

L =

∫ 1

0

d~x

dt
· ∇φdt. (1.105)

From the chain rule, we have the relation (d~x/dt) · ∇ = (dxi/dt)∂i = d/dt, leading to

L =

∫ 1

0

dφ(~x(t))

dt
dt = φ(~x(1))− φ(~x(0)) = φ(~x1)− φ(~x0) (1.106)

by virtue of Eq. (1.103). We note here that the integral is only dependent on the values of
φ at the endpoints and does not depend on the path Γ. In fact, we could have chosen any
path with the same endpoints and ended up with the same result. This result is the defining
feature of the line integral of a conservative vector field and by the relation we have just
proven, any vector field which is a gradient of a scalar field is conservative. As we shall see
in Section 1.7, for any conservative vector field ~v, it is always possible to find a scalar field
φ such that ~v = ∇φ. The scalar field φ is then called the potential of ~v.

Example 1.20 The gravitational field outside of a spherical mass distribution with total
mass M is given by

~g = −GM~er
r2

= ∇
(
GM

r

)
≡ ∇φ, (1.107)
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where φ is the gravitational potential . The corresponding force on a test mass m is given
by ~F = m~g and the work done on the test mass when moving it from ~xA to ~xB is therefore
given by

W =

∫
dW =

∫ ~xB

~xA

∇mφ · d~x = mφ(~xB)−mφ(~xA). (1.108)

In other terms, the work done in order to move the test mass is given by the difference in
the gravitational potential energy V = mφ between ~xB and ~xA.

1.5.2 The divergence theorem
The divergence theorem (also known as Gauss’s theorem or Ostogradsky’s theorem) relates
the flux of a vector field through the closed boundary surface of a volume to the volume
integral of the divergence of the vector field over the same volume. Given a volume V with
a boundary surface S, the theorem states that∮

S

~v · d~S =

∫
V

∇ · ~v dV. (1.109)

The divergence theorem is fundamental in many areas of physics and holds in any number
of dimensions. However, we will derive the theorem in three dimensions for concreteness
and we start doing so by considering the volume integral∫

V

∇ · ~v dV =

∫
V

(∂1v
1 + ∂2v

2 + ∂3v
3)dV, (1.110)

where we have explicitly written out all of the terms contributing to the divergence. We
start by studying the first term in this integral, which can be written as∫

V

∂1v
1dV =

∫
P23V

(∑
n

∫ x1
n,+

x1
n,−

∂1v
1dx1

)
dx2dx3. (1.111)

Here we start by performing the integral in the x1 direction and the sum is over the disjoint
intervals in x1 coordinate which are part of the volume V for fixed x2 and x3 (see Fig. 1.12).
We assume that the lower x1 boundary in interval n is x1

n,− and the upper x1
n,+. The region

P23V is the projection of the volume V onto the x2-x3-plane. The integral in the x1 direction
is trivial as the integrand is ∂1v

1 and we thus obtain∫
V

∂1v
1dV =

∫
P23V

∑
n

[v1(x1
n,+)− v1(x1

n,−)]dx2dx3. (1.112)

Let us consider the surface element of the volume. Around the point with coordinates
(x1
n,+, x

2, x3), the surface may be parametrised with the x2 and x3 coordinates and we can
write x1

n,+ = σ(x2, x3). In addition, we know that in order for x1
n,+ to be the upper bound

of interval n in the x1 direction, the surface element must have a normal with a positive
component in that direction. Using Eq. (1.59), we obtain

d~S =

(
∂~x

∂x2
× ∂~x

∂x3

)
dx2dx3

= (~e1∂2σ + ~e2)× (~e1∂3σ + ~e3)dx2dx3

= (~e1 − ~e2∂2σ − ~e3∂3σ)dx2dx3. (1.113)
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x1
1,+

~n

x1
2,+

x1
2,−

V

x1
1,−

x1

x2

x3

P23V

Figure 1.12 In the derivation of the divergence theorem, the integral over the volume V is first
performed in the x1 direction (vertical line in figure for fixed x2 and x3) for the term containing
∂1v

1, resulting in disjoint intervals, in this case (x1
1,−, x

1
1,+) and (x1

2,−, x
1
2,+). When integrating x2

and x3 over P23V , the resulting contributions build up the surface integral for the terms v1dS1.
The corresponding argument for the other terms of the divergence give the remaining contributions
to the flux integral.

From this follows that
v1dS1 = v1n1dS = v1dx2dx3 (1.114)

at x1
n,+. Similar arguments can be made for the surface at x1

n,−, but with the difference that
the surface normal must have a negative component in the x1 direction in order to point
out of the volume. Thus, we have∮

S

v1n1dS =

∫
P23V

∑
i

[v1(x1
n,+)− v1(x1

n,−)]dx2dx3 =

∫
V

∂1v
1dV. (1.115)

Making the exact same argument for the other terms, i.e., first integrating in the variable
that the term has a derivative with respect to, we obtain∮

S

~v · d~S =

∮
S

vjnjdS =

∫
V

∂jv
jdV =

∫
V

∇ · ~v dV, (1.116)

which is the divergence theorem.
There is a minor gap in the proof above, namely that the surface only can be

parametrised using x2 and x3 only in the regions where ~e1 is not tangent to the surface.
While the very existence of x1

n,+ implies that this is not the case for the volume integral,
we do need to add those surfaces to the surface integral in order to complete the closed
surface. However, for such surfaces v1dS1 = 0 due to ~n being orthogonal to ~e1 and we can
safely add the contribution from such surfaces to the surface integral without changing its
value.

As an alternative to the above, we can start by proving the divergence theorem for a
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B2

B1

Figure 1.13 The volume V could be built up out of a collection of boxes (left). For the shared
surfaces, the flux out of one box is cancelled by the flux into another, since the boxes have surface
normals in opposite directions (right). The flux into the box B1 through the shared surface is
exactly the flux out of B2 through the same surface. This leaves only the outer box surfaces, over
which the flux must equal the integral of ∇ · ~v over the volume of all boxes.

very small box B with xi0 < xi < xi + dxi. For the volume integral, we obtain∫
B

∂1v
1dV =

∫ x2
0+dx2

x2
0

dx2

∫ x3
0+dx3

x3
0

dx3[v1(x1 + dx1)− v1(x1)]

=

∫
P23B

[v1n1|x1=x1
0+dx1 + v1n1|x1=x1

0
]dS, (1.117)

where we have used that ~n = ~e1 on the end surface x1 = x1
0 + dx1 and ~n = −~e1 on the end

surface x1 = x1
0. The remaining terms in the volume integral contribute with the surface

integrals on the other sides, resulting in the divergence theorem for a box. Starting from
this, we can build any volume V out of such boxes of different sizes and end up with the
divergence theorem for any volume, see Fig. 1.13. For any internal surface between two
boxes, the flux out of one box equals the flux into the other since the surface normals have
opposite directions (and equal surface). We may therefore cancel these fluxes, leaving only
the flux through the unpaired outer surfaces of the boxes, which is equal to the volume
integral of the divergence taken over all of the boxes.

This line of argumentation is essentially equivalent to the one we used already, with the
advantage that we do not have to worry about disjoint intervals when performing the first
integration for a box.

Example 1.21 The divergence theorem can help us compute the relation between the area
and the volume of a sphere. In Example 1.16, we saw that ∇ · ~x = N , which gives us∫

V

∇ · ~x dV =

∫
V

N dV = NV, (1.118)

where V is any volume. By the divergence theorem, it follows that

V =
1

N

∮
S

~x · d~S, (1.119)
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where S is the surface of V . For the particular case of V being a sphere, ~x · d~S = RdS,
where R is the sphere’s radius. We can conclude that

V =
1

N

∮
RdS =

AR

N
, (1.120)

where A is the area of the sphere. In three dimensions, we find that V = AR/3, which is in
accordance with V = 4πR3/3 and A = 4πR2. In two dimensions, the volume is the area of
a circle, i.e., V = πR2, and the one-dimensional area is its circumference A = 2πR, again
in accordance with our result.

Example 1.22 The central piece of electrostatics is Gauss’s law , which states that the
total charge QV within a volume V equals the permittivity multiplied by the flux of the
electric field through the volume’s boundary surface S

QV =

∫
V

ρ dV = ε0

∮
S

~E · d~S, (1.121)

where ρ is the charge density. By applying the divergence theorem to the flux integral, we
obtain ∫

V

ρ dV = ε0

∫
V

∇ · ~E dV. (1.122)

In order for this to hold for any volume V , this leads to the conclusion that

∇ · ~E =
ρ

ε0
, (1.123)

which is Gauss’s law on differential form. This is perhaps the most well-known of Maxwell’s
equations.

Example 1.23 A common application of the divergence theorem is the derivation of
Green’s identities, which are identities for integrals involving several fields. Let us start
with a scalar field ϕ and a vector field ~v and the application of the divergence theorem to
the volume integral ∫

V

∇ · (ϕ~v)dV =

∮
S

ϕ~v · d~S. (1.124)

Applying the divergence to the field ϕ~v results in∫
V

(ϕ∇ · ~v + ~v · ∇ϕ) dV =

∮
S

ϕ~v · d~S. (1.125)

Green’s first identity is derived from this equation by letting ~v = ∇ψ, where ψ is a scalar
field ∫

V

[
ϕ∇2ψ + (∇ϕ) · (∇ψ)

]
dV =

∮
S

ϕ∇ψ · d~S. (1.126)
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Green’s second identity is obtained from applying the divergence theorem to the integral∫
V

∇ · (ϕ∇ψ − ψ∇ϕ)dV =

∫
V

(ϕ∇2ψ − ψ∇2ϕ)dV =

∮
S

(ϕ∇ψ − ψ∇ϕ) · d~S. (1.127)

1.5.3 Green’s formula
An important special case of the divergence theorem is Green’s formula, which is the result
of applying the divergence theorem to the two-dimensional case. In this setting, the surface
is a curve and the surface element is given by

d~S = ~eiεij
∂xj

∂t
dt = ~eiεijdx

j = ~e1dx
2 − ~e2dx

1, (1.128)

where t is a parameter which parametrises the curve. The volume element is the area element
dx1dx2 and the divergence theorem now states∫

S

∂iv
idx1dx2 =

∫
S

(
∂v1

∂x1
+
∂v2

∂x2

)
dx1dx2 =

∮
Γ

~v · d~S =

∮
Γ

(
v1dx2 − v2dx1

)
, (1.129)

where S is some area and Γ its bounding curve. In order to state this on the form that is
usually quoted for Green’s formula, we consider the vector field ~v = Q(~x)~e1−P (~x)~e2, which
leads to ∫

S

(
∂Q

∂x1
− ∂P

∂x2

)
dx1dx2 =

∮
Γ

(P dx1 +Qdx2). (1.130)

In order for the normal to point out of the area S, the direction of the curve Γ should be
counter clockwise, assuming the usual ordering of the basis vectors ~e1 and ~e2, see Fig. 1.14.

1.5.4 The curl theorem
Just as the divergence theorem connects the volume integral of a divergence with a flux
integral over the bounding surface, the curl theorem (or Stokes’ theorem) connects the flux
integral of a curl over a surface with a line integral around the bounding curve. If we let S
be a surface and Γ its boundary, then∫

S

(∇× ~v) · d~S =

∮
Γ

~v · d~x. (1.131)

It is important to note that the direction of the surface normal dictates the direction of
the curve Γ, as illustrated in Fig. 1.15. To show this, we parametrise the two-dimensional
surface using the parameters s and t such that the surface element is given by

d~S =
∂~x

∂s
× ∂~x

∂t
ds dt (1.132)

and the surface S corresponds to some area Sp in the s-t parameter space. The sought flux
integral is now given by∫

S

(∇× ~v) · d~S =

∫
Sp

(∇× ~v) ·
(
∂~x

∂s
× ∂~x

∂t

)
ds dt. (1.133)
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S

Γ

x1

x2

Figure 1.14 In Green’s formula, the integral over the boundary curve Γ should be taken counter
clockwise.

Γ

~n

Figure 1.15 The relation between the normal vector of the surface and the direction of the curve
for the corresponding line integral based on the curl theorem. Looking through the surface in the
normal direction, the bounding curve should be in the clockwise direction.
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Using the cyclicity of the vector triple product, the integrand may be rewritten as

(∇× ~v) ·
(
∂~x

∂s
× ∂~x

∂t

)
=

[(
∂~x

∂s
× ∂~x

∂t

)
×∇

]
· ~v =

[
∂~x

∂t

(
∂~x

∂s
· ∇
)
− ∂~x

∂s

(
∂~x

∂t
· ∇
)]
· ~v

=
∂~x

∂t
· ∂~v
∂s
− ∂~x

∂s
· ∂~v
∂t

=
∂

∂s

(
~v · ∂~x

∂t

)
− ∂

∂t

(
~v · ∂~x

∂s

)
, (1.134)

where we have used the chain rule (∂~x/∂τ) ·∇ = (∂xi/∂τ)∂i = ∂/∂τ . From Green’s formula
(taking x1 = s and x2 = t in Eq. (1.130)), it now follows that∫

S

(∇× ~v) · d~S =

∫
Sp

(∇× ~v) ·
(
∂~x

∂s
× ∂~x

∂t

)
ds dt

=

∫
Sp

[
∂

∂s

(
~v · ∂~x

∂t

)
− ∂

∂t

(
~v · ∂~x

∂s

)]
ds dt =

∮
Γp

(
~v · ∂~x

∂t
dt+ ~v · ∂~x

∂s
ds

)
=

∮
Γ

~v · d~x, (1.135)

which is the curl theorem.
As an important consequence of the curl theorem, it follows that for any vector field ~w

that can be written as the curl of another vector field ~v, i.e., ~w = ∇× ~v, the flux∫
S

~w · d~S =

∮
Γ

~v · d~x. (1.136)

Thus, the flux of ~w through S is independent of the shape of the actual surface S as long
as it has Γ as a boundary curve. It also follows that the flux of ~w = ∇×~v through a closed
surface must be zero, as it does not have a boundary curve.

Example 1.24 In magnetostatics, we will be dealing with the magnetic field ~B, which
may be written as the curl of the vector potential ~A

~B = ∇× ~A. (1.137)

The flux Φ of the magnetic field through a surface S can then be expressed as

Φ =

∫
S

~B · d~S =

∫
S

(∇× ~A) · d~S =

∮
Γ

~A · d~S, (1.138)

where Γ is the boundary curve of S, where we have used the curl theorem. Because of this
relation, the magnetic flux through a surface only depends on the surface boundary and not
on the surface itself. Any surface with the same boundary as S will result in the same flux.

1.5.5 General integral theorems
Both the divergence and curl theorems may be generalised in such a way that they are not
only valid for the special cases when the result of the integral is a scalar. The generalisations
are valid for any function f(~x), be it a scalar or a component of a vector or tensor field,
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and given by ∫
V

∂if dV =

∮
S

f dSi, (1.139a)∫
S

εijk∂kf dSj =

∮
Γ

f dxi, (1.139b)

where, as in the case of the divergence and curl theorems, S is the boundary of V for the
first equation, while Γ is the boundary of S in the second. The proofs of these relations
are completely analogous to those of the earlier theorems. In the case of the divergence
theorem, the only modification is that we only need to consider one term, and we integrate
in the xi direction first. In fact, we could prove the divergence theorem by first proving the
more general form and afterwards letting f be the jth component of a vector ~v. We would
obtain

Iji =

∫
V

∂iv
jdV =

∮
S

vjdSi (1.140)

and upon letting i = j and summing

Iii =

∫
V

∂iv
idV =

∫
V

∇ · ~v dV =

∮
S

vidSi =

∮
S

~v · d~S. (1.141)

Proving the generalised curl theorem starting from the regular curl theorem is left as Prob-
lem 1.44.

1.6 NON-CARTESIAN COORDINATE SYSTEMS
While Cartesian coordinate systems provide a solid basis for dealing with scalars, vectors,
and later on tensors, in affine spaces, we will encounter problems that are easier to describe
and solve using a different set of coordinates that are not necessarily linear or even orthog-
onal. In several cases, we will also be able to apply symmetry arguments in a particular set
of coordinates that are not as easily applicable in other coordinate systems.

1.6.1 General theory
A coordinate system of an N dimensional affine space is a labelling of all the points in the
space by N numbers, which we call coordinates. Each combination of possible coordinates
should uniquely define a point in the space. Each ya is a continuous function called a
coordinate function from the N dimensional space to the real numbers. From this point on,
we will adopt the convention of using early letters in the alphabet (a, b, c, . . . ) as indices
for general coordinate systems and reserve letters from the middle of the alphabet (i, j, k,
. . . ) for indices in Cartesian coordinates.

Example 1.25 Given an affine N dimensional space, we can always define a Cartesian
coordinate system as we have done previously. We do so by selecting one point in the affine
space as the origin O and selecting a set of orthonormal basis vectors ~ei. The coordinates
are then defined by mapping the coordinates xi onto the point P such that

−−→
OP = ~x = ~eix

i, (1.142)
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~v2

p

~v1

Figure 1.16 A coordinate system for a two-dimensional affine space may be based on the linearly
independent, but not orthogonal, set of vectors ~v1 and ~v2. In this case, the coordinates of the point
p would be y1 = 1.4, y2 = 1.6.

where
−−→
OP is the difference vector between P and O. The coordinate functions are given by

xi(P ) = ~ei ·
−−→
OP. (1.143)

Since we can always start by writing down a Cartesian coordinate system for an affine
space, the coordinates of a more general coordinate system may be written in terms of these
Cartesian coordinates for simplicity.

Example 1.26 We can create a coordinate system that is not based on orthogonal basis
vectors in a similar way to how we created the Cartesian coordinate system. Instead of a
set of orthonormal basis vectors, it suffices to pick a set of linearly independent vectors ~va.
The mapping of the coordinates ya to the point P is given by

−−→
OP = ~x = ~vay

a. (1.144)

However, note that the coordinate functions are not given by ya = ~va ·
−−→
OP in this case as

the vectors ~va are not necessarily orthogonal or even normalised. For concreteness, let us
take a two-dimensional space parametrised using the basis ~v1 = ~e1 and ~v2 = ~e1 + ~e2, where
~e1 and ~e2 form an orthonormal basis, see Fig. 1.16. We obtain

~x = y1~e1 + y2(~e1 + ~e2) = ~e1(y1 + y2) + ~e2y
2. (1.145)

From this we can deduce that the coordinate functions are given by

y1 = (~e1 − ~e2) · ~x = x1 − x2 6= ~v1 · ~x, (1.146a)

y2 = ~e2 · ~x = x2 6= ~v2 · ~x. (1.146b)

Equivalently, we could have used

y1 = x1 − x2, (1.147a)

y2 = x2, (1.147b)
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to define the coordinate functions y1 and y2. In what follows we will discuss how this applies
to the general setting with an arbitrary coordinate system.

1.6.1.1 Tangent vector basis

As indicated above, we will now assume that the coordinate functions ya are known functions
of the Cartesian coordinates xi. Given these functions, we define the coordinate lines for
the ya coordinate as the curves for which yb is constant for all b 6= a. The tangent vector of
this coordinate line is given by

~Ea =
∂~x

∂ya
=
∂xi

∂ya
~ei, (1.148)

where ~ei are the Cartesian basis vectors, which are constant. The partial derivative in
this expression is the partial derivative of the Cartesian coordinate functions expressed as
functions of the y coordinates. In order for the coordinate system to uniquely define a point,
the tangent vectors ~Ea must be linearly independent. We can use this fact in order to use
the ~Ea vectors as a set of basis vectors and express any vector as a linear combination of
these basis vectors. This presents us with a conundrum as the vectors ~Ea may generally
depend on the coordinates. The way forward here is to realise that most vectors are defined
only at a given point in space. In particular, for vector fields, it is natural to use the basis
defined at a particular spatial point as the basis for the fields at that point. In terms of
components, we would write

~v(~x) = va(~x) ~Ea(~x). (1.149)

In what follows, we will often suppress the explicit mention of the spatial dependence of both
vector components and basis vectors, i.e., we will assume that va ≡ va(~x) and ~Ea ≡ ~Ea(~x).

The set of vectors ~Ea is called a tangent vector basis and the vector components va are
called contravariant vector components. The reason for this nomenclature is that a vector
is not dependent upon the basis used to represent it and in order to ensure that this is the
case, the vector components must transform in the opposite way as compared to the basis
vectors under a coordinate change. In particular for a vector ~v

~v = va ~Ea = va
∂xi

∂ya
~ei = vi~ei. (1.150)

Scalar multiplication with ~ej now leads to

vj =
∂xj

∂ya
va =⇒ vb =

∂yb

∂xj
∂xj

∂ya
va =

∂yb

∂xj
vj . (1.151)

Here we have used the chain rule and the fact that

∂yb

∂xj
∂xj

∂ya
= δba. (1.152)

Note that we have here introduced a slightly new notation for the δ symbol, namely that
it has one index up and one index down. As we shall see, the position of the indices (up or
down), that we have so far been quite flexible with, plays a crucial role for non-Cartesian
coordinate systems. In Eq. (1.151), we have found that the vector components va transform
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with the partial derivative of the y coordinates with respect to the x coordinates instead of
vice versa, as the tangent vector basis does.

We also note that the form of Eq. (1.151) is not restricted to when one of the coordinate
systems is Cartesian. If we have two coordinate systems with coordinates ya and y′a

′
,

respectively, we obtain

va
′

=
∂y′a

′

∂xj
vj =

∂y′a
′

∂xj
∂xj

∂ya
va =

∂y′a
′

∂ya
va, (1.153)

where we have again applied the chain rule for the derivatives.

Example 1.27 In Example 1.26, we used the vectors ~v1 and ~v2 to define a new coordinate
system on a two-dimensional affine space. Towards the end of the example, we noted that
the coordinate system could also be defined by specifying the coordinate functions as in
Eqs. (1.147). Inverting these equations leads to

x1 = y1 + y2, x2 = y2. (1.154)

It follows directly that the tangent vector basis is given by

~E1 =
∂~x

∂y1
= ~e1 = ~v1, ~E2 =

∂~x

∂y2
= ~e1 + ~e2 = ~v2. (1.155)

Thus, the tangent vector basis is the basis we used to define the coordinate system in
Example 1.26. Note that this is a particular result for the situation when the coordinate
functions are linear, we call this type of coordinates affine coordinates.

1.6.1.2 Dual basis

Apart from the tangent vector basis, there is a different set of basis vectors which we can
define using a given coordinate system. As we move on to more advanced topics, the need
shall arise to separate the following concept further from the concept of tangent vectors, but
for now let us define a set of vector fields by taking the gradient of the coordinate functions

~Ea = ∇ya. (1.156)

These vector fields also form a basis at each point in the base space and their relation to
the Cartesian basis is

~ei · ~Ea =
∂ya

∂xi
=⇒ ~Ea =

∂ya

∂xi
~ei. (1.157)

Note that the vectors ~Ea follow the very same transformation rule as the contravariant
vector components and thus transforms in the opposite fashion as compared to the tangent
vector basis. This new set of basis vectors is called the dual basis and has a set of interesting
properties. The first one that we note is that the vectors in the dual basis are not necessarily
parallel to the corresponding tangent vectors.

Example 1.28 Returning again to Example 1.26, Eqs. (1.147) directly gives us

~E1 = ~e1 − ~e2, ~E2 = ~e2, (1.158)
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y2

y1

Figure 1.17 The two-dimensional coordinate system y1 = x1−x2, y2 = x2 along with the associated
tangent vector basis (dark) and dual basis (light). The coordinate lines of y1 are at the same time
the level surfaces of y2. By definition, the tangent vector field ~E1 is tangent to the y1 coordinate
lines while the dual field ~E2 is normal to the y2 level surfaces. Thus, we must have ~E1 · ~E2 = 0.
The corresponding argument can be made for ~E2 and ~E1.

which are clearly not parallel to ~E1 and ~E2, respectively. The two different bases are illus-
trated in Fig. 1.17. However, as shown in the figure, the tangent vector field ~E1 is orthogonal
to the dual vector field ~E2.

The fact that ~E1 · ~E2 = 0 in the above example is by no means a coincidence. From the
properties of the tangent vector and dual fields, we generally obtain

~Ea · ~Eb = ~ei · ~ej
∂xi

∂ya
∂yb

∂xj
=
∂xi

∂ya
∂yb

∂xi
=
∂yb

∂ya
= δba. (1.159)

Thus, although ~Ea is not generally parallel with ~Ea, it is the only dual basis vector that
has a non-zero scalar product with ~Ea and this scalar product is equal to one.

Example 1.29 While the tangent vector basis and dual basis are not necessarily parallel to
each other, there is an important class of coordinate systems in which they are. An example
of this is the coordinate system

s = sinh(x1), t = sinh(x2), (1.160)

where we have called the new coordinates s and t rather than y1 and y2 in order to avoid
confusion in later examples. This coordinate system has the same coordinate lines and
coordinate level surfaces as the original Cartesian system as it only rescales the coordinates.
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Figure 1.18 The tangent vector basis (left) and dual basis (right) for the coordinate system s =
sinh(x1), t = sinh(x2) with s = t = 0 in the middle of the figures (not to scale between the figures).
When the magnitude of the tangent vector basis is large, then the magnitude of the dual basis is
small and vice versa.

We find that
~Es = ~e1

1√
1 + s2

, ~Et = ~e2
1√

1 + t2
(1.161a)

~Es = ~e1

√
1 + s2, ~Et = ~e2

√
1 + t2, (1.161b)

where we have taken the habit of using the coordinate names rather than numbers when
speaking about specific components. In Fig. 1.18, we show the tangent vector and dual basis
fields for this coordinate system. Another difference from our previous example is that the
basis vectors depend on the coordinates, something which is often the case for non-Cartesian
coordinate systems.

When it comes to decomposing an arbitrary vector ~v into a linear combination of ~Ea

we find that, with ~v = va ~E
a,

~Ea · ~v = ~Ea · vb ~Eb = δbavb = va. (1.162)

Using the expression for ~Ea in Cartesian coordinates, we find that

va =
∂xi

∂ya
~ei · ~v =

∂xi

∂ya
vi. (1.163)

The components va thus transform in the same way as the tangent vector basis under
coordinate changes and are therefore called covariant vector components.

Before specialising to coordinate systems that fulfil an additional orthogonality criterion,
let us examine how to express the scalar product of two general vectors ~v and ~w in a general
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coordinate system. Writing ~v in terms of the tangent vector basis and ~w in the dual basis,
we find that

~v · ~w = vawb ~Ea · ~Eb = vawbδ
a
b = vawa. (1.164)

The scalar product of the two vectors is therefore given by the sum of the products of
the covariant and contravariant components of the vectors, respectively. Naturally, there is
nothing stopping us from instead expressing ~v in the dual basis and ~w in the tangent vector
basis and arriving at ~v = ~w = vaw

a.

1.6.2 Orthogonal coordinates

As we have seen, the tangent vector basis ~Ea need not be orthogonal and, depending on the
coordinates, we may end up with ~Ea· ~Eb 6= 0 for a 6= b. However, there is an important class of
coordinate systems where the tangent vector basis is orthogonal as we saw in Example 1.29.
A coordinate system where this is the case is called an orthogonal coordinate system and in
such systems

~Ea · ~Eb = h2
aδab, (no sum) (1.165)

where we have introduced the scale factors ha = | ~Ea|, which are the moduli of the tangent

vector basis. Since the vectors ~Ea are orthogonal, we can define an orthonormal basis ~ea
according to

~ea =
1

ha
~Ea =

1

ha

∂~x

∂ya
. (no sum) (1.166)

The normalisation condition gives

ha =

√√√√∑
i

(
∂xi

∂ya

)2

. (1.167)

For our purposes, it is not relevant to work with covariant and contravariant indices once
we have established the orthonormal basis ~ea. For the remainder of this chapter, we will
therefore use a notation similar to that used for Cartesian coordinates, with the only differ-
ence being in the indices used. Naturally, any vector can be written as a linear combination
of the ~ea basis

~v = ṽa~ea =
∑
a

ṽa
1

ha
~Ea, (1.168)

which leads to the relation ṽa = hav
a (no sum), where ṽa are the physical components of

the vector ~v in the orthonormal basis, since they are directly related to the projection of
the vector onto the basis unit vectors.

Example 1.30 In Example 1.29 we introduced an orthogonal coordinate system with

~Es =
1√

1 + s2
~e1, ~Et =

1√
1 + t2

~e2. (1.169)

Taking the modulus of these two tangent vectors gives us

hs =
1√

1 + s2
, ht =

1√
1 + t2

(1.170)

and thus
~es = ~e1, ~et = ~e2. (1.171)
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In the above example, the orthonormal basis turned out to be the same as the Cartesian
one, but the ~ea generally depend on the point in the base space, just as ~Ea does, due to the
possibility of ~Ea changing direction from point to point.

Let us now find the relation between the dual basis ~Ea and the orthonormal basis ~ea.
In order to do this, we expand ~Ea in the orthonormal basis as ~Ea = Ẽab ~eb and obtain

Ẽab = ~eb · ~Ea =
1

hb
~Eb · ~Ea =

1

hb
δab . (no sum) (1.172)

It follows directly that

~ea =
1

ha
~Ea = ha ~E

a. (no sum) (1.173)

Thus, not only is the tangent vector basis orthogonal, it is also parallel to the dual basis,
with the only difference between the two being a factor of h2

a. This also means that we could
just as well construct the orthonormal basis starting from the dual basis.

1.6.2.1 Integration in orthogonal coordinates

It is worth spending some time and effort on discussing line, surface and volume integrals
in orthogonal coordinate systems. In all cases, the relevant quantity will be

∂~x

∂ya
= ~Ea = ha~ea. (no sum) (1.174)

The form of a line integral does not change significantly, we only need to note that∫
Γ

~v · d~x =

∫
Γ

~v · ~Eaẏadτ, (1.175)

where ẏa = dya/dτ and τ is a curve parameter. This lets us express the integral as∫
Γ

~v · d~x =

∫
Γ

∑
a

ṽahaẏ
adτ. (1.176)

In particular, if integrating along the yb coordinate line, we would use yb as a parameter
and thus have ∫

Γ

~v · d~x =

∫
Γ

∑
a

ṽaha
∂ya

∂yb
dyb =

∫
Γ

ṽbhbdy
b. (no sum) (1.177)

Similar to the above, if we have a surface integral over a coordinate level surface Sc with
yc = constant and the other coordinates being ya and yb, which we can use for parametrising
the surface, then the surface element will be given by

d~S =
∂~x

∂ya
× ∂~x

∂yb
dyadyb = ~Ea × ~Eb dy

adyb

= hahb(~ea × ~eb)dyadyb = hahb~ecdy
adyb, (no sum) (1.178)

assuming that ~ea, ~eb, and ~ec form a right-handed triplet. Since ~ec is a unit vector, it is the
unit normal and the surface area is dS = hahbdy

adyb (no sum). A flux integral over this
surface is therefore given by∫

Sc

~v · d~S =

∫
Sc

ṽchahbdy
adyb. (no sum) (1.179)
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Finally, parametrising a volume with the coordinates, the volume element dV may be
expressed as

dV =
∂~x

∂y1
·
(
∂~x

∂y2
× ∂~x

∂y3

)
dy1dy2dy3 = ~E1 · ( ~E2 × ~E3)dy1dy2dy3

= h1h2h3dy
1dy2dy3, (1.180)

with a similar generalisation of dV =
∏
a hady

a in an arbitrary number of dimensions. For
ease of notation, we introduce the Jacobian determinant

J =
∏
a

ha = h1h2h3, (1.181)

where the last equality holds in three dimensions, which is the product of all of the scale
factors. However, it should be noted that the Jacobian determinant also appears in non-
orthogonal coordinates, although it does not take the simple form shown above. In general
coordinates, we would have

J = ~E1 · ( ~E2 × ~E3), (1.182)

again with a straightforward generalisation to an arbitrary number of dimensions. As a
result, a volume integral expressed in an arbitrary coordinate system takes the form∫

Ω

. . . dV =

∫
Ωp

. . .J dy1dy2dy3, (1.183)

where Ωp is the set of coordinates corresponding to the volume Ω.

Example 1.31 There is an intuitive interpretation of the integral expressions derived
above. The tangent vector ~Ea = ha~ea (no sum) is the change in the position vector associated
to an infinitesimal change in the coordinate ya. A line element therefore becomes directly
proportional to ~Eady

a. Due to the orthogonality of these changes, a surface element spanned
by two of the ~Ea will be equal to the product of the scale factors in magnitude and directed
in the third direction and the volume spanned by all three of them will be the product of
all of the side lengths of the spanned rectangular box.

As an important final comment on integration in orthogonal coordinate systems, it must
be noted that if the integrand is a vector quantity, then the result cannot be obtained by
integrating the components of the orthonormal basis ~ea one by one. The reason for this is
that the basis vectors themselves are not constant and may therefore not be taken outside
of the integral as in the case of Cartesian coordinates.

1.6.2.2 Differentiation in orthogonal coordinates

Just as integration takes a slightly different form in general coordinate systems as compared
to Cartesian coordinates, the differential operators acting on scalar and vector fields take
on a slightly modified form, with the appearance of scale factors slightly simplifying the
results. The operator that is easiest to transform to orthogonal coordinates is the gradient
of a scalar field ϕ, which will be given by

∇ϕ = ~ei∂iϕ = ~ei
∂ya

∂xi
∂aϕ = ~Ea∂aϕ, (1.184)
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which holds in any coordinate system. It follows that the partial derivatives ∂aϕ are naturally
covariant vector components as they will follow the covariant transformation rules. Writing
this in terms of the orthonormal basis, the gradient in orthogonal coordinates is

∇ϕ =
∑
a

1

ha
~ea∂aϕ. (1.185)

Due to the appearance of scale factors, expressing the divergence and curl in terms of
the orthonormal basis ~ea and its vector components poses a bit more of a challenge and
we will be greatly helped by the following argumentation: Let us consider the dual basis
~Ea = ∇ya = ~ea/ha (no sum). Taking the cross product between two of these vectors, we
obtain

~Ea × ~Eb =
1

hahb
~ea × ~eb =

1

hahb

∑
c

εabc~ec =
∑
c

hc
J
εabc~ec, (1.186)

where εabc has the same properties as the permutation symbol in Cartesian coordinates, i.e.,
it is completely anti-symmetric and equal to one when ~ea, ~eb, and ~ec form a right-handed
system. Taking the divergence of the original expression leads to

∇ · ( ~Ea × ~Eb) = ∇ · (∇ya ×∇yb) = ∇yb · (∇×∇ya)−∇ya · (∇×∇yb) = 0, (1.187)

due to ∇×∇ϕ = 0 for all functions ϕ, and thus also for the coordinate functions. Inserting
the expression for ~Ea × ~Eb in terms of the orthonormal basis into this gives the result∑

c

∇ · hc
J
εabc~ec = 0. (1.188)

Multiplying this with εdab, summing over a and b, and making use of the ε-δ-relation we
finally arrive at ∑

abc

εdabεabc∇ ·
hc
J
~ec = 2∇ · hd

J
~ed = 0. (1.189)

Equipped with this relation, we move on to expressing the divergence in orthogonal
coordinates. By expanding the vector ~v as ~v = ṽa~ea, we obtain

∇ · ~v = ∇ · ṽa~ea =
∑
a

∇ ·
(
ṽaJ
ha

ha
J
~ea

)
=
∑
a

[
ha
J
~ea · ∇

(
ṽaJ
ha

)
+
ṽaJ
ha
∇ ·
(
ha
J
~ea

)]
=
∑
a

ha
J
~ea · ∇

(
ṽaJ
ha

)
=

1

J
∑
a

∂a

(
ṽaJ
ha

)
, (1.190)

where in the last step we have used Eq. (1.185) to express the gradient in terms of the
orthonormal basis.

Before moving on with the curl, we note that the Laplace operator in orthogonal coordi-
nates can be expressed by combining Eqs. (1.185) and (1.190) into

∇2ϕ = ∇ · ∇ϕ =
1

J
∑
a

∂a

(
J
h2
a

∂aϕ

)
. (1.191)

Finally, the curl in orthogonal coordinates can be expressed using the scale factors and
vector components ṽa by noting that

∇× ~v = ∇× va ~Ea = − ~Ea ×∇va + va∇× ~Ea = − ~Ea ×∇va. (1.192)
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x1

x2

ρ

φ

x3

z

Figure 1.19 The left figure shows the relation between polar coordinates ρ and φ and a Cartesian
coordinate system in two dimensions. The middle figure shows coordinate lines of ρ (dark) and φ
(light) based on a polar coordinate system with the black point as origin. A cylinder coordinate
system can be created by adding a third direction perpendicular to the plane as shown in the right
figure.

Expressing ~Ea in terms of ~ea and using Eq. (1.185), we find

∇× ~v =
∑
abc

~eaεabc
1

hbhc
∂b (hcṽc) =

1

J
∑
abc

~eaεabcha∂b(hcṽc). (1.193)

In matrix determinant notation, this can schematically be written as

∇× ~v =
1

J

∣∣∣∣∣∣
h1~e1 ∂1 h1ṽ1

h2~e2 ∂2 h2ṽ2

h3~e3 ∂3 h3ṽ3

∣∣∣∣∣∣ , (1.194)

where the partial derivatives are taken to act on the quantities haṽa (no sum) in the third
column.

1.6.3 Polar and cylinder coordinates
With the general theory in place, we will now turn our attention to some specific coordinate
systems that are highly relevant in several physical applications. The first such system is
the set of polar coordinates in two dimensions, which are defined by

x1 = ρ cos(φ), (1.195a)

x2 = ρ sin(φ), (1.195b)

see Fig. 1.19. This set of coordinates is uniquely defines any point in a Cartesian coordinate
system based on the coordinates ρ and φ with 0 ≤ ρ <∞ and φ being 2π periodic. We may
also extend this to a three dimensional space by mapping the third Cartesian coordinate x3

to a third coordinate z according to
x3 = z, (1.195c)

which along with the earlier definitions of ρ and φ defines cylinder coordinates. Below we
will assume that we are working in three dimensions with cylinder coordinates, remembering
that the polar coordinates may be recovered by omitting the z direction, with the obvious
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exception of the curl, where three dimensions are necessary in order for it to be defined.
Using the definition of the tangent vector basis in Eq. (1.148), we find that

~Eρ = ~e1 cos(φ) + ~e2 sin(φ), (1.196a)

~Eφ = −~e1ρ sin(φ) + ~e2ρ cos(φ), (1.196b)

~Ez = ~e3. (1.196c)

It is straightforward to verify that these vectors are orthogonal and therefore we can apply
the full framework we have developed for orthogonal coordinate systems. In particular,
taking the modulus of these vectors, we find the scale factors for cylinder coordinates

hρ = 1, hφ = ρ, hz = 1 (1.197)

and the orthonormal basis is given by

~eρ = ~Eρ = ~e1 cos(φ) + ~e2 sin(φ), (1.198a)

~eφ =
1

ρ
~Eφ = −~e1 sin(φ) + ~e2 cos(φ), (1.198b)

~ez = ~Ez = ~e3. (1.198c)

It should be noted that the position vector ~x can be expressed in cylinder coordinates as

~x = ρ~eρ + z~ez. (1.199)

Applying the theory developed in Section 1.6.2, we can immediately express the gradient,
divergence, curl, and Laplace operator in cylinder coordinates

∇f = ~eρ∂ρf + ~eφ
1

ρ
∂φf + ~ez∂zf, (1.200a)

∇ · ~v =
1

ρ
(∂ρρṽρ + ∂φṽφ) + ∂z ṽz, (1.200b)

∇× ~v = ~eρ

(
1

ρ
∂φṽz − ∂z ṽφ

)
+ ~eφ (∂z ṽρ − ∂ρṽz) +

1

ρ
~ez (∂ρρṽφ − ∂φṽρ) , (1.200c)

∇2f =
1

ρ
∂ρ(ρ∂ρf) +

1

ρ2
∂2
φf + ∂2

zf. (1.200d)

Example 1.32 An important vector field which is most easily described in cylinder coor-
dinates is

~v =
1

ρ
~eφ. (1.201)

It can be used to describe the magnetic field strength around an infinite conductor carrying
a current in magnetostatics, but for our current purposes it is sufficient to notice that its
divergence and curl both vanish as

∇ · ~v =
1

ρ
∂φ

1

ρ
= 0, (1.202)

∇× ~v = −~eρ∂z
1

ρ
+ ~ez

1

ρ
∂ρ

(
ρ

ρ

)
= 0. (1.203)



44 � Mathematical Methods for Physics and Engineering

Γ′

S

Γ
dΓ

Figure 1.20 The change of contour from Γ to Γ′ does not change the value of the circulation integral
of ~v as long as ∇× ~v = 0 on the area S.

These relations are true for all ρ > 0, but may not be generally true at the line ρ = 0,
where the cylinder coordinate system is singular and this vector field will require special
treatment. Taking the circulation integral of ~v around a closed curve Γ, we may rewrite it as
a circulation integral around Γ′ according to Fig. 1.20 as long as ∇×~v = 0 on an area with
the difference contour as a border, in this case as long as the z-axis does not pass through
the loop dΓ. We may therefore change the shape of the contour as long as we do not change
the number of times it winds around the z-axis. For a curve that winds around the z-axis
once, it may be deformed into a circle of radius R in the plane z = 0. We parametrise this
circle by ρ = R, φ = t, and z = 0, with 0 < t < 2π and the circulation integral becomes∮

Γ

~v · d~x =

∫ 2π

0

R

R
dt = 2π. (1.204)

In the above example, we might have been tempted to apply the curl theorem and ended
up with ∮

Γ

~v · d~x =

∫
S

(∇× ~v) · d~S = 0, (1.205)

where S is the disc with the circle Γ as border. Obviously, 0 6= 2π and it would seem that
something is amiss. However, this is precisely an effect of the vector field ~v being singular
at ρ = 0, implying that ∇ × ~v is in some way related to a δ function along ρ = 0, since
everywhere else the relation ∇× ~v = 0 holds true.

1.6.4 Spherical coordinates
The second coordinate system we will have a closer look at is that of spherical coordinates.
It is most useful whenever a problem exhibits complete rotational symmetry in three di-
mensions, as is the case for a point charge or a spherically symmetric mass distribution,
as we will see in the examples of this section. While the cylinder coordinates in three di-
mensions introduced polar coordinates in a plane and left the third coordinate untouched,
spherical coordinates introduces two angles θ and ϕ, which uniquely define the direction to
a point from the origin, and a radius r, which uniquely defines the distance. The spherical
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p
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~eθ

x1
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x2

ϕ

r

~eϕ

Figure 1.21 The definition of the spherical coordinates in relation to a Cartesian coordinate system.
Two angles and a distance uniquely identifies the point p. The unit vectors ~er, ~eθ, and ~eϕ represent
the directions in which p would move when the corresponding coordinates change.

coordinates are defined by

x1 = r sin(θ) cos(ϕ), (1.206a)

x2 = r sin(θ) sin(ϕ), (1.206b)

x3 = r cos(θ), (1.206c)

and they are graphically represented in Fig. 1.21. The angle θ is the angle the position
vector ~x makes with the x3-axis, while ϕ measures the angle between the projection of ~x
onto the x1-x2-plane and the x1-axis, much like the polar coordinate φ.

From the definition of spherical coordinates, we can find the tangent vector basis in
terms of the original Cartesian basis vectors

~Er = ~e1 sin(θ) cos(ϕ) + ~e2 sin(θ) sin(ϕ) + ~e3 cos(θ), (1.207a)

~Eθ = r[~e1 cos(θ) cos(ϕ) + ~e2 cos(θ) sin(ϕ)− ~e3 sin(θ)], (1.207b)

~Eϕ = r sin(θ)[−~e1 sin(ϕ) + ~e2 cos(ϕ)]. (1.207c)

As in the case of cylinder coordinates, it is straightforward to show that this set of basis
vectors is orthogonal and the scale factors

hr = 1, hθ = r, and hϕ = r sin(θ) (1.208)

are found by computing their moduli. Dividing the tangent vector basis by the scale factors
provides us with the orthonormal basis

~er = ~Er = ~e1 sin(θ) cos(ϕ) + ~e2 sin(θ) sin(ϕ) + ~e3 cos(θ), (1.209a)

~eθ =
1

r
~Eθ = ~e1 cos(θ) cos(ϕ) + ~e2 cos(θ) sin(ϕ)− ~e3 sin(θ), (1.209b)

~eϕ =
1

r sin(θ)
~Eϕ = −~e1 sin(ϕ) + ~e2 cos(ϕ). (1.209c)
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This set of basis vectors is also illustrated in Fig. 1.21. Furthermore, we obtain the relation

~x = r~er (1.210)

for the position vector at each point in space. This is a natural consequence of the selection
of the angular parameters as defining the direction to a given point and the coordinate r
giving the distance, just as ~x = ρ~eρ in polar coordinates for two dimensions. In fact, polar
and spherical coordinates are the two and three dimensional versions of a more general set
of spherical coordinates in N dimensions.

The gradient, divergence, curl, and Laplace operators are expressed in spherical coordi-
nates according to

∇f = ~er∂rf +
1

r
~eθ∂θf +

1

r sin(θ)
~eϕ∂ϕf, (1.211a)

∇ · ~v =
1

r2
∂r(r

2ṽr) +
1

r sin(θ)
∂θ(sin(θ)ṽθ) +

1

r sin(θ)
∂ϕṽϕ, (1.211b)

∇× ~v =
1

r sin(θ)
~er(∂θ sin(θ)ṽϕ − ∂ϕṽθ) +

1

r
~eθ

(
1

sin(θ)
∂ϕṽr − ∂rrṽϕ

)
+

1

r
~eϕ(∂rrṽθ − ∂θṽr), (1.211c)

∇2f =
1

r2

[
∂r
(
r2∂rf

)
+

1

sin(θ)
∂θ (sin(θ)∂θf) +

1

sin2(θ)
∂2
ϕf

]
. (1.211d)

Example 1.33 An important vector field in physics is the field of a point source in three
dimensions, which is most easily expressed in spherical coordinates as

~v =
1

r2
~er. (1.212)

Inserting ṽr = 1/r2 into the expressions for the divergence and curl, respectively, we obtain

∇ · ~v =
1

r2
∂r
r2

r2
= 0, (1.213)

∇× ~v =
1

r
~eθ

(
1

sin(θ)
∂ϕ

1

r2

)
− 1

r
~eϕ∂θ

1

r2
= 0. (1.214)

As for the field in Example 1.32, this field is both divergence and curl free everywhere where
the coordinate system is not singular, in this case at r = 0, where the field has a singularity.

If we perform the flux integral over a closed surface S with outward pointing normal
vector, the divergence theorem now tells us that the flux Φ through S is given by

Φ =

∮
S

~v · d~S =

∫
V

∇ · ~v dV = 0, (1.215)

where V is the volume enclosed by S as long as the point r = 0 is not part of this volume.
If r = 0 is enclosed by S, then we can add and subtract the flux integral over a small sphere
Sε of radius ε to the original integral without changing its value, since we are adding and
subtracting the same thing, see Fig. 1.22. As a result, the flux through S is given by

Φ =

(∮
S

~v · d~S −
∮
Sε

~v · d~S
)

+

∮
Sε

~v · d~S =

∫
Vε

∇ · ~v dV +

∮
Sε

~v · d~S, (1.216)
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Vε

S

Sε

Figure 1.22 By adding and subtracting the flux through the small sphere Sε, we can rewrite the
flux integral over S as the flux integral over Sε and a volume integral over the volume Vε in between
the S and Sε.

where Vε is the volume in between S and Sε. We have here used the fact that the negative
of the integral over Sε is equal to the integral over Sε with reversed normal vector, i.e.,
a normal vector pointing out of the volume Vε. Since r = 0 is not in Vε, the field ~v is
divergence free in this volume and we therefore obtain

Φ =

∮
Sε

~v · d~S. (1.217)

The surface element d~S is given by Eq. (1.178) as

d~S = ~erhθhϕdθ dϕ = ~erε
2 sin(θ) dθ dϕ, (1.218)

where we have evaluated the scale factors at r = ε in the last step. We find that

Φ =

∮
Sε

~v · d~S =

∫ π

0

sin(θ)dθ

∫ 2π

0

dϕ = 4π. (1.219)

Thus, the flux of the field ~v through a closed surface S is zero if it does not contain the
point r = 0 and 4π if it does. In order for the divergence theorem to hold, this implies that

∇ · ~v = 4πδ(3)(~x), (1.220)

where δ(3)(~x) is the three dimensional delta function defined by∫
V

δ(3)(~x) dV =

{
1, (~x = 0 is in V )

0, (otherwise)
. (1.221)

For the time being, we will just accept that this is the case, but we shall return to this
relation when we discuss Green’s functions in Chapter 7.
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Example 1.34 You may have realised that the vector field in the previous example has
a form that reminds us of the gravitational field outside a spherically symmetric mass
distribution

~g = −~er
GM

r2
(1.222)

or the electric field outside a spherically symmetric charge distribution

~E = ~er
kQ

r2
, (1.223)

where G is Newton’s gravitational constant, M the total mass of the mass distribution, k
is Coulomb’s constant, and Q the total charge of the charge distribution. From Gauss’s law
on differential form, we have

∇ · ~E =
ρ

ε0
. (1.224)

Taking the electric field to be given by Eq. (1.223) in all of space, the resulting charge
density must be

ρ = ε0∇ · ~E = 4πε0kQδ
(3)(~x) = Qδ(3)(~x), (1.225)

where the last step applies the fact that k = 1/4πε0. Thus, the charge density is zero
everywhere except for in the origin and the total charge, obtained by integrating the charge
density over all of space, is Q. The charge distribution therefore corresponds to a single
point charge Q in the origin. Similar arguments can be made for the gravitational field.

Even if the charge distribution is not confined to the origin, but still spherically symmet-
ric, the fields above are still solutions to the field equations outside the charge distribution.
This can be derived by using the rotational symmetry of the problem. If the charge dis-
tribution is rotated around any axis through the center, then the new charge distribution
is equivalent to the original one. However, if we take the rotation axis to be the x3-axis,
then the rotation would have rotated the components of the field orthogonal to ~e3, lead-
ing to a different solution for the same charge distribution unless those components are
zero, see Fig. 1.23. From this we can draw the conclusion that the field will be of the form
~E = E(r)~er, since the solution must be unique and the rotational symmetry also implies
that the magnitude of the field cannot depend on the angles θ and ϕ. If we now take a
sphere Sr of radius r such that the entire charge distribution is contained within it, then
the integral form of Gauss’s law states∮

Sr

~E · d~S = E(r)

∮
Sr

dS = E(r)4πr2 =
Q

ε0
. (1.226)

Solving for E(r) results in

E(r) =
1

4πε0

Q

r2
=
kQ

r2
(1.227)

as expected. Solving vector equations by using symmetry arguments in this fashion is not
always straightforward and will generally involve special cases or complicated integrals. This
will be somewhat simplified by the use of potential theory, which is introduced in the next
section.
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~E ′

α

~E

ρ

Figure 1.23 Under a rotation by an angle α, if there are components of the electric field ~E orthogo-

nal to the axis of rotation, they will be changed by the rotation to ~E′, even if the charge distribution
remains the same. This would lead to a different solution unless the orthogonal components are
identically zero.

1.7 POTENTIALS
It is sometimes very useful to consider vector fields that can be constructed as derivatives of
other fields, both in order to solve differential equations involving fields and in order to make
statements of physical importance without having to perform longer calculations. In this
section, we will discuss such vector fields, the underlying theory, and some of the physical
applications. There are essentially two ways of writing a vector field ~v as a derivative of a
different field, either

~v = −∇φ, (1.228a)

where φ is a scalar field, or
~v = ∇× ~A, (1.228b)

where ~A is a vector field. The fields φ and ~A are known as the scalar potential and vector
potential , respectively. The minus sign in the equation for the scalar potential is purely
conventional, but it will appear in this fashion in many physics applications, which is why
we adhere to this convention.

1.7.1 Scalar potentials
Vector fields with scalar potentials are typically encountered at very early stages of physics
education although it will generally not be stated in the language of vector analysis.

Example 1.35 The gravitational potential Φ is the scalar potential of the gravitational
field ~g

~g = −∇Φ. (1.229)
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Γ2
Γc

Γ1

Figure 1.24 The two curves Γ1 and Γ2 have the same endpoints. The closed curve Γc can be
constructed by first going along Γ1 in the original direction and then along Γ2 in the opposite
direction. This results in a relation between the line integrals along Γ1 and Γ2 to the circulation
integral along Γc.

From Eq. (1.222), we find that, outside a spherical mass distribution,

~er · ~g = −GM
r2

= −∂rΦ, (1.230)

leading to

Φ = −GM
r

(1.231)

up to an integration constant that is chosen to be zero by convention, such that the gravi-
tational potential approaches zero as r →∞.

Coming back to the results of Section 1.4.3, we immediately find that any vector field ~v
with a scalar potential φ is curl free, as follows from

∇× ~v = −∇×∇φ = 0, (1.232)

where we have used that ∇×∇ is zero for all scalar fields. It turns out that being curl free
is also a sufficient condition for having a scalar potential. Before showing this by explicitly
constructing a scalar potential for a curl free vector field, let us examine the properties and
physical applications of these fields.

A conservative vector field is a vector field ~v for which the line integral

L =

∫
Γ

~v · d~x (1.233)

only depends on the endpoints of the curve Γ. In particular, if we take two different curves
Γ1 and Γ2 with the same endpoints (see Fig. 1.24), then we can construct a closed curve Γc
by first going along Γ1 in the original direction and then along Γ2 in the opposite direction.
This gives us the relation∮

Γc

~v · d~x =

∫
Γ1

~v · d~x−
∫

Γ2

~v · d~x ≡ L1 − L2, (1.234)

for any vector field ~v. Using the curl theorem, we obtain the relation

L1 − L2 =

∫
S

(∇× ~v) · d~S, (1.235)
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where S is a surface with Γc as boundary. If ∇ × ~v = 0, it therefore holds that L1 = L2,
meaning that ~v is conservative if it is curl free. As we have seen that all vector fields with
a scalar potential are curl free, they are therefore also conservative. This is also reflected in
Eq. (1.106), where we saw that the line integral of a gradient was only dependent on the
endpoints of the curve.

Example 1.36 A homogeneous electric field ~E is independent of the position. Naturally
this implies that

∇× ~E = 0 (1.236)

and the field is therefore conservative. The line integral between the two points ~xA and ~xB
is therefore independent of the path taken and we can take a straight path parametrised by
~x(t) = ~xA + t(~xB − ~xA), where t = 0 represents the start of the curve and t = 1 represents
the end. Along this curve, d~x/dt = ~xB − ~xA, leading to∫ ~xB

~xA

~E · d~x =

∫ 1

0

~E · (~xB − ~xA) dt = ~E · (~xB − ~xA). (1.237)

Since ~E is conservative, this will be the result for the line integral of any curve starting in
~xA and ending in ~xB . We also note that if we define V = − ~E · (~x− ~xA), then

−∇V = ∇Ei(xi − xiA) = ~ejE
i∂j(x

i − xiA) = ~ejE
iδij = ~E. (1.238)

Therefore, the constant field ~E has the potential V .

The above example provides a hint to how we can construct a potential for any conser-
vative field. Assuming a conservative vector field ~v, we can construct the scalar field

ϕ(~x) = −
∫ ~x

~x0

~v(~ξ) · d~ξ, (1.239)

which is a line integral along any curve connecting ~x0 and ~x. This is well defined due to
~v being conservative, meaning that the integral does not depend on the particular curve
chosen. In order to compute the gradient of this scalar field, we need to express the partial
derivatives ∂iϕ in terms of ~v. By definition, the partial derivatives are given by

∂iϕ = lim
ε→0

(
ϕ(~x+ ε~ei)− ϕ(~x)

ε

)
. (1.240)

We now note that

ϕ(~x+ ε~ei)− ϕ(~x) = −
∫ ~x+ε~ei

~x0

~v · d~x+

∫ ~x

~x0

~v · d~x = −
∫ ~x+ε~ei

~x

~v · d~x, (1.241)

where we have used that we can select a curve first passing through ~x and then continuing
to ~x + ε~ei when computing ϕ(~x + ε~ei). Again, due to ~v being conservative, we can select
the curve ~x(t) = ~x+ tε~ei, with t going from 0 to 1, when evaluating the remaining integral.
We find that

−
∫ ~x+ε~ei

~x

~v · d~x = −ε
∫ 1

0

~v · ~eidt = −ε
∫ 1

0

vidt = −εvi(~x+ εt∗~ei), (1.242)
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where 0 ≤ t∗ ≤ 1, and we have used the mean value theorem of integration in the last step.
Taking the limit, we obtain

∂iϕ = − lim
ε→0

(
vi(~x+ εt∗~ei)

)
= −vi(~x). (1.243)

It follows that
−∇ϕ = −~ei∂iϕ = ~eiv

i = ~v (1.244)

and thus ϕ is a scalar potential of ~v, meaning that a scalar potential of ~v exists as long as
~v is conservative.

Collecting our results, we find that the following three statements are equivalent:

1. The vector field ~v is curl free, ∇× ~v = 0.

2. The vector field ~v is conservative.

3. The vector field ~v has a scalar potential ϕ such that ~v = −∇ϕ.

Example 1.37 A conservative force field is a force field ~F for which the work W done by
moving an object from ~xA to ~xB , given by the line integral

W =

∫ ~xB

~xA

~F · d~x, (1.245)

does not depend on the path taken. By definition, this force field is a conservative vector
field, meaning that it has a scalar potential V and is curl free. The scalar potential is the
potential energy of the force field and we have

~F = −∇V. (1.246)

Conservative force fields play a central role in classical mechanics.

In the construction of the scalar potential of a conservative vector field, we introduced
the arbitrary point ~x0. As any choice of ~x0 results in a valid scalar potential, the resulting
scalar potential is not unique. For the conservative vector field ~v, we can define two scalar
potentials

ϕ1 = −
∫ ~x

~x1

~v · d~x and ϕ2 = −
∫ ~x

~x2

~v · d~x. (1.247)

Both of these scalar fields have the property −∇ϕi = ~v and are therefore scalar potentials
of ~v. However, they differ by

ϕ2(~x)− ϕ1(~x) =

∫ ~x2

~x1

~v · d~x (1.248)

which is a constant independent of ~x. In general, if ~v has the scalar potential ϕ, then
φ = ϕ+ k, where k is a constant, will fulfil

−∇φ = −∇(ϕ+ k) = −∇ϕ−∇k = ~v (1.249)

and also be a scalar potential of ~v. Any scalar potential is therefore only defined up to a
constant and scalar potentials differing by a constant will give the same vector field.
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It is also worth noting that the construction of the scalar potential as an integral of
the vector field may not always be the easiest way of computing the potential. In general,
finding the potential amounts to solving a set of differential equations

∂iϕ = −vi, (1.250)

which can often be done in a straightforward fashion, as in Example 1.35.

Example 1.38 In Example 1.36 we found the potential of a constant electric field ~E by
integration along a selected curve. We could also have integrated the equation ∂iV = −Ei
directly. Restricting ourselves to two dimensions and starting with i = 1, we find that

∂1V = −E1 =⇒ V = −E1x1 + f(x2), (1.251)

where f is only a function of x2 and thus ∂1f(x2) = 0. Inserting this into ∂2V = −E2 gives
us

∂2(−E1x1 + f(x2)) = f ′(x2) = −E2 =⇒ f(x2) = −E2x2 + V0, (1.252)

where V0 is a constant. It follows that

V = −E1x1 − E2x2 + V0 = − ~E · ~x+ V0, (1.253)

where V0 is an arbitrary integration constant. This example has a straightforward general-
isation to any number of dimensions.

1.7.2 Vector potentials
Unlike scalar potentials, vector potentials are generally not encountered in physics education
until the study of magnetostatics.

Example 1.39 A static magnetic field ~B has a vector potential ~A such that

~B = ∇× ~A. (1.254)

As we shall see, this follows from Gauss’s law of magnetism, which on differential form is
given by

∇ · ~B = 0. (1.255)

In analogy to curl free vector fields having scalar potentials, we shall see that divergence
free vector fields have vector potentials.

For any vector field ~v with a vector potential ~A, we find that

∇ · ~v = ∇ · (∇×A) = 0. (1.256)

All fields with vector potentials are therefore divergence free. This is analogous to what
we found in the scalar potential case, where all fields with scalar potentials were found to
be curl free. Furthermore, just as vector fields with scalar potentials having line integrals
depending only on the curve endpoints, the flux of a field with a vector potential through a
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surface S only depends on the boundary curve, which follows directly from the curl theorem
(see Eq. (1.136)).

In order to show that ∇ · ~v = 0 implies the existence of a vector potential, we will
proceed with an explicit construction of the potential ~A. Unfortunately, the construction
cannot proceed in a way similar to the construction of a scalar potential based on a curl
free field, mainly due to the loss of a path independent line integral. Instead, we start by
considering the scalar field

φ(~x) =
1

r
, (1.257)

where r is the spherical coordinate. By taking the gradient of this field, we obtain

−∇φ = −~er∂r
1

r
=

1

r2
~er, (1.258)

which is exactly the point source vector field considered in Example 1.33. Using the results
from this example, we find that

−∇2φ = 4πδ(3)(~x). (1.259)

By making the translation ~x→ ~x− ~x0, we obtain the relation

−∇2 1

|~x− ~x0|
= 4πδ(3)(~x− ~x0). (1.260)

Furthermore, for any vector field ~v, we can use the defining property of δ(3) in order to
obtain

~v(~x) =

∫
δ(3)(~x− ~x0)~v(~x0)dV0 = − 1

4π

∫
~v(~x0)

(
∇2 1

|~x− ~x0|

)
dV0, (1.261)

where the integral is taken over all of space and the fields will be assumed to go to zero
sufficiently fast as r →∞. By moving the Laplace operator out of the integral, we obtain

~v(~x) = − 1

4π
∇2

∫
~v(~x0)

|~x− ~x0|
dV0 = − 1

4π
∇2 ~w, (1.262)

where

~w =

∫
~v(~x0)

|~x− ~x0|
dV0. (1.263)

From Eq. (1.97), it follows that

~v(~x) =
1

4π
∇× (∇× ~w)− 1

4π
∇(∇ · ~w). (1.264)

We can now rewrite ∇ · ~w according to

∇ · ~w =

∫
∇ · ~v(~x0)

|~x− ~x0|
dV0 =

∫
~v(~x0) · ∇ 1

|~x− ~x0|
dV0. (1.265)

We now note that ∇f(~x− ~x0) = −∇0f(~x− ~x0), where ∇0 is taken to be the gradient with
respect to ~x0, which leads to

∇ · ~w = −
∫
~v(~x0) · ∇0

1

|~x− ~x0|
dV0 = −

∫
∇0 ·

(
~v(~x0)

|~x− ~x0|

)
dV0 = 0, (1.266)
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where we have used the fact that ~v was taken to be divergence free and again assumed
that the ~v goes to zero sufficiently fast as r →∞ for the surface integral in the divergence
theorem to vanish as we integrate over the entire space. It follows that

~v = ∇× ~A, (1.267)

where

~A =
1

4π
∇× ~w =

1

4π
∇×

∫
~v(~x0)

|~x− ~x0|
dV0, (1.268)

and thus ~v has ~A as a vector potential.
While the above tells us of the existence of a vector potential, it is not necessarily the

most convenient way of computing it. Again in analogy to the scalar potential case, it is
often more advantageous to solve the set of differential equations obtained when demanding
that ~v = ∇× ~A.

Example 1.40 Following Example 1.18, we know that the constant vector field ~ω = 2ω~e3

has the vector potential ~A = ω(−x2~e1 + x1~e2) (note that ~A was called ~v in Example 1.18)
and we now set out to reproduce this result. Starting from ∇ · ~ω = 0, which follows directly
from ~ω being constant, we know that the vector potential exists. We therefore write

∇× ~A =
(
∂2A

3 − ∂3A
2
)
~e1 +

(
∂3A

1 − ∂1A
3
)
~e2 +

(
∂1A

2 − ∂2A
1
)
~e3

= 2ω~e3. (1.269)

The vector field components Ai are generally too many to solve for in a unique way and we
therefore try to find a solution such that A3 = 0. It follows that

∂3A
1 = 0 =⇒ A1 = f1(x1, x2), (1.270a)

∂3A
2 = 0 =⇒ A2 = f2(x1, x2), (1.270b)

∂1f
2 − ∂2f

1 = 2ω. (1.270c)

The last of these equations also has several possible solutions, one of which is

f1 = −2ωx2, f2 = 0, (1.271a)

which is different from the vector potential we already saw. However, another solution is
clearly

f1 = −ωx2, f2 = ωx1, (1.271b)

which leads to precisely the potential already obtained in Example 1.18. Both of these
solutions are perfectly valid vector potentials for ~ω and it follows that the vector potential
is not unique. This is a general result that will hold for any divergence free vector field.

The procedure in the above example can be generally applied to any divergence free
vector field ~v. We can start by making the ansatz that the vector potential ~A is of the form

~A = A1~e1 +A2~e2, (1.272)

which is assuming that the ~e3 component is identically zero. The first component of the
relation ~v = ∇× ~A is now given by

−∂3A
2 = v1 =⇒ A2 = −

∫ x3

x3
0

v1(x1, x2, z) dz + f2(x1, x2), (1.273)
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for each set of x1 and x2. Similarly, we obtain

A1 =

∫ x3

x3
0

v2(x1, x2, z) dz + f1(x1, x2). (1.274)

The third component will now be of the form

v3 = ∂1A
2 − ∂2A

1 = −
∫ x3

x3
0

[∂1v
1(~xz) + ∂2v

2(~xz)]dz + ∂1f
2 − ∂2f

1, (1.275)

where ~xz = x1~e1 + x2~e2 + z~e3 and f1 and f2 are functions of x1 and x2. However, since ~v
is divergence free, we can replace ∂1v

1 + ∂2v
2 with −∂3v

3. We now obtain

v3(~x) =

∫ x3

x3
0

∂3v
3(~xz)dz + ∂1f

2 − ∂2f
1 = v3(~x)− v3(x1, x2, x3

0) + ∂1f
2 − ∂2f

1 (1.276)

or, cancelling v3(~x) from both sides,

v3(x1, x2, x3
0) = ∂1f

2 − ∂2f
1. (1.277)

As in the example, this differential equation can be solved by

f1 = −
∫ x2

x2
0

v3(x1, y, x3
0) dy, f2 = 0 (1.278)

and we obtain a vector potential

~A = ~e1

[∫ x3

x3
0

v2(x1, x2, z) dz −
∫ x2

x2
0

v3(x1, y, x3
0) dy

]
+ ~e2

∫ x3

x3
0

v1(x1, x2, z) dz. (1.279)

Apart from giving us an alternative way of showing that the vector potential exists, this
explicit construction gives us a straightforward recipe for computing a vector potential for
any divergence free vector field without applying our original construction.

Note that this explicit construction of a vector potential only depends on the local
properties of the vector field ~v and does not require it to go to zero sufficiently fast as
r →∞.

Example 1.41 Another example of a divergence free vector field can be found in fluid
dynamics. For any fluid, the local velocity field ~v tells us how fast the fluid is moving at
each point in space. For an incompressible fluid , i.e., a fluid for which the density is constant
regardless of external pressure or forces, we must have ∇ · ~v = 0, implying the existence of
a vector potential for the fluid flow. While this may not be exactly true for any fluid, it is
often a good approximation and we will return to the rationale behind this condition for an
incompressible fluid in Section 3.9.3.

As we have seen, the vector potential, like the scalar potential for curl free fields, is
not unique. In the scalar potential case, we found that any scalar fields that differed by a
constant had the same gradient. In the case of a field with a vector potential, we can clearly
also add a constant vector field to the potential without affecting the field itself. However,
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this is not the most general way of obtaining equivalent vector potentials. Let us assume
that the vector field ~v is divergence free and that it has two different vector potentials ~A1

and ~A2. By taking the curl of the difference of these vector potentials, we can deduce that

∇× ( ~A1 − ~A2) = ∇× ~A1 −∇× ~A2 = ~v − ~v = 0. (1.280)

Thus, the difference vector field δ ~A = ~A1 − ~A2 is curl free. From the previous section, it
directly follows that δ ~A has a scalar potential ϕ such that δ ~A = −∇ϕ. Therefore, for any
two vector potentials of the same field, we must have

~A2 = ~A1 +∇ϕ, (1.281)

for some ϕ. In addition, if we know one vector potential ~A, then also

∇× ( ~A+∇ϕ) = ∇× ~A+∇×∇ϕ = ~v (1.282)

for any scalar field ϕ. It follows that any difference between two vector potentials of the
same divergence free field is a gradient and that adding a gradient to the vector potential
of a vector field will give a new vector potential of the same field.

1.7.3 Scalar and vector potentials
So far we have seen that curl free vector fields have scalar potentials and that divergence free
vector fields have vector potentials. The natural question arises whether or not anything can
be said for fields that are neither curl nor divergence free. We shall find that any vector field,
regardless of its curl and divergence, may be written using a scalar and a vector potential.
In fact, we will be able to decompose any vector field into two parts, where one is curl free
and the other divergence free according to

~v = ~vs + ~vv, where ~vs = −∇ϕ, ~vv = ∇× ~A. (1.283)

The existence of such a decomposition is known as Helmholtz’s theorem (or the fundamental
theorem of vector analysis) and the decomposition itself is called a Helmholtz decomposition.

Helmholtz’s theorem can be stated in the following way: If V is a volume in three
dimensional space, a vector field ~v may be decomposed in a curl free and a divergence free
component. We will show that this is true by explicitly constructing such a decomposition
in a similar fashion to when we showed that any divergence free field has a vector potential.
Starting from φ = 1/ |~x− ~x0|, we follow the same steps as in Eqs. (1.258) to (1.264), but with
the integration domain being V rather than all of space. The scalar and vector potentials
are given by ϕ = ∇ · ~w/4π and ~A = ∇× ~w/4π, respectively. We find that

ϕ =
1

4π

∫
V

~v(~x0) · ∇ 1

|~x− ~x0|
dV0 = − 1

4π

∫
V

~v(~x0)∇0
1

|~x− ~x0|
dV0

= − 1

4π

∫
V

∇0

(
~v(~x0)

1

|~x− ~x0|

)
dV0 +

1

4π

∫
V

1

|~x− ~x0|
∇0 · ~v(~x0)dV0

=
1

4π

∫
V

1

|~x− ~x0|
∇0 · ~v(~x0)dV0 −

1

4π

∮
S

~v(~x0)

|~x− ~x0|
· d~S0, (1.284)

~A = − 1

4π

∫
V

~v(~x0)×∇ 1

|~x− ~x0|
dV0 =

1

4π

∫
V

~v(~x0)×∇0
1

|~x− ~x0|
dV0

= − 1

4π

∫
V

∇0 ×
(

~v(~x0)

|~x− ~x0|

)
dV0 +

1

4π

∫
V

1

|~x− ~x0|
∇0 × ~v(~x0)dV0
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=
1

4π

∫
V

1

|~x− ~x0|
∇0 × ~v(~x0)dV0 +

1

4π

∮
S

~v(~x0)

|~x− ~x0|
× d~S0. (1.285)

Note that in order to compute these potentials, we only need to know the divergence and
curl of ~v in V as well as the value of ~v on the surface S, which is the boundary surface of
V .

Just as for scalar and vector potentials, the Helmholtz decomposition is generally not
unique. Given a decomposition

~v = −∇ϕ1 +∇× ~A1, (1.286)

we can try to find another pair of potentials ϕ2 and ~A2 satisfying the same relation. Such
a pair of potentials must fulfil

~v − ~v = −∇(ϕ1 − ϕ2) +∇× ( ~A1 − ~A2) = 0. (1.287)

Taking the divergence of this relation gives

−∇2(ϕ1 − ϕ2) = 0, (1.288)

implying that the difference of the scalar potentials f = ϕ1 − ϕ2 must fulfil Laplace’s
equation

∇2f = 0. (1.289)

For the difference of the vector potentials, we find that

∇× ( ~A1 − ~A2) = ∇f. (1.290)

Since ∇f is divergence free, it has a vector potential and this equation therefore has a
solution. We can therefore add any function satisfying Laplace’s equation to the scalar
potential as long as we modify the vector potential accordingly.

Example 1.42 In the Helmholtz decomposition above, we will end up with a scalar
potential

ϕ = − 1

4π

∮
S

~v(~x0)

|~x− ~x0|
· d~S0 (1.291)

even in the case when ∇ · ~v = 0. However, by the arguments of the previous section, we
should be able to write the divergence free vector field ~v as ~v = ∇ × ~A for some vector
potential ~A. We note that

∇2ϕ = − 1

4π

∮
S

(
∇2 1

|~x− ~x0|

)
~v(~x0) · d~S0 =

∮
S

δ(3)(~x− ~x0)~v(~x0) · d~S0 = 0, (1.292)

where we have assumed ~x is an interior point of V so that δ(3)(~x − ~x0) is zero on the
boundary S. Since ϕ fulfils ∇2ϕ = 0, we can choose a new scalar potential ϕ2 = 0 which
fulfils ∇2(ϕ2 − ϕ) = 0 and find a corresponding vector potential ~A2 such that

∇× ( ~A2 − ~A) = −∇ϕ, ∇× ~A2 = −∇ϕ+∇× ~A = ~v. (1.293)

Thus, we can still construct a vector potential of ~v as per the previous section.
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Example 1.43 We have seen that a constant electric field ~E = Ei~ei has a scalar potential
V = − ~E · ~x, the existence of which was implied by ∇ · ~E = 0. However, since ~E is constant,
we also have

∇ · ~E = ∂iE
i = 0, (1.294)

implying that ~E = ∇ × ~A for some vector potential ~A. Such a vector potential can be
constructed by letting

~A =
1

2
~E × ~x, (1.295)

which gives us

∇× ~A =
1

2
∇× ( ~E × ~x) =

1

2
[ ~E(∇ · ~x)− ( ~E · ∇)~x] =

1

2
(3 ~E − ~E) = ~E. (1.296)

This is also consistent with ∇2ϕ = 0 implying that the scalar potential can be removed by
a redefinition of the vector potential.

Often, the potentials are not physically observable quantities, but the vector fields they
describe are. In these situations the potentials can be changed freely as long as they give
rise to the same fields. This freedom also means that, when solving physical problems, we
may impose additional constraints on the potentials in such a way that the problem is as
easy to solve as possible. This can be done as long as our imposed conditions are not so
stringent that they imply that the problem has no solution.

1.8 PROBLEMS
Problem 1.1. Write down the following vector expressions in component form using the
Einstein summation convention:

a) ~v · (k ~w + ~u)

b) [(k~v)× ~w](`+m)

c) ~v × (~w × ~u)

d) (~v × ~w)× ~u

Here, ~u, ~v, and ~w are vectors while k, `, and m are scalars. Your answers may contain at
most one permutation symbol εijk.

Problem 1.2. Verify that the cross product satisfies Eq. (1.7) when written on component
form.

Problem 1.3. Check that the components of a vector ~v can be found through the use of
Eq. (1.10).

Problem 1.4. Consider the three vectors

~v1 = 3~e1 − ~e2, ~v2 = 2~e2, ~e3 = −~e1 + ~e2 + 5~e3. (1.297)

Compute the following:

a) The magnitude of each of the vectors.
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b) The inner product between any pair of the vectors.

c) The cross product between any pair of the vectors.

d) The angles between the vectors.

e) The volume of the parallelepiped spanned by the vectors.

Problem 1.5. Show, using only Eq. (1.6), that the cross product ~v × ~w is orthogonal to
both ~v and ~w, i.e., show that

~v · (~v × ~w) = ~w · (~v × ~w) = 0. (1.298)

Problem 1.6. Consider the three vectors

~e ′1′ =
~e1√

2
− ~e3√

2
, ~e ′2′ =

~e1√
3

+
~e2√

3
+
~e3√

3
, ~e ′3′ =

~e1√
6
−
√

2

3
~e2 +

~e3√
6
. (1.299)

Show that this set of vectors is orthogonal and normalised. Determine whether they form a
right- or left-handed set and compute the corresponding transformation coefficients.

Problem 1.7. Show that the Kronecker delta fulfils the relation

δii = N, (1.300)

where N is the dimensionality of the space.

Problem 1.8. Show that Eq. (1.26) turns into Eq. (1.6) when writing out the sums ex-
plicitly by making use of Eq. (1.24).

Problem 1.9. Prove the ε-δ-relation Eq. (1.41) and use it to derive the bac-cab rule
Eq. (1.40). Hint: In order to prove the ε-δ-relation, you do not need to perform the sum
explicitly for all possible indices. It is sufficient to do it for some combinations of free indices
and then use the symmetries and anti-symmetries of the expression.

Problem 1.10. Use the ε-δ-relation to express the quantity εijkεjk` in terms of the Kro-
necker delta.

Problem 1.11. Consider the vector fields ~v = x2~e1 − x1~e2 and ~w = x3~e1 − x1~e3 in three
dimensions. Compute the following quantities:

a) ~v · ~w

b) ~v × ~w

c) ~v · (~w × ~x)

where ~x is the position vector ~x = xi~ei.

Problem 1.12. Consider the parallelogram spanned by the vectors ~v and ~w, see Fig. 1.25.
Show that the diagonals ~v + ~w and ~v − ~w of this parallelogram are orthogonal if and only
if ~v and ~w have the same magnitude.

Problem 1.13. A cube of side length ` is spanned by the three vectors ~v1 = `~e1, ~v2 = `~e2,
and ~v3 = `~e3. Compute the angle between two of the cube diagonals by using the inner
product of the displacement vectors between opposite corners.
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~v +
~w

~w

~v ~v − ~w

Figure 1.25 A parallelogram spanned by the vectors ~v and ~w. The aim of Problem 1.12 is to show
that the diagonal vectors ~v+ ~w and ~v− ~w are orthogonal only if ~v and ~w have the same magnitude.

Problem 1.14. Find an expression for the squared magnitude of the vector ~v× ~w in terms
of the components of ~v and ~w. Also express the magnitudes of ~v and ~w and use your results
to find an expression for the sine of the angle between ~v and ~w.

Problem 1.15. Consider the two lines given by

~x1(t) = t~e1 + (2− t)~e2 and ~x2(s) = 2s~e1 − ~e2 − s~e3, (1.301)

respectively. Define the difference vector between two points on the lines ~d(t, s) = ~x1(t) −
~x2(s) and use it to find the shortest distance between the lines. Show that for the points

defining the shortest distance, ~d is orthogonal to the tangent vectors of both lines.

Problem 1.16. An object moves in such a fashion that its position as a function of time
t may be described by

~x(t) = r0 cos(ωt)~e1 + r0 sin(ωt)~e2 + v0t~e3. (1.302)

a) What is the distance from the origin at an arbitrary time t?

b) What are the velocity and acceleration vectors associated to this motion?

Problem 1.17. Many physical situations involving precession, such as the precession of
a spinning top or magnetic spin precession, can be described by the vectorial differential
equation

d~L

dt
= ~v × ~L, (1.303)

where ~L is an angular momentum and ~v is a constant vector. Show that the magnitude of
the angular momentum ~L and its inner product with ~v are constants in time.

Problem 1.18. Compute the divergence and curl of the following vector fields:

a) ~x = xi~ei

b) ~v1 = ~a× ~x

c) ~v2 = x2~e1 − x1~e2
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where ~a is a constant vector ~a = ai~ei.

Problem 1.19. Rewrite the following expressions in terms of the scalar field φ and its
derivatives only, i.e., leave no derivatives of the position vector ~x or derivatives of products:

a) ∇ · (φ~x)

b) ∇ · (~x×∇φ)

c) ∇ · (φ∇φ)

d) ∇× (~x×∇φ)

Problem 1.20. Confirm that if the partial derivatives of a scalar field φ commute, i.e.,
∂i∂jφ = ∂j∂iφ, and if the partial derivatives of a vector field ~v commute, then Eqs. (1.91)
are satisfied.

Problem 1.21. Express ∇ × (∇ × ~v) in terms of the permutation symbol and use the
ε-δ-relation to prove Eq. (1.97).

Problem 1.22. Starting from the definition in Eq. (1.36), show that the vector ~S defined
in this equation is orthogonal to all ~vi.

Problem 1.23. Consider the following surfaces:

a) φ1(~x) = x1 + x2 + x3 = 5

b) φ2(~x) = (x1)2 + (x2)2 − x3 = 0

c) φ3(~x) = x3 − r0 cos(kx1) = −4

For each surface, parametrise it using the parameters t = x1 and s = x2 and find an
expression for the directed area element d~S. Use the fact that the area element is orthogonal
to the surface to find a normal vector ~n with magnitude one. Verify that the surface normal
in each case is parallel to ∇φk.

Problem 1.24. Show that for a general scalar field φ(~x), the relation

[(~x×∇)× (~x×∇)]φ = −~x×∇φ (1.304)

is satisfied.

Problem 1.25. Let φ(~x) be a scalar field and find the conditions that it has to fulfil in
order to satisfy the relation

∇× (∇φ× ~a) = ∇(∇φ · ~a), (1.305)

where ~a is a constant non-zero vector.

Problem 1.26. For a vector field ~v(~x) that fulfils the relation

~v(k~x) = kn~v(~x), (1.306)

where k and n are constants, show that

(~x · ∇)~v(~x) = n~v(~x) (1.307a)

and compute
∇ · {~x[~x · ~v(~x)]}. (1.307b)
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Problem 1.27. For the motion of a rigid body rotating around the point ~x0, the velocity
field of the body may be written as

~v(~x, t) = ~ω(t)× (~x− ~x0), (1.308)

where ~ω(t) describes the angular velocity of the rotation. Determine an expression for the
acceleration ~a(~x, t) = d~v/dt and compute the quantities ∇·~v, ∇×~v, ∇·~a, and ∇×~a. Hint:
When determining the acceleration field, consider the motion ~x(t) of a point in the body
that satisfies d~x(t)/dt = ~v.

Problem 1.28. A particle is moving in a force field ~F = k(x1~e2 − x2~e1) from the position
~x = r0~e1 to the position ~x = r0~e2. Compute the work done by the force when the particle
takes the path

a) along a circle of constant radius r0 and

b) along the straight line between the endpoints.

Determine whether or not the force field is conservative.

Problem 1.29. The Lorentz force on a particle with electric charge q in a magnetic field
~B(~x) is given by

~F = q~v × ~B, (1.309)

where ~v is the particle’s velocity ~v = d~x/dt. Show that the total work

W =

∫
~F · d~x (1.310)

done by the magnetic field on the particle is equal to zero.

Problem 1.30. The half-sphere of radius R defined by x3 > 0 and ~x 2 = R2 can be
parametrised by the cylinder coordinates ρ and φ as

x1 = ρ cos(φ), x2 = ρ sin(φ), x3 =
√
R2 − ρ2, (1.311)

for ρ < R. Use this parametrisation to compute the total area of the half-sphere according
to

A =

∫
dS. (1.312)

Problem 1.31. Consider the vector field

~v = (x1)k~e1 + (x2)k~e2 + (x3)k~e3, (1.313)

where k is a positive integer. Compute the flux integral

Φ =

∮
S

~v · d~S, (1.314)

where S is the sphere of radius R with the surface normal pointing away from the origin.

Problem 1.32. In a region where the matter density is given by

ρ(~x) =
ρ0

L2
~x 2, (1.315)

compute the total mass contained in the volumes given by
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a) the cube 0 < xi < L (i = 1, 2, 3) and

b) the sphere r < L in spherical coordinates.

Problem 1.33. Consider a fluid with constant density ρ0 and the velocity field

~v =
v0

L
(x1~e2 − x2~e1 + L~e3). (1.316)

a) Verify that the velocity field is divergence free ∇ · ~v = 0.

b) Compute the total momentum inside the cube 0 < xi < L (i = 1, 2, 3).

Problem 1.34. For the fluid in Problem 1.33, compute the mass flux of the fluid

Φ =

∫
S

ρ0~v · d~S (1.317)

when the surface S in cylinder coordinates is given by

a) the disc z = z0, ρ < r0, 0 < φ < 2π, with surface normal ~n = ~e3,

b) the cylinder 0 < z < z0, ρ = r0, 0 < φ < 2π, with surface normal ~n = ~eρ,

c) the φ coordinate surface 0 < z < z0, 0 < ρ < r0, φ = φ0, with surface normal ~n = ~eφ.

Note: We have here used ρ0 to denote a density, be careful not to confuse it with the cylinder
coordinate ρ.

Problem 1.35. A small element d~x of a conductor carrying a current I in a magnetic field
~B will be subjected to a force

d~F = −I ~B × d~x. (1.318)

In a constant magnetic field ~B = ~B0

a) compute the total force ~F acting on the closed loop given by

x1 = r0 cos(t), x2 = r0 sin(t), x3 = 0, (0 < t < 2π) (1.319)

b) compute the total torque ~M relative to the origin for the same loop. The torque due

to a force d~F is given by d ~M = ~x× d~F .

Problem 1.36. For a static electromagnetic field, the electric field ~E has a scalar potential
φ and the magnetic field ~B is divergence free. Assuming that S is a closed equipotential
surface, i.e., that φ takes a constant value φ0 on S, compute the volume integral

I =

∫
V

~E · ~B dV, (1.320)

where V is the volume enclosed by S, by using the divergence theorem.

Problem 1.37. Compute the closed surface integral

~I =

∮
S

~x× d~S (1.321)

by rewriting it as an integral over the volume V enclosed by S and simplifying the resulting
expression.
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Problem 1.38. Use the generalised version of the curl theorem to rewrite the circulation
integral

~I =

∮
Γ

~x× d~x (1.322)

around the closed loop Γ as an integral over a surface S bounded by Γ. Simplify your result
as far as possible without knowing the loop Γ and then apply your result to the loop given
by

x1(t) = r0 cos(t), x2(t) = r0 sin(t), x3(t) = 0. (1.323)

Verify that you obtain the same result from the circulation integral as you get from the
surface integral.

Problem 1.39. Given that the scalar field φ(~x) is constant on the boundary curve of a
surface S, show that ∫

S

[(∇φ)× (∇ψ)] · d~S = 0 (1.324)

for any scalar field ψ(~x).

Problem 1.40. Consider again the fluid treated in Problems 1.33 and 1.34. Rewrite the
mass flux out of the closed surface S composed of the cylinder area −z0 < z < z0, ρ = r0,
0 < φ < 2π and the two discs z = ±z0, ρ < r0, 0 < φ < 2π as an integral over the
enclosed volume and compute the volume integral. Verify that the flux is equivalent to the
flux resulting from adding up the fluxes through S (use your results from Problem 1.34).

Problem 1.41. Compute the integral expression

I =

∫
V

~v · ~w dV, (1.325)

where ~v is curl free in the volume V and ~w is orthogonal to the surface normal at the
boundary of V and divergence free inside V .

Problem 1.42. The surface integral

~Φ =

∮
S

~x

r5
~x · d~S (1.326)

can be rewritten as a volume integral

~Φ =

∫
V

~xφ(~x) dV. (1.327)

Determine an expression for the scalar field φ(~x) assuming that ~x = 0 is not within the
volume V .

Problem 1.43. Let ~A be a vector field satisfying the relation ∇ × (∇ × ~A) = 0 in the

volume V and ~n · [ ~A× (∇× ~A)] = 0 on the boundary surface S of V , where ~n is the surface
normal. Show that ∫

V

(∇× ~A)2dV = 0. (1.328)

Problem 1.44. Use the regular curl theorem to prove the generalised curl theorem, given
by Eq. (1.139b).
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Problem 1.45. The vector potential ~A of a magnetic dipole with the constant dipole
moment ~m is given by

~A =
µ0

4π

~m× ~x
r3

. (1.329)

Compute the corresponding magnetic field ~B = ∇× ~A for r > 0. Also compute the curl of
this magnetic field.

Problem 1.46. With the dual basis at hand, show that the contravariant vector compo-
nents va of a vector ~v may be found as

va = ~Ea · ~v, (1.330)

similar to how the covariant vector components were computed using the tangent vector
basis in Eq. (1.162).

Problem 1.47. Verify that the tangent vector bases in cylinder coordinates (see
Eqs. (1.196)) and in spherical coordinates (see Eqs. (1.207)) are orthogonal bases.

Problem 1.48. Compute the divergence and curl of the vector field ~v = 1
ρ~eφ, given in

cylinder coordinates, for ρ > 0. Use your result to compute the circulation integral

I =

∮
Γ

~v · d~x, (1.331)

where Γ is the closed curve given by

ρ(t) = ρ0[2 + sin(t)], φ(t) = t, z(t) = t(t− 4π), (1.332)

where 0 < t < 4π.

Problem 1.49. Hyperbolic coordinates u and v in two dimensions may be introduced to
parametrise the region x1, x2 > 0 according to

x1 = veu, x2 = ve−u. (1.333)

a) Sketch the coordinate lines corresponding to u and v.

b) Find the inverse transformation that expresses u and v as functions of x1 and x2.

c) Compute the tangent vector and dual bases.

d) Determine whether or not hyperbolic coordinates form an orthogonal coordinate sys-
tem. If they do, compute the scale factors. If they do not, compute the inner products
~Eu · ~Ev and ~Eu · ~Ev.

Problem 1.50. The parabolic coordinates t and s in two dimensions are defined through
the relations

x1 = ts, x2 =
1

2
(t2 − s2), (1.334a)

where t, s > 0.

a) Sketch the coordinate lines corresponding to t and s.

b) Find the inverse transformation that expresses t and s as functions of x1 and x2.
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c) Compute the tangent vector and dual bases.

d) Determine whether or not hyperbolic coordinates form an orthogonal coordinate sys-
tem. If they do, compute the scale factors. If they do not, compute the inner products
~Et · ~Es and ~Et · ~Es.

e) Find the expressions for the gradient, divergence, curl, and Laplace operators in three
dimensions when also parametrising the third direction with an additional coordinate
z as

x3 = z. (1.334b)

f) Express the position vector ~x in parabolic coordinates.

Problem 1.51. A screened point charge at the origin may be described by the Yukawa
potential

φ(~x) =
q

4πr
e−kr, (1.335)

where k is a constant and r is the radial spherical coordinate. Compute the flux of the
corresponding vector field ~v = −∇φ out of the sphere of radius R both by directly perform-
ing the surface integral and by applying the divergence theorem. What can be said about
∇2φ(~x) at the origin?

Problem 1.52. Compute ∇·~x and ∇×~x using the expressions for the divergence and curl
in cylinder and spherical coordinates. Verify that the results are the same as the result you
would find doing the same computation in Cartesian coordinates.

Problem 1.53. Verify that the vector field

~v =
1

r2
~er (1.336)

is divergence free for r > 0. According to our discussion on potentials, this implies that ~v
has a vector potential ~A such that

~v = ∇× ~A. (1.337)

Find a vector potential ~A of ~v that has the form ~A = Aϕ~eϕ and is divergence free.

Problem 1.54. Assume that the vector fields ~v(~x) and ~w(~x) satisfy

∇ · ~v = ∇ · ~w and ∇× ~v = ∇× ~w (1.338a)

within a volume V and that
~n · ~v = ~n · ~w (1.338b)

on the boundary surface of V . Show that ~v(~x) = ~w(~x) within the volume V .

Problem 1.55. The force on a charge q at position ~x 6= 0 from an electric dipole of dipole
moment ~p = p~e3 at the origin is given by

~F = pq

(
2 cos(θ)

r3
~er +

sin(θ)

r3
~eθ

)
(1.339)

in spherical coordinates. Compute∇· ~F and∇× ~F . Does this force field have a corresponding
scalar and vector potential?
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C H A P T E R 2

Tensors

Just as Nature does not care about the set of units we use in order to make measurements,
it does not care about what particular set of coordinates we use to describe it. We have seen
this already when we discussed vector equations, which must hold regardless of the particular
coordinate system. For example, if we have two vectors ~v and ~w whose components fulfil
the relation va = wa in one coordinate system, then the components (although different)
must be equal in all coordinate systems and we can write down the vector relation ~v = ~w
independent of any chosen coordinates. In the same way, we find that scalars, which do
not change under coordinate transformations, also fulfil similar statements. For example,
if we have a scalar field φ and φ~v = ~w, this is a relation that is also independent of the
coordinate system. While we can get pretty far by only using scalars and vectors, there is a
generalisation that will turn out to be extremely useful in many areas of physics. This is the
realm of tensor analysis, which will allow us to generally write down many different linear
relationships in a coordinate independent fashion, just as we have done earlier for scalars
and vectors.

In this chapter, we will introduce the general ideas behind tensors, starting by general-
ising the scalar and vector concepts in order to describe some basic situations in physics.
We will make heavy use of the formalism we developed when discussing general coordinate
systems in the previous chapter and start from this vantage point to later examine tensor
properties in Cartesian coordinates as an important special case. While many texts start
by discussing tensors in Cartesian coordinates, the formalism for tensors in arbitrary co-
ordinate systems is not much more difficult and it illuminates the structure in a clearer
fashion.

Example 2.1 Let us start with an example taken from rigid body mechanics. Consider a
disc of uniformly distributed mass M and radius R that is rotating with angular velocity
~ω, see Fig. 2.1. If the rotation is parallel to the symmetry axis of the disc, then the angular
momentum ~L of the disc will also be, and the relationship between the two will be

M
R2

2
~ω = ~L. (2.1a)

On the other hand, if the rotation is in a direction perpendicular to the symmetry axis,
then the relationship will be

M
R2

4
~ω = ~L. (2.1b)

From these considerations, it is clear that, for both directions, the relationship between the
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ω

ω

L = MR2ω/4

L = MR2ω/2

Figure 2.1 A disc of mass M and radius R rotating either around its symmetry axis or around an

axis within its plane with angular velocity ~ω. The angular momentum ~L of the disc will generally
depend on the direction of the rotation and may not be parallel to ~ω.

angular velocity and the angular momentum is linear. However, since the proportionality
constant is different in the different directions, it cannot be a multiplication by a scalar.
Instead, we can relate the components of ~ω and ~L using a Cartesian basis ~ei according to

Li = Iijω
j , (2.2)

where the Iij are a set of nine numbers (one for each possible combination of i and j). This
relationship is still linear, but we now have the possibility of ensuring that Eqs. (2.1) hold
for both directions, and for any direction of the angular velocity ~ω. The numbers (with
dimension of mass×distance2) Iij are the components of the moment of inertia tensor .

In general, tensors may have more than two indices, but we will frequently use matrix
notation for tensors with two indices, this will be indicated by parentheses around the
components, i.e.,

(Iij) =

I1
1 I1

2 I1
3

I2
1 I2

2 I2
3

I3
1 I3

2 I3
3

 (2.3)

with a straightforward generalisation to cases where the dimension of the base space is
different from three.

The above example has so far only showed us that we can write down a linear relationship
between two vectors using a set of numbers with two indices. This does not fully illustrate
what it means for this object to be a tensor, which will be clearer once we consider what
happens if we pick a different set of coordinates with a corresponding basis ~e ′i′ . In general,
let us assume that we have a relationship between the vectors ~v and ~w such that vi = Aijw

j

in the basis ~ei. However, for this to hold in any system, the Aij need to follow certain

transformation rules. In particular, since both ~v and ~w are vectors, we can express vi and
wj in terms of their components in the basis ~e ′i′ and obtain

vi = aii′v
i′ = Aijw

j = Aija
j
j′w

j′ . (2.4)
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Multiplying this equation by ak
′

i now gives us

ak
′

i a
i
i′v

i′ = δk
′

i′ v
i′ = vk

′
= ak

′

i A
i
ja
j
j′︸ ︷︷ ︸

≡Ak′
j′

wj
′
, (2.5)

where Ak
′

j′ are the tensor components relating the components of ~v and ~w in the new basis.

We note that the components of Aij transform in a similar fashion to how scalars and vectors
do. While scalars have zero indices and do not transform under changes of basis, vectors
have one index, which is contracted with an index of a transformation coefficient. In the
same spirit, the tensor components Aij have two indices, which each is contracted with an

index of a transformation coefficient. In this case, Aij are the components of a rank two
tensor , which is indicated by the components having two indices. Before long, we will see
examples of tensors also of higher rank. For now, we just mention that scalars are tensors
of rank zero while vectors are tensors of rank one.

2.1 OUTER PRODUCTS AND TENSOR BASES
So far we have only seen tensors in terms of their components. In many introductory texts,
tensors are defined in this fashion, i.e., a set of numbers that follow certain transformation
rules under changes of basis and indeed this is often all that is needed from a physics point
of view. Once tensors have been introduced in this fashion, we can essentially apply all of
the machinery we have learned in vector analysis, i.e., repeated indices are summed over,
free indices have to be the same on both sides of an equation, relations take the same form
regardless of the basis chosen, equations without free indices represent invariant quantities
that may be computed in any basis and so on. Eventually, we will go down the path of
referring to tensors in terms of their components, as was indicated already in Chapter 1,
where we noted that we can interchangeably refer to the vector components va and the
vector ~v as long as the vector basis is implicit. However, before doing so, we will explore a
few aspects of the construction of tensors.

In Chapter 1 we defined the scalar and cross products of two vectors, the result of which
was a scalar and a vector, respectively. We can also define the outer product (or tensor
product) ~v ⊗ ~w of the vectors ~v and ~w in the vector space V as bilinear product that takes
values in the tensor product space V ⊗ V . It is important to not mix up the outer product
with the cross product, although they have a similar notation; the latter gives a vector and
is anti-symmetric, while the former gives an element in the product space and does not have
any particular symmetry. For our purposes, it suffices to consider the tensor product space
as a linear space to which the outer products of vectors belong. In particular, this means
that sums of different outer products, such as

T = ~v1 ⊗ ~w1 + ~v2 ⊗ ~w2, (2.6)

belong to this space. In general, there is no guarantee that an element of this linear space
will be an outer product of two vectors. In fact, if ~v1 is linearly independent of ~v2 and ~w1

is linearly independent of ~w2, then it will be impossible to find an outer product of two
vectors that equals T .

Taking a vector basis ~ei, the outer product of two vectors may be written

~v ⊗ ~w = (vi~ei)⊗ (wj~ej) = viwj(~ei ⊗ ~ej) ≡ viwjeij , (2.7)

where we have defined eij = ~ei ⊗ ~ej . It follows that any outer product may be written as a
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linear combination of the eij , which form a basis of the tensor product space. Any element
of this space may therefore be written as

T = T ij~ei ⊗ ~ej = T ijeij (2.8)

and objects of this form are rank two tensors. In a similar fashion, we can define rank three
tensors as the linear combinations of tensor products of three vectors

T = T ijk~ei ⊗ ~ej ⊗ ~ek ≡ T ijkeijk (2.9a)

or rank n tensors as tensor products of n vectors

T = T i1...in
n⊗
k=1

~eik = T i1...inei1...in . (2.9b)

Example 2.2 We have seen that the moment of inertia of a disc depends linearly on the
direction of the angular velocity ~ω. For angular velocities parallel to the symmetry axis of
the disc, the moment of inertia is I3 = MR2/2, while for directions perpendicular to it,
it is given by I0 = MR2/4. Assuming that the symmetry axis is ~e3 and that Iijω

j = I3ω
i

when ~ω = ω~e3, the moment of inertia tensor needs to have I3
3 = I3 and Ii3 = 0 for i 6= 3.

This is equivalent to having a contribution I3~e3⊗~e3. The same argument for the orthogonal
directions leads us to the conclusion that

I = I0(~e1 ⊗ ~e1 + ~e2 ⊗ ~e2) + I3~e3 ⊗ ~e3, (2.10)

i.e., the moment of inertia tensor is the linear combination of three different outer products.

2.1.1 General coordinate bases
In Section 1.6.1, we discussed the tangent vector basis ~Ea together with the dual basis ~Ea.
As was mentioned, these bases will be fundamentally different once we start discussing more
general spaces and not only curvilinear coordinates on a Euclidean space. We will therefore
already set up the necessary framework for handling this.

Let us go back to the case where we have a linear relation between two vectors ~v and
~w. If we express both of these in tangent vector basis, they may be written as ~v = va ~Ea
and ~w = wa ~Ea, respectively. The requirement of having a linear relationship between the
contravariant vector components gives us

va = Aabw
b (2.11)

and in the same way as before, we can obtain the transformation properties of the coefficients
Aab as

Aa
′

b′ =
∂y′a

′

∂ya
∂yb

∂y′b′
Aab (2.12)

when changing coordinates from ya to y′a
′
. In order to create an object with these trans-

formation properties, consider the rank two tensors of the form

A = Aab ( ~Ea ⊗ ~Eb) ≡ Aabeba. (2.13)
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Under a change of basis, the basis vectors ~Ea and ~Eb can be expressed in the new bases
~E′a′ and ~E′b

′
according to

~Ea =
∂y′a

′

∂ya
~E′a′ and ~Eb =

∂yb

∂y′b′
~E′b
′
, (2.14)

respectively. Inserting this into the previous equation results in

A = Aab

(
∂y′a

′

∂ya
~E′a′

)
⊗
(
∂yb

∂y′b′
~E′b
′
)

=
∂y′a

′

∂ya
∂yb

∂y′b′
Aabe

′b′
a′ ≡ Aa

′

b′ e
′b′
a′ , (2.15)

which is just stating that the tensor components Aab transform according to Eq. (2.12). As
the distinction between tangent vectors and dual vectors will become important, tensors of
this form are type (1, 1) tensors, whose basis eba is constructed by the outer product of the
tangent vector basis with the dual basis.

We may also construct tensors only using the tangent vector basis

T = T ab ~Ea ⊗ ~Eb = T abeab (2.16a)

or only using the dual basis

T = Tab ~E
a ⊗ ~Eb = Tabe

ab. (2.16b)

The first of these equations defines contravariant tensors of rank 2 (also known as type
(2,0) tensors), while the second defines covariant tensors of rank 2 (type (0,2) tensors).
More generally, we can define higher rank tensors using both bases according to

T = T a1...anb1...bm

n⊗
k=1

~Eak

m⊗
`=1

~Eb` = T a1...anb1...bm
eb1...bma1...an , (2.17)

i.e., using the outer product of n tangent vectors and m vectors from the dual basis. Such
tensors are said to be of type (n,m). If n = 0 the tensors are covariant and if m = 0 they
are contravariant, in both cases referring to the way the tensor components transform under
coordinate changes. A tensor that is neither covariant nor contravariant is a mixed tensor
and its components transform according to the position of the different indices, i.e., upper
indices transform contravariantly, while lower indices transform covariantly

T
a′1...a

′
n

b′1...b
′
m

= T a1...anb1...bm

(
n∏
k=1

∂y′a
′
k

∂yak

)(
m∏
`=1

∂yb`

∂y′b
′
`

)
. (2.18)

Deriving this relation is left as an exercise (see Problem 2.1).
Just as we noted in the case of vectors in general coordinates, there is a one-to-one

correspondence between the tensor components in a given coordinate system and the tensor
itself. Because of this reason, we will often refer to T a1...anb1...bm

as a tensor of the appropriate
type rather than also writing out the basis.

Example 2.3 We can construct a very important tensor by summing all of the outer
products of the tangent vector basis with the corresponding dual basis

δ = ~Ea ⊗ ~Ea. (2.19)
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It is important to note that a appears twice in this definition and therefore should be
summed over. This definition can also be written

δ = δab e
b
a (2.20)

and it is apparent that this tensor has the components δab in the chosen coordinate system.
Examining the transformation properties of these components, we obtain

δa
′

b′ =
∂y′a

′

∂ya
∂yb

∂y′b′
δab =

∂y′a
′

∂ya
∂ya

∂y′b′
=
∂y′a

′

∂y′b′
, (2.21)

which is one if a′ = b′ and zero otherwise. Therefore, the components of this tensor are the
same regardless of the chosen coordinate system and are non-zero (and equal to one) if the
indices match. This shows that the Kronecker delta is actually a type (1,1) tensor.

2.2 TENSOR ALGEBRA
The way we have defined tensors as linear combinations of outer products of a number
of vectors, it becomes apparent that there are a number of operations that are possible
to perform for tensors that result in new tensors. It is worth noting that if tensors are
merely introduced as a set of numbers transforming in a particular way under coordinate
transformations, which is often the case, then it needs to be checked explicitly that the
results of these operations are new tensors. These operations are the operations associated
to a linear space, i.e., multiplication by a scalar and addition of tensors of the same type,
which follow the distributive properties

k1(T1 + T2) = k1T1 + k1T2, (k1 + k2)T1 = k1T1 + k2T1 (2.22)

where the ki are scalars and the Ti are tensors of the same type, along with the other axioms
for a linear space. The linearity of the outer product itself guarantees that the zero tensor
is 0 = 0⊗ ~w = ~v ⊗ 0 = 0(~v ⊗ ~w) for any vectors ~v and ~w.

Apart from the operations that naturally follow from tensors belonging to a linear space,
there are a number of other operations that may be performed with tensors:

Outer product : Just as the outer product of two vectors, the outer product of two
arbitrary tensors, which do not necessarily have to be of the same type, can be defined
as

T ⊗ S = T a1a2...b1b2...
Sc1c2...d1d2...

(eb1b2...a1a2... ⊗ e
d1d2...
c1c2... ). (2.23)

If the tensor T is of type (n1,m1) and the tensor S of type (n2,m2), the resulting
tensor is of type (n1+n2,m1+m2) and each component is the product of a component
of T with a component of S.

Contraction: While the outer product between two tensors always results in a tensor
that has a higher rank than either of the arguments (the exception being when one
of the tensors is a scalar, in which case the result has the same rank as the other
argument), we can define an operation that lowers the rank of a mixed tensor by two.
This is the contraction (or trace), which takes a type (n,m) tensor and maps it to
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a type (n − 1,m − 1) tensor and we define it as a linear map acting on the basis
according to

Cλµ(ea1...amb1...bn
) = ( ~Eaλ · ~Ec)( ~Ebµ · ~Ec)︸ ︷︷ ︸

=~Eaλ ·~Ebµ

⊗
` 6=µ

~Eb`
⊗
k 6=λ

~Eak

= δaλc δcbµe
a1...ZZaλ ...am
b1...@@bµ ...bn

= δaλbµ e
a1...ZZaλ ...am
b1...@@bµ ...bn

, (2.24)

where crossed out indices are omitted. This is the contraction between the λth dual
basis vector and µth tangent vector in the tensor product. While this may look intim-
idating, the actual application of this once we suppress the tensor basis will be very
straightforward. For example, for a type (2, 3) tensor T , the contraction between the
first tangent vector and second dual basis vector is given by

C2
1(T ) = T abcdeC2

1(ecdeab ) = T abcdeδ
d
ae
cAde
Aab

= T abcaee
ce
b , (2.25)

which is a type (1, 2) tensor with components T abcae. Similar arguments can be made
for any possible contraction of indices and, in component form, making a contraction
amounts to setting a covariant index equal to a contravariant one and summing over
it. It is left as an exercise (see Problem 2.7) to show that Eq. (2.24) is independent of
the chosen basis.

Contracted product : When we were dealing with vectors only, we defined the inner
product between the vectors ~v and ~w as

~v · ~w = vaw
a. (2.26)

The generalisation of this to tensors can be constructed by using the two operations
defined above. We can construct a product between the tensors T and S by taking
their outer product followed by the contraction of one index from T with one index
from S (note that there may be several different possibilities here). The resulting
tensor has a rank that is two less than the rank of the outer product. It may also be
possible to contract more than one pair of indices from the different tensors.

Example 2.4 We saw earlier that the angular momentum for a particular angular velocity
could be written as Li = Iijω

j . It is therefore a contraction of the product between the
angular velocity and the moment of inertia tensor. As required from the contracted product
of a rank two tensor with a rank one tensor, the resulting tensor has rank one and is therefore
a vector.

2.2.1 Tensors and symmetries
For the general tensor, the ordering of the indices is important. Written in component form
the type (2,0) tensor T does not necessarily satisfy the relation

T ab = T ba. (2.27)

Tensors for which this relation does hold are called symmetric tensors with the same nomen-
clature and principle for type (0,2) tensors.
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Example 2.5 In Example 2.2, we wrote down the moment of inertia tensor of a disc as a
linear combination of the outer product basis. Taking the components from this example,
we find that

I1
1 = I2

2 = I0, I3
3 = I3 (2.28a)

for the diagonal elements in the basis where the disc symmetry axis is one of the coordinate
axes. The off-diagonal elements are given by

Iij = 0 = Iji (2.28b)

for all i 6= j. It follows that the moment of inertia tensor for a disc is symmetric under
exchange of i and j in this coordinate system. Note: In this example we have mixed co-
variant and contravariant indices. This is possible since we are using a Cartesian basis,
see Section 2.4.

From the definition of a symmetric tensor, it is relatively straightforward to show that if
a tensor is symmetric in one coordinate system, then it must be symmetric in all coordinate
systems (see Problem 2.9). While both contravariant and covariant rank two tensors can
be symmetric, it is not a possibility for a mixed tensor, while it might be possible to find a
coordinate system such that T ab is equal to T ba , this equality being coordinate independent
would violate the transformation properties of the tensor components.

Just as some tensors are symmetric, there will also be tensors that are anti-symmetric.
This property is similar to the symmetric property, with the only difference being a minus
sign

Aab = −Aba. (2.29)

Any tensor A that satisfies this relation is an anti-symmetric tensor . Just as with symmetric
tensors, anti-symmetry is a property of the tensor itself and holds in any coordinate system.

Example 2.6 In magnetostatics, the magnetic field ~B fulfils Gauss’s law of magnetism
∇ · ~B = 0 and thus has a vector potential ~A such that ~B = ∇× ~A. We therefore find that

Bi = εijk∂jAk. (2.30)

We can associate a rank two anti-symmetric tensor F to the magnetic field by defining

Fij = εijkB
k = εijkεk`m∂`Am = (δi`δjm − δimδj`)∂`Am = ∂iAj − ∂jAi. (2.31a)

This relation can be inverted according to

Bi =
1

2
εijkFjk =

1

2
εijk(∂jAk − ∂kAj) =

1

2
(εijk∂jAk + εikj∂kAj) = εijk∂jAk, (2.31b)

where in the last step we have renamed the summation indices j ↔ k in the second term.
In fact, the definition of the magnetic field as an anti-symmetric tensor is to some extent
more natural as the generalisation to an arbitrary coordinate system becomes Fab = ∂aAb−
∂bAa, while the permutation symbol does not generalise directly, which we will discuss in
Section 2.3.3.
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As the above example demonstrates, an anti-symmetric rank two tensor in three di-
mensions has three independent components. In fact, this is the reason why we are able to
express the vector ~B in terms of F as well as express F in terms of ~B. While a completely
general rank two tensor has N2 independent components, the symmetry and anti-symmetry
relations T ab = ±T ba provide N(N − 1)/2 constraints for a 6= b. While the diagonal rela-
tions for a = b are trivially fulfilled for symmetric tensors, they provide an additional N
constraints for anti-symmetric tensors. In particular, we find that

T aa = −T aa =⇒ T aa = 0. (no sum) (2.32)

This leaves N2 − N(N − 1)/2 = N(N + 1)/2 independent components for the symmetric
tensor and N(N + 1)/2−N = N(N −1)/2 independent components for the anti-symmetric
tensor.

Going back to expressing a tensor T using the tensor basis eab, we can define a linear
operator S by its action on the basis

Seab =
1

2
(eab + eba) (2.33)

mapping any type (2,0) tensor T to its symmetric part

ST = T abSeab =
1

2
T ab(eab + eba) =

1

2
(T ab + T ba)eab, (2.34)

i.e., ST is a tensor with components (T ab+T ba)/2. In the same spirit, we define the operator
A according to

Aeab =
1

2
(eab − eba), (2.35)

which maps T to its anti-symmetric part with components (T ab − T ba)/2. By insertion
of the symmetry relations, the symmetric part of an anti-symmetric tensor vanishes and
vice versa. It also holds that the symmetric part of a symmetric tensor is equal to the
tensor itself, with the equivalent statement also being true for anti-symmetric tensors. The
verification of this is the task in Problem 2.10.

Examining the counting of independent components above, we notice that, regardless of
the number of dimensions, the number of independent components of a symmetric tensor
and that of an anti-symmetric tensor add up to N2, the number of independent components
of a general tensor. This is by no means a coincidence as

Seab +Aeab =
1

2
(eab + eba + eab − eba) = eab (2.36)

for all elements of the basis eab. Therefore, any type (2,0) or (0,2) tensor may be decomposed
into a symmetric and an anti-symmetric part. While this is true for any object with two
indices, the real thing to notice here is that the symmetric and anti-symmetric parts are
tensors of their own, since the symmetric and anti-symmetric properties are coordinate
independent.

The above discussion has focused on rank two tensors only. However, also higher rank
tensors may be symmetric or anti-symmetric under the exchange of one or more pairs of
indices. For example, the type (1,3) tensor Rabcd might have the property

Rabcd = Racbd, (2.37)

which we can refer to by saying that it is symmetric in the first and second covariant
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indices. Note that if the tensor was also symmetric in the first and third indices, it would
also automatically be symmetric in the second and third

Rabcd = {symmetric in 12} = Racbd = {symmetric in 13} = Radbc

= {symmetric in 12} = Rabdc. (2.38)

Again, similar considerations can be performed for tensors with anti-symmetries. It may
also occur that a tensor is symmetric in one pair of indices and anti-symmetric in another.

Just as we defined the symmetric part of a rank two tensor, we can define the symmetric
part of a higher rank tensor under the exchange of the two first indices by

S12e
a
bcd =

1

2
(eabcd + eacbd) (2.39)

with similar definitions for the symmetric part under any other two indices. Even more
generally, we can define the symmetrisation with respect to a set of n indices

S12...nea1a2...an =
1

n!

∑
s∈Sn

es(a1a2...an), (2.40)

where Sn is the set of all possible permutations of n indices (this set will be discussed in
more detail in Section 4.3.3). The tensor components symmetrised with respect to a set of
indices is denoted by curly parentheses around the set of indices which are symmetrised,
e.g.,

T {abc} =
1

6
(T abc + T bca + T cab + T bac + T acb + T cba), (2.41a)

R{ab}cd =
1

2
(Rabcd +Rbacd). (2.41b)

Similar to the definition of symmetrisation in Eq. (2.40), the anti-symmetrisation can be
defined according to

A12...nea1a2...an =
1

n!

∑
s∈Sn

sgn(s)es(a1a2...an), (2.42)

where sgn(s) is equal to one if the permutation s is even and minus one if it is odd. The
components of an anti-symmetrised tensor are denoted by square brackets around the anti-
symmetrised indices, e.g.,

T [ab]c =
1

2
(T abc − T bac). (2.43)

The notation of symmetrised and anti-symmetrised indices using curly and square brackets
is also applicable to any object with indices but, in particular, being symmetric or anti-
symmetric in some given indices is a coordinate independent statement for tensors.

2.2.2 The quotient law
There is a relation known as the quotient law . It states that not only is the outer product
of two tensors a new tensor, but if the components of two tensors T and S are related
according to

T a1a2...b1b2...c1c2...d1d2...
= Qea1a2...c1c2... S

b1b2...
ed1d2...

, (2.44)
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then Qea1a2...c1c2... are also the components of a tensor. In fact, we already used this in the
beginning of this chapter to find the transformation rules for the object Aij in the relation

wi = Aijv
j , see Eq. (2.5). Using the transformation properties of T and S, we find that

T
a′1a
′
2...b

′
1b
′
2...

c′1c
′
2...d

′
1d
′
2...

=

(∏
k

∂y′a
′
k

∂yak

)(∏
k

∂yck

∂y′c
′
k

)(
∂y′e

′

∂ye

)
Qea1a2...c1c2... S

b′1b
′
2...

e′d′1d
′
2...

= Q
e′a′1a

′
2...

c′1c
′
2...

S
b′1b
′
2...

e′d′1d
′
2...
, (2.45)

where

Q
e′a′1a

′
2...

c′1c
′
2...

=

(∏
k

∂y′a
′
k

∂yak

)(∏
k

∂yck

∂y′c
′
k

)(
∂y′e

′

∂ye

)
Qea1a2...c1c2... (2.46)

needs to hold for Eq. (2.44) to hold for any S.

Example 2.7 In mechanics, there is a linear relationship between the force density per
cross sectional area ~f across a small surface dS and the surface element d~S. Denoting the
linear coefficients by σab, we can write this relation as

fadS = σabdSb = σabnbdS. (2.47)

Both the normal nb and the force density fa are vectors. The quotient law therefore implies
that σab are the components of a rank two tensor. This tensor is called the stress tensor
and describes the different forces acting within a continuum.

2.3 TENSOR FIELDS AND DERIVATIVES
The idea behind a tensor field is analogous to that of a scalar or vector field, i.e., it associates
a tensor of a given type to each point in the base space. Naturally, since scalars and vectors
are different types of tensors, scalar and vector fields are the most natural examples of tensor
fields. Just as we have used the tangent and dual bases to describe different vectors, a tensor
field can be described by expressing its components in the coordinate basis as functions on
the base space. For example, a type (2,0) tensor field T would be written as

T (p) = T ab(p)eab(p), (2.48)

where we have explicitly written out the dependence on the point p in the base space. Note
that the tensor basis eab is generally also dependent on the point p, which will be important
when we consider derivatives of tensor fields. In the following, we will implicitly assume this
dependence.

Example 2.8 We have already come into contact with the magnetic field tensor Fab in
Example 2.6. Naturally, since the magnetic field ~B is a vector field, the associated tensor
Fab = ∂aAb − ∂bAa is a type (0,2) tensor field.
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2.3.1 The metric tensor
Perhaps the most important tensor field for most physics applications is the metric tensor ,
which, as we shall see, generally describes the distance between nearby points. This property
will also be used in order to define an inner product between tangent vectors and a natural
relationship between contravariant and covariant tensors. We shall start by examining how
this works in an affine space with an arbitrary coordinate system. This will suffice in order
to get a feeling for what kind of beast the metric tensor is and for interpreting it from
a geometrical point of view. In Chapter 9, we generalise this to curved spaces, where the
intuition gained from the present discussion will prove useful.

As was discussed in Section 1.6, the tangent vector basis ~Ea need not be orthogonal,
meaning that generally gab = ~Ea · ~Eb 6= 0 even if a 6= b. For the sake of the argument,
let us examine how this quantity transforms under coordinate transformations. By the
transformation rules of the individual basis vectors, we find that

gab = ~Ea · ~Eb =
∂y′a

′

∂ya
∂y′b

′

∂yb
~E′a′ · ~E′b′ =

∂y′a
′

∂ya
∂y′b

′

∂yb
ga′b′ . (2.49)

Thus, gab are the components of a type (0, 2) tensor

g = ( ~Ea · ~Eb)eab, (2.50)

which we refer to as the metric tensor. While we have here used the inner product to define
the metric, it should be noted that this is backwards when considering more general spaces,
where instead the metric will be defining the inner product between vectors. In particular,
for any two contravariant vectors va and wa, we have

~v · ~w = vawb ~Ea · ~Eb = gabv
awb, (2.51)

where the last step assumes that we have defined the inner product between the tangent
vector basis vectors.

Example 2.9 In the case of an orthogonal coordinate system, the tangent vector basis is
orthogonal and ~Ea · ~Ea = h2

a (no sum). It follows that

gab =

{
h2
a, (a = b)

0, (otherwise)
(2.52)

in any orthogonal coordinate system. In particular, for a Cartesian coordinate system, we
find that hi = 1 and therefore

gij = δij . (2.53)

From the fact that we can remove a summation with the δ, we find

~v · ~w = δijv
iwj = viwi (2.54)

as expected.

Assuming that the coordinates are not singular, i.e., they are a good local description
of the space, the metric has the following important properties:
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1. Symmetric: Due to the inner product being symmetric, it follows that gab = ~Ea · ~Eb =
~Eb · ~Ea = gba. Therefore, the metric tensor is a symmetric tensor at each point.

2. Positive definite: For any vector va, it must hold that gabv
avb ≥ 0 with equality

implying that va = 0. This property follows from the corresponding property of the
inner product ~v · ~v.

Similar to the definition of the metric using the tangent vector basis, we may define the
inverse metric tensor using the dual basis

gab = ~Ea · ~Eb. (2.55)

The nomenclature of referring to gab as the inverse metric originates from the property

gabgbc = ( ~Ea · ~Eb)( ~Eb · ~Ec) = [( ~Ea · ~Eb) ~Eb] · ~Ec = ~Ea · ~Ec = δac , (2.56)

where we have used the fact that ~v = (~v · ~Eb) ~Eb for any vector ~v. In matrix form, this
relationship takes the form

(gab)(gbc) = I ⇐⇒ (gab) = (gbc)
−1, (2.57)

where I is the identity matrix.

Example 2.10 In Example 1.29, we defined an orthogonal coordinate system with the
coordinates s = sinh(x1) and t = sinh(x2). In later examples, we found that hs = 1/

√
1 + s2

and ht = 1/
√

1 + t2. Since the coordinate system is orthogonal, it follows that the metric
tensor is diagonal and given by

(gab) =

(
h2
s 0

0 h2
t

)
=

( 1
1+s2 0

0 1
1+t2

)
. (2.58)

The inverse of this matrix is trivially given by taking the reciprocal of each of the diagonal
elements and we obtain

(gab) = (gab)
−1 =

(
1 + s2 0

0 1 + t2

)
. (2.59)

2.3.1.1 Distances and the metric tensor

We can express the distance ds between two infinitesimally separated points according to

ds2 = d~x · d~x, (2.60)

where d~x is the displacement vector between the points. In Cartesian coordinates, this
reduces to ds2 = dxidxi, which is essentially Pythagoras’ theorem. However, by applying
the chain rule to this relation in a general coordinate system, we find that

ds2 =

(
∂~x

∂ya
· ∂~x
∂yb

)
dyadyb = ( ~Ea · ~Eb)dyadyb = gabdy

adyb. (2.61)
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This line element is invariant under coordinate transformations due to the transformation
properties of the metric tensor and dya and therefore the distance does not depend on the
particular set of coordinates chosen. The length of a curve Γ can be computed by summing
all of the infinitesimal distances along the curve

sΓ =

∫
Γ

ds =

∫ 1

0

√
gabẏaẏb dt, (2.62)

where ẏa = dya/dt and the parameter t ∈ [0, 1] parametrises the curve by specifying the
coordinates ya(t) as functions of t.

Example 2.11 In the two dimensional plane with polar coordinates, the non-zero compo-
nents of the metric tensor are given by gρρ = h2

ρ = 1 and gφφ = h2
φ = ρ2. The length of a

curve can therefore be expressed as

sΓ =

∫ 1

0

√
ρ̇2 + ρ2φ̇2 dt. (2.63)

In particular, a circle of radius R may be parametrised according to ρ(t) = R and φ(t) = 2πt,
leading to ρ̇ = 0 and φ̇ = 2π. As expected, this leads to

sΓ =

∫ 1

0

√
(2πR)2 dt = 2πR. (2.64)

Naturally, this computation could also be performed in Cartesian coordinates, but it would
require a slightly more involved parametrisation of the curve in terms of sines and cosines.

2.3.1.2 Lowering and raising indices

Being a type (0,2) tensor, the metric can be used to relate a tensor of type (n,m) to a tensor
of type (n−1,m+ 1) through a contracted product. In particular, it relates a contravariant
vector va to a covariant vector va according to

va = gabv
b. (2.65)

For vectors in an affine space, we can recognise this as the relation between the covariant
and contravariant components of the vector ~v, i.e.,

va = ~Ea · ~v = ~Ea · (vb ~Eb) = ( ~Ea · ~Eb)vb = gabv
b. (2.66)

However, the relation will remain true also in more general spaces. Due to the existence of
the inverse metric, we can check the consistency according to

va = gabvb = gabgbcv
c = δac v

c = va. (2.67)

Thus, we may apply the inverse metric tensor to recover the original contravariant vector
components.

The above raising and lowering of indices is not restricted to vectors, but may be applied
to tensors of any rank apart from scalars, which do not have indices to lower or raise.
However, it now becomes important to keep track of the ordering of any indices, not only



Tensors � 83

separately for each index type. For example, the type (2,0) tensor T ab may be related to a
type (1,1) tensor according to either

T ab = gbcT
ac or T a

b = gbcT
ca, (2.68)

where it is important to note that the metric tensor is contracted with different indices for
the different choices. Unless T ab is symmetric, these two choices refer to different tensors,
i.e., T ab 6= T a

b . There is also an associated type (0,2) tensor

Tab = gacgbdT
cd, (2.69)

where the order of the indices is naturally inferred from the ordering of the indices of the
type (2,0) tensor. For the general type (n,m) tensor, we may use the metric and the inverse
metric to lower or raise indices as we please, always resulting in a tensor of rank n+m, as
long as we are careful in keeping track of the index ordering. As mentioned, the exception
when we do not need to keep track of the index order is when a tensor is symmetric, resulting
in

T ab = gbcT
ac = gbcT

ca = T a
b . (2.70)

As long as we only consider affine spaces, the raising and lowering of indices may be regarded
as interchangeably expressing the corresponding vector in the tensor basis as a tangent
vector or dual basis vector.

2.3.2 Derivatives of tensor fields
Just as for scalar and vector fields, tensor fields often fulfil different differential equations
that can be written on local form. However, we noted that some differential operators take
on a more complicated form in a general coordinate system than when written down in
Cartesian coordinates. For the case of orthogonal coordinate systems, we solved this by
expressing the gradient, divergence, Laplace operator, and curl using the scale factors. An
alternative to this, which is applicable to any coordinate system, is to start by considering
how a vector field ~v changes with the position by examining the partial derivatives

∂a~v = ∂av
b ~Eb = ~Eb∂av

b + vb∂a ~Eb, (2.71)

where the last step is an application of the product rule. There is a caveat in this line of
argumentation: We have assumed that the partial derivative of a vector field makes sense,
which a priori requires an unambiguous way of comparing vectors at different points. In
an affine space, to which we are currently restricting ourselves, this is straightforward and
can be easily done by introducing a Cartesian coordinate system and a fixed set of basis
vectors. In more general spaces, this is not as clear and we postpone this discussion for
Chapter 9. For now, we just observe that the first term contains a partial derivative of the
vector component ∂av

b and the second one a partial derivative of the vector basis itself
∂a ~Eb. The latter of these partial derivatives is independent of the vector components va

and only depends on the coordinate system we have imposed. As it is the derivative of a
vector, the result must also be a vector, which we can expand in the tangent vector basis
according to

∂a ~Eb ≡ Γcab ~Ec, (2.72)

where the Christoffel symbols Γcab = ~Ec · ∂a ~Eb are the components of the partial derivative.
Using this definition, we can re-express the derivative of the vector field ~v as

∂a~v = ~Eb∂av
b + vbΓcab ~Ec = ~Eb(∂av

b + Γbacv
c). (2.73)
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It follows that the components of the partial derivatives of a vector field are not just the
partial derivatives of the components themselves, but also has an additional contribution
from the change in the basis vectors. In order to avoid confusion when only using components
to refer to the fields, we introduce the covariant derivative in the ya direction ∇a, which
acts on contravariant vector components according to

∇avb = ∂av
b + Γbacv

c. (2.74)

It should be noted (see Problem 2.25) that while ∂av
b does not transform as the components

of a type (1,1) tensor, the covariant derivative ∇avb does.

Example 2.12 We introduced a non-orthogonal coordinate system based on the vectors
~v1 = ~e1 and ~v2 = ~e2 +~e1 in Example 1.26 and found that the tangent vector basis was given
by ~Ea = ~va. Since the vectors ~va were taken to be constant, we find that

∂a ~Eb = ∂a~vb = 0, (2.75)

implying that all Christoffel symbols are zero in this coordinate system.

Example 2.13 An orthogonal coordinate system with varying basis vectors was introduced
in Example 1.29

s = sinh(x1), t = sinh(x2). (2.76)

The tangent vector basis of this coordinate system was found to be

~Es = ~e1
1√

1 + s2
, ~Et = ~e2

1√
1 + t2

. (2.77)

Differentiating these vectors with respect to the coordinates, we find that

∂s ~Es = − s
√

1 + s2
3~e1 = − s

1 + s2
~Es, (2.78a)

∂t ~Et = − t
√

1 + t2
3~e2 = − t

1 + t2
~Et, (2.78b)

∂s ~Et = ∂t ~Es = 0. (2.78c)

From these relations we can identify that the non-zero Christoffel symbols of this coordinate
system are

Γsss = − s

1 + s2
, Γttt = − t

1 + t2
. (2.79)

We shall return to the covariant derivative of a general tensor field shortly, but let us
first examine the Christoffel symbols more closely. First of all, we note that it is not only
the change in the tangent vector basis that may be expressed in terms of the Christoffel
symbols. Using the relation ~Ea · ~Eb = δab , we find that

0 = ∂cδ
a
b = ∂c( ~E

a · ~Eb) = ~Ea · (∂c ~Eb) + (∂c ~E
a) · ~Eb = Γacb + (∂c ~E

a) · ~Eb. (2.80a)
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It directly follows that
∂c ~E

a = −Γacb ~E
b (2.80b)

and so the derivative of the vector field ~v could also be written according to

∂a~v = ∂a(vb ~E
b) = ~Eb(∂avb − Γcabvc) ≡ ~Eb∇avb, (2.81)

where the action of the covariant derivative on the covariant components vb is defined as

∇avb = ∂avb − Γcabvc. (2.82)

As with the action on the covariant vector, ∂avb are not the components of a covariant
tensor, but the full covariant derivative ∇avb is.

Second, we note that the Christoffel symbols are symmetric in the lower indices, i.e.,
Γcab = Γcba. This follows from the definition of the tangent vector basis and the commutation
of the partial derivatives

Γcab = ~Ec · ∂a ~Eb = ~Ec · ∂a∂b~x = ~Ec · ∂b∂a~x = Γcba. (2.83)

We can now express the Christoffel symbols in terms of the metric tensor gab. Starting from
gab = ~Ea · ~Eb we find that

∂cgab = ~Ea · (∂c ~Eb) + (∂c ~Ea) · ~Eb = Γdcb
~Ea · ~Ed + Γdca

~Ed · ~Eb = Γdcbgad + Γdcagbd. (2.84)

Contracting this with the inverse metric tensor gea, it follows that

gea∂cgab = Γecb + Γdcag
eagbd. (2.85)

Using the symmetry of the Christoffel symbols, these equations can now be rewritten

Γecb =
1

2
gea[∂cgab + ∂bgac − (Γdacgbd + Γdabgcd)] =

1

2
gea(∂cgab + ∂bgac − ∂agcb), (2.86)

which can be used to compute the Christoffel symbols directly from the metric tensor. While
it is often easier to compute the Christoffel symbols from the partial derivatives of the basis
vectors, the expression in terms of the metric will become quite useful later on when we
study more general spaces.

2.3.2.1 The covariant derivative

In the case of Cartesian coordinates, we defined the directional derivative ∂/∂~n in terms of
the gradient ∂/∂~n = ~n ·∇ = ni∂i. As we noted, it maps a scalar field to another scalar field
and a vector field to another vector field. In arbitrary coordinates, we find that

∂~v

∂~n
= na∂a~v = ~Ebn

a∇avb (2.87)

based on our discussion above. It is straightforward to check that the right-hand side is
coordinate independent and thus the directional derivative itself is a vector. We will use the
notation ∇~n = na∇a and call this object the covariant derivative in the direction of the
vector ~n.

Let us examine how the covariant derivative acts on an arbitrary type (n,m) tensor field
T = T a1...anb1...bm

eb1...bma1...an . By the same argumentation as for the vector field, we find

∇~nT = nc∂c(T
a1...an
b1...bm

eb1...bma1...an) = nc(eb1...bma1...an∂cT
a1...an
b1...bm

+ T a1...anb1...bm
∂ce

b1...bm
a1...an). (2.88)
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As with the derivative acting on the vector field, we have to figure out how the derivative
acts on the basis. Let us start by looking at the basis eba = ~Ea⊗ ~Eb and then generalise the
result to an arbitrary tensor basis. We find that

∂ce
b
a = ∂c( ~Ea ⊗ ~Eb) = (∂c ~Ea)⊗ ~Eb + ~Ea ⊗ (∂c ~E

b), (2.89a)

where we have used the product rule. This expression only contains derivatives of the tangent
vector and dual bases, which can be expressed in terms of the Christoffel symbols

∂ce
b
a = Γdcae

b
d − Γbcde

d
a. (2.89b)

For the covariant derivative of the tensor Sab e
b
a, we therefore find

∇~nS = nc[eba∂cS
a
b + Sab (Γdcae

b
d − Γbcde

d
a)] = nceba(∂cS

a
b + ΓacdS

d
b − ΓdcbS

a
d ). (2.90)

In the same fashion, the covariant derivative of the arbitrary tensor in Eq. (2.88) is found
to be

∇~nT = nceb1...bma1...an

(
∂cT

a1...an
b1...bm

+

n∑
k=1

ΓakcdT
a1...ak−1dak+1...an
b1...bm

−
m∑
`=1

Γdcb`T
a1...an
b1...b`−1db`+1...bm

)
. (2.91)

The above result is quite intuitive, as it includes the derivative of the tensor components
together with one term for each factor in the tensor product construction of the basis. If
the factor is a tangent vector, the term comes with a positive sign in front of the Christoffel
symbol, and if it is a dual basis vector, it comes with a negative sign.

Example 2.14 We should check that the covariant derivative also reduces to the normal
directional derivative when acting on scalar fields. Since scalar fields do not come with a
basis, we find that for any scalar field φ

∇~nφ = na∂aφ = ~n · ∇φ. (2.92)

This agrees with the directional derivative we are already familiar with.

It is also instructive to consider the object ∇cT a1...anb1...bm
. When contracted with nc, this

object resulted in a tensor of type (n,m), the same type as T . By the quotient rule, it must
therefore be the components of a type (n,m+ 1) tensor, namely

∇T = ~Ec ⊗ ∂c(T ) = ~Ec ⊗ eb1...bma1...an∇cT
a1...an
b1...bm

= ecb1...bma1...an (∇cT a1...anb1...bm
). (2.93)

The resulting tensor field has a rank that is one higher than the original field, a property
we recognise from the gradient, which maps a scalar field to a vector field.

Example 2.15 The above construction for a scalar field φ results in the vector

∇φ = ~Ec∂cφ. (2.94)

Not surprisingly, the construction not only has properties similar to the gradient, when
applied to a scalar field, it is the gradient. It is therefore also no surprise that the contraction
with the vector ~n resulted in the directional derivative in the previous example.
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With the above in mind, we make the choice of referring to the object as the gradient
of a tensor field . It will appear in applications such as continuum mechanics.

Example 2.16 Let us apply the gradient to one of the few tensor fields we have come into
contact with so far, namely the metric tensor. By insertion, we find that

∇cgab = ∂cgab − Γdcagdb − Γdcbgad. (2.95)

This result looks strangely familiar. In fact, we can obtain this expression by subtracting
the right-hand side of Eq. (2.84) from the left-hand side. Since the sides are equal, the result
of this operation is zero and we obtain

∇cgab = 0. (2.96)

In particular, this important result allows us to freely raise and lower indices on the tensors
that the gradient acts upon. For example, it holds that

gab∇cvb = ∇c(gabvb) = ∇cva. (2.97)

2.3.2.2 Divergence

Having constructed generalisations of the directional derivative and the gradient, it stands
to reason that there may be straightforward generalisations also of the other differential
operators that were discussed in Section 1.4.3. Let us first figure out how to generalise the
divergence, which in a heartbeat will also allow us to generalise the Laplace operator, as it
is the divergence of the gradient.

For the case of a vector field ~v, the divergence was given by

∇ · ~v = ∂iv
i (2.98)

in Cartesian coordinates. As such, it is just the contraction between the two indices of the
gradient, since ∇i = ∂i for a Cartesian coordinate system, where the Christoffel symbols
vanish. The resulting quantity is a scalar, which is a tensor of rank one less than the original
vector field. Generalising to an arbitrary coordinate system, we find that

∂iv
i = (∂iy

a)∂a(vb∂bx
i) = (∇ya) · ∂a(vb ~Eb) = ~Ea · ~Eb∇avb = ∇ava (2.99a)

as expected or, in terms of the Christoffel symbols,

∇ · ~v = ∂av
a + Γaabv

b. (2.99b)

The remaining question is how to generalise this to act on any tensor field. In the case of
a contravariant vector, there was only one possible contraction in the gradient, as it was a
type (1,1) tensor. If a tensor has a higher rank, we need to select which index the divergence
should be taken with respect to. For example, for the tensor T ab, we have the two distinct
choices

∇aT ab = ∂aT
ab + ΓaacT

cb + ΓbacT
ac, (2.100a)

∇aT ba = ∂aT
ba + ΓbacT

ca + ΓaacT
bc. (2.100b)
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These choices will generally be different unless T is symmetric. We may even specify the
divergence of a tensor with respect to a covariant index by using the inverse metric tensor
to raise the index and then applying the divergence as before. When doing this, it should
be noted that

∇a(gabvb) = gab∇avb = gab(∂avb − Γcabvc), (2.101)

due to the covariant derivative of the metric being identically zero.
Having generalised both the gradient and the divergence, we may also generalise the

Laplace operator to act on any tensor field as

∇2T a1...anb1...bm
= gcd∇c∇dT a1...anb1...bm

, (2.102)

i.e., as the divergence of the gradient, where the divergence is taken with respect to the
index introduced by the gradient.

2.3.2.3 Generalised curl

In Chapter 1, the curl was defined in Cartesian coordinates as

∇× ~v = ~eiεijk∂jv
k. (2.103)

Let us examine some properties of this object and see whether or not we can generalise the
concept to apply also to more general tensors and, as a by-product, to spaces that are not
necessarily three-dimensional:

1. The curl is a vector with three components. It is composed of εijk and ∂jv
k. Remember

that we are in Cartesian coordinates, so ∂jv
k is a tensor as the Christoffel symbols

vanish. Since the permutation symbol carries no information about the vector field
itself, all of the information on the curl of ~v is contained in the tensor ∂jv

k.

2. Since εijk is totally anti-symmetric, only the anti-symmetric part of ∂jv
k will be

relevant to the curl as follows from the argumentation

εijk∂jv
k =

1

2
(εijk∂jv

k + εikj∂kv
j) =

1

2
εijk(∂jv

k − ∂kvj), (2.104)

where we have split the expression into two and renamed j ↔ k in the second term
in the first step and used the anti-symmetry of εijk in the second step. Note that the
reason that the indices are allowed to fly up and down arbitrarily in these expressions
is that they are written using Cartesian coordinates.

3. As demonstrated in Example 2.6, the curl has a one-to-one correspondence to an
anti-symmetric rank two tensor Fjk. This anti-symmetric tensor is precisely the anti-
symmetric part of ∂jv

k. This rank two tensor generalises in a straightforward way to
both spaces of different dimensions as well as to other tensors.

Based on the above discussion, we define the curl of the covariant vector field va as the
anti-symmetric rank two covariant tensor

∇avb −∇bva = ∂avb − ∂bva + (Γcab − Γcba)vc = ∂avb − ∂bva. (2.105)

Note that we started out by using the covariant derivative ∇a rather than the partial
derivative ∂a in order to ensure that the result would be a tensor. However, this was not
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necessary due to the symmetry Γcab = Γcba of the Christoffel symbols and we might as well
have defined it using the partial derivatives.

Just as the divergence of a tensor field of rank higher than one requires us to select
the index to contract with the index from the covariant derivative, generalising the curl to
such a tensor field requires us to select which index to anti-symmetrise with the index from
the covariant derivative. Naturally, there are several different options here. Apart from just
choosing one index for anti-symmetrisation with that from the covariant derivative, we may
anti-symmetrise an arbitrary number of indices. For example, we might look at the object

∇[aTbcd] = ∂[aTbcd]. (2.106)

Again, the equivalence between the covariant derivative and the partial derivative comes
from the anti-symmetrisation. The drawback of anti-symmetrising over all indices is that
only the anti-symmetric part of the tensor Tbcd will be relevant for the results. However, for
a totally anti-symmetric tensor, all options for anti-symmetrisation are equivalent up to a
constant. This is a result that plays a profound role in the discussion of differential forms,
see Section 9.5.1.

2.3.3 Tensor densities
It is not obvious that scalar functions should be the same regardless of the chosen coor-
dinates. In particular, for quantities such as densities of different sorts, it would also be
natural to consider a coordinate density, which would be the mass per coordinate volume
rather than the mass per physical volume. This is best illustrated with a one-dimensional
example.

Example 2.17 Consider the distribution of kinetic energies of the particles in a mono-
atomic gas. The number of particles between the energies E and E + dE is then given by
f(E) dE, where f(E) is the distribution function. Changing variables to the momentum p
of the particles, related to the energy as E = p2/2m, we find that the number of particles
with momentum between p and p+ dp is given by

f(E)dE = f(E)
dE

dp
dp = f(p2/2m)

p

m
dp ≡ f̃(p)dp, (2.107)

where f̃(p) is the distribution function in momentum space. Although E and p are directly
related and the distribution can be described using either, we find that f̃(p) 6= f(E) =
f(p2/2m). It is related to the energy distribution function f(E) by the Jacobian dE/dp.

In the same way as in the above example, we could also consider the coordinate mass
density ρ̃ with respect to a coordinate volume, i.e., such that the mass dM within a small
coordinate box with ya0 < ya < ya0 + dya is given by

dM = ρ̃(y0)
∏
a

dya. (2.108a)

Changing coordinates to y′a
′
, we find that

dM = ρ̃(y0(y′0))J
∏
a′

dy′a
′
, (2.108b)
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where J is the determinant of the matrix with the partial derivatives ∂ya/∂y′a
′

as its
elements. It follows that the coordinate density ρ̃′(y′0) is given by

ρ̃′(y′0) = J ρ̃(y0(y′0)). (2.109)

Since ρ̃ takes different values in different coordinate systems it is not a rank zero tensor.
However, the transformation properties of ρ̃ are related to the scalar transformation property
by the appearance of the determinant J . We refer to the coordinate density ρ̃ as a rank
zero tensor density (or relative tensor) with weight one. More generally, a tensor density of
type (n,m) and weight w is a quantity T whose components transform from a coordinate
system ya to another coordinate system y′a

′
according to

T ′
a′1...a

′
n

b′1...b
′
m

= J w
(

n∏
k=1

∂y′a
′
k

∂yak

)(
m∏
`=1

∂yb`

∂y′b
′
`

)
T a1...anb1...bm

. (2.110)

Again, this differs from the transformation of tensors (see Eq. (2.12)) only by the appearance
of the Jacobian determinant J raised to the wth power. It follows that a tensor density with
weight zero is a normal tensor. However, note that we have here also elected to denote the
components of the tensor density in the primed system by a prime, mainly to underline that
it is a tensor density and not a tensor. This is most important for scalar densities, which
do not have any indices that can be primed, but still take on different values in different
coordinates. It is also worth noting that some texts adopt a definition of the tensor density
weight w that differs from our convention by a minus sign. Naturally, this may be confusing
when consulting several different texts with different conventions and should therefore be
kept in mind when doing so.

It is possible to express the Jacobian determinant in terms of the permutation symbol
εa1...aN according to

J = εa′1...a′N

N∏
k=1

∂yk

∂y′a
′
k

= εa1...aN

N∏
k=1

∂yak

∂y′k′
=

1

N !
εa′1...a′N εa1...aN

N∏
k=1

∂yak

∂y′a
′
k

, (2.111)

where, as usual, εa1...aN is totally anti-symmetric and equal to one when all ak = k.

Example 2.18 The permutation symbol εa1...aN in a general coordinate system turns
out to be a tensor density rather than a tensor (which is why it is called the permutation
symbol and not the permutation tensor). Let us consider the result of trying to transform
it as a tensor. Starting from a completely anti-symmetric type (0, N) tensor κ, which in the
coordinates ya have the components κa1...aN = εa1...aN , we find that

κa′1...a′N = εa1...aN

N∏
k=1

∂yak

∂ya
′
k

. (2.112)

By construction, it should be clear that both the left- and right-hand sides of this expression
are completely anti-symmetric in the free indices. Furthermore, assigning a′k = k′,

κ1′2′...N ′ = εa1...aN

N∏
k=1

∂yak

∂y′k′
= J . (2.113)

Due to the complete anti-symmetry, we conclude that κa′1...a′N = J εa′1...a′N and dividing
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both sides by J results in

εa′1...a′N = J−1εa1...aN

N∏
k=1

∂yak

∂ya
′
k

. (2.114)

It follows that the permutation symbol may be interpreted as a type (0, N) tensor density
with weight w = −1. A priori, sticking to our convention of denoting tensor densities with
a prime in the primed coordinates, we might want to put a prime on the transformed ε.
However, the permutation symbol will generally be well understood also without the prime.

Just as new tensors can be created from known ones by using different tensor oper-
ations, new tensor densities can be created from known ones. In most cases, we may do
whatever algebraic manipulations we did to tensors with tensor densities as long as certain
requirements are met:

1. Addition: Due to the linearity in the construction of the tensor product, there was a
natural implementation of addition of tensors. This also generalises to tensor densities,
where the linearity of the transformation to the new coordinate system guarantees that
the result is a new tensor density. The caveat is that, in order to factor out J w after
the transformation, the added tensor densities must not only be of the same type, but
also the same weight w. Naturally, the resulting tensor density is a tensor density of
the same type and weight as the original ones. As an example, the addition of the
contravariant vector densities Aa and Ba would have the components

(A+B)a = Aa +Ba, (2.115)

which is a tensor density as long as that Aa and Ba have the same weight.

2. Multiplication: In the same fashion as for the construction of the outer product be-
tween to tensors, any two tensor densities may be multiplied to yield a new tensor
density. If the multiplied tensor densities are of type (n1,m1) with weight w1 and
(n2,m2) with weight w2, respectively, then the new tensor density will be of type
(n1 + n2,m1 +m2) with weight w1 + w2. An example of this operation would be the
multiplication of the covariant vector component Ca, i.e., a covariant vector density
of weight zero, with the tensor density T ab of weight two. The resulting type (2, 1)
tensor density would have the components CaT

bc and have weight two.

3. Contraction: The contraction of two free indices in a tensor density works in precisely
the same way as for a tensor. The transformation properties of the contracted indices
will cancel, leaving the remaining indices to transform as expected. The determinant
J is unaffected by this and the resulting tensor density therefore has the same weight
as the original one.

Example 2.19 The metric determinant g = det(gab) can be written in terms of the inverse
metric tensor gab and the permutation symbol εa1...aN according to

g−1 = det(gab) =
1

N !
εa1...aN εb1...bN

N∏
k=1

gakbk . (2.116)
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As the permutations symbols are tensor densities with weight −1 and the inverse metric
tensor is a tensor, it follows that the metric determinant g is a scalar density with weight
two. Taking the square root of g, we find that

√
g′ =

√
J 2g = J√g, implying that

√
g

is also a scalar density, but with weight one, where we have assumed that J is positive.
This is equivalent to the coordinate bases ~Ea and ~E′a′ both being right-handed (or both
left-handed).

In Example 2.18, we saw that the permutation symbol may be regarded as a totally anti-
symmetric covariant tensor density with weight minus one. We arrived to this conclusion
by examining the transformation properties of a covariant tensor κa1...aN , which took the
values εa1...aN in one particular coordinate system. However, the choice of letting the tensor
be covariant was arbitrary and we might as well study the contravariant tensor κ̃a1...aN .
Assume that κ̃a1...aN = εa1...aN in a given coordinate system, where we note that the
indices on the permutation symbol really are not covariant nor contravariant until we have
deduced the transformation properties. We now find that

κ̃a
′
1...a

′
N = εa1...aN

N∏
k=1

∂y′a
′
k

∂yak
, (2.117a)

leading to

κ̃1′...N ′ = εa1...aN

N∏
k=1

∂y′k
′

∂yak
= J−1. (2.117b)

In the same fashion as in the example, it follows that the permutation symbol may also
be considered as a totally anti-symmetric contravariant tensor density of weight one. It is
customary to write this tensor density with the indices raised εa1...aN and keep the indices
down εa1...aN when intending the interpretation as a covariant tensor density. Although
this convention is most often convenient, an unfortunate confusion arises when raising and
lowering the indices of these tensors using the metric. Since the metric is a tensor, raising
the indices of εa1...aN using the metric will not result in εa1...aN , since the result must have
weight minus one rather than plus one. In fact, we instead obtain

εa1...aN
N∏
k=1

gakbk = gεb1...bN , (2.118)

where g is the metric determinant discussed above. Since the metric determinant has weight
two, the weights of both sides of the equation match. In fact, we could have used this as
argumentation for deducing the weight of the metric determinant.

The above relation between the covariant and contravariant interpretations of the per-
mutation symbol incidentally provides us with a way of relating tensor densities of one
weight to tensor densities with a different weight. As mentioned earlier, since the metric
determinant g is a scalar density with weight two, its square root

√
g is a scalar density

with weight one. For any tensor density T a1...anb1...bm
of weight w, we can construct a tensor

T a1...anb1...bm
=
√
g
−w
T a1...anb1...bm

, (2.119)

where the factor
√
g−w compensates the weight of the tensor density to make the result a

tensor.
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Example 2.20 We can construct a completely anti-symmetric tensor ηa1...aN with compo-
nents εi1...iN in any Cartesian coordinate system. Generally, since εa1...aN is a tensor density
of weight minus one, we can do this by assuming that

ηa1...aN = k
√
gεa1...aN , (2.120)

where k is some constant that needs to be determined. Now, in a Cartesian coordinate
system, gij = δij , resulting in g = 1. It follows that we need k = 1 in order to fulfil ηi1...iN =
εi1...iN . We also note that, due to the form of the metric in a Cartesian coordinate system,
ηi1...iN is also equal to the permutation symbol. We could therefore also have defined it using
the contravariant interpretation of the permutation symbol as ηa1...aN =

√
g−1εa1...aN .

As an application of this example, we can express the cross product of two vectors in
a general coordinate system. Since the cross product is a vector and we can express it in
terms of the permutation symbol in a Cartesian coordinate system, it must be expressed as

(~v × ~w)a = ηabcvbwc (2.121)

in a general coordinate system.

2.3.4 The generalised Kronecker delta
Since the covariant and contravariant interpretations of the permutation symbol are tensor
densities with opposite weight, their product is a tensor of type (N,N) that is completely
anti-symmetric in both its covariant and contravariant indices. This tensor is given by

δa1...aNb1...bN
= εa1...aN εb1...bN (2.122)

and the use of δ to denote it is not a coincidence as this tensor, and its contractions, turn
out to be generalisations of the Kronecker delta tensor. For any n ≤ N , we define the
generalised Kronecker delta of order 2n as the type (n, n) tensor

δa1...anb1...bn
=

1

(N − n)!
δ
a1...ancn+1...cN
b1...bncn+1...cN

, (2.123)

where the normalisation is such that the elements are either plus or minus one and follows
from the (N−n)! possible permutations of the N−n summation indices. Like the Kronecker
delta, this generalisation is an isotropic tensor, i.e., it has the same components in all
coordinate systems

δa1...anb1...bn
=


+1, (a1 . . . an is an even permutation of b1 . . . bn)

−1, (a1 . . . an is an odd permutation of b1 . . . bn)

0, (otherwise)

. (2.124)

Example 2.21 Consider the generalised Kronecker delta of order two. By the definition
above, this should be a type (1, 1) tensor that is equal to one if its only covariant index
is the same as its only contravariant index and zero otherwise (there is no way to make
an odd permutation of one element, there being nothing to permute it with). As such, this
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should be the Kronecker delta tensor that we are already accustomed to, but let us check
this proposition explicitly. We start from the definition and write

δab =
1

(N − 1)!
δac2...cNbc2...cN

. (2.125)

If a 6= b, then this entire expression must equal to zero, since by definition it is necessary
that for all ck, ck 6= a and ck 6= b. Thus, in order for the expression to be non-zero, we have
N − 1 different ck, in addition to a and b, which must all take values in the range one to N .
However, there is no way of assigning unique values in this range to these N + 1 different
indices and thus δab = 0.

On the other hand, if a = b, we only need to assign unique values to N indices, which
is possible. Fixing a, and therefore also b, there are (N − 1)! different ways of making
this assignment to the N − 1 indices ck. Each of those assignments will appear once in
the summation and when a = b, ac2 . . . cN is the same as bc2 . . . cN and thus an even
permutation. This means that each term in the sum contributes with a value of 1/(N − 1)!
due to the normalisation. The sum is therefore equal to one.

Example 2.22 Let us look at the generalised Kronecker delta of order four δa1a2b1b2
. With

two covariant and two contravariant indices there are only two possible permutations and
we can easily list them. If a1 = b1 and a2 = b2, then a1a2 is an even permutation of b1b2,
while if a1 = b2 and a2 = b2, it is an odd permutation. We thus obtain

δa1a2b1b2
=


+, (a1 = b1 6= a2 = b2)

−1, (a1 = b2 6= a2 = b1)

0, (otherwise)

. (2.126)

Since we just showed that δab is one if a = b, it follows that

δa1a2b1b2
= δa1b1 δ

a1
b1
− δa2b1 δ

a1
b2
, (2.127)

which looks stunningly familiar as it is the δ part of the ε-δ-relation. We should not be
surprised at this result as, in three dimensions, we also have

δa1a2b1b2
=

1

(3− 2)!
εa1a2cεb1b2c = εa1a2cεb1b2c. (2.128)

This last example is a special case of the more general form

δa1...anb1...bn
= n!δ

[a1
b1

. . . δ
an]
bn
, (2.129)

which can be used to express the generalised Kronecker delta in terms of the usual Kronecker
delta δab . Note that the factor n! arises from the definition of the anti-symmetrisation present
in this equation, which has an n! in the denominator.
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2.3.5 Orthogonal coordinates
Let us briefly examine some of the above ideas applied to an orthogonal coordinate system.
The first observation we can make is that, due to the orthogonality, the metric tensor is
diagonal by definition

(gab) = diag(h2
1, h

2
2, . . . , h

2
N ), (2.130)

where the ha are the scale factors. This follows directly from the relation gab = ~Ea · ~Eb while
keeping in mind that the coordinate system is orthogonal. Inserting this into the expression
for the Christoffel symbols in Eq. (2.86), we find that

Γcab = δcb∂a ln(hb) + δca∂b ln(ha)− δab
2h2

c

∂ch
2
a, (no sum) (2.131)

where we have used that (∂ah
2
b)/h

2
b = 2∂a ln(hb). As can be seen from this expression,

only Christoffel symbols that contain at least two of the same index can be non-zero.
Furthermore, the scale factor belonging to that index must depend on the remaining index.
In particular, we obtain

Γcab =

{
∂b ln(ha), (c = a)

− 1
2h2
c
∂ch

2
a, (a = b 6= c)

. (2.132)

Due to the metric being diagonal, the metric determinant is given by the product of the
diagonal elements

g =
N∏
a=1

h2
a =⇒ √

g =
N∏
a=1

ha. (2.133)

We note that the expression for
√
g is exactly the same as that for the Jacobian determinant

J in Eq. (1.181) for transformations to an orthogonal coordinate system from a Cartesian
one. Naturally, this is no coincidence since

√
g = 1 in any Cartesian system and

√
g is a

scalar density of weight one.

Example 2.23 The polar coordinates ρ and φ in R2 constitute an orthogonal coordinate
system as discussed in Section 1.6.3, where it was also found that

hρ = 1, hφ = ρ. (2.134)

From this follows that
gρρ = 1, gφφ = ρ2, gρφ = gφρ = 0. (2.135)

As we only have two coordinates, the argumentation above does not reduce the possible
number of non-zero Christoffel symbols. However, since none of the scale factors depend on
φ, the Christoffel symbols containing derivatives with respect to φ are all identically equal
to zero. This includes

Γφφφ = ∂φ ln(hφ) = 0, (2.136a)

Γφρρ = − 1

2hφ
∂φh

2
ρ = 0, (2.136b)

Γρρφ = Γρφρ = ∂φ ln(hρ) = 0. (2.136c)

At the same time, the scale factor hρ is constant, which gives us

Γρρρ = ∂ρ ln(hρ) = 0. (2.136d)
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Finally, the non-zero Christoffel symbols are

Γρφφ = − 1

2hρ
∂ρh

2
φ = −ρ, (2.136e)

Γφφρ = Γφρφ = ∂ρ ln(hφ) =
1

ρ
. (2.136f)

These results are in accordance with the derivatives of the tangent vector basis

∂ρ ~Eρ = 0, ∂φ ~Eρ =
1

ρ
~Eφ, ∂ρ ~Eφ =

1

ρ
~Eφ, ∂φ ~Eφ = −ρ ~Eρ, (2.137)

which can be derived starting from Eq. (1.196). Note that it will often be easier to compute
the Christoffel symbols directly from their definition in terms of the partial derivatives of
the tangent vector basis.

2.4 TENSORS IN CARTESIAN COORDINATES
As mentioned in the beginning of this chapter, many texts will start the discussion on tensors
by considering the special case of tensors in Cartesian coordinates, much in the same way
as we first discussed scalars and vectors in Cartesian coordinates in Chapter 1. Instead, we
choose to start by discussing the full framework of tensors in arbitrary coordinate systems,
using the definition in terms of the outer product in order to build a deeper foundation
for our upcoming discussion of more general spaces in Chapter 9, where the discussion on
arbitrary coordinate systems will provide us with some additional intuition. However, before
jumping into the more general framework, let us take a step back and look at the special
case of Cartesian coordinate systems.

We start this endeavour by taking a set of constant orthonormal unit vectors ~ei and
fixing an origin. Any point in space is then described by the coordinates xi, where the
position vector ~x = xi~ei describes the displacement from the origin. The fact that the basis
vectors are constant and orthonormal quickly leads us to the conclusion that

~ei = ~Ei = ~Ei, (2.138)

meaning that there is no difference between the tangent vector basis and the dual basis.
Thus, in Cartesian coordinates, there is no need to distinguish covariant and contravariant
indices and we can write all indices up or down at our leisure. Naturally, there is an argument
for keeping the indices where they would belong in a more general setting.

Even when keeping to Cartesian coordinates, we may change to a different Cartesian
coordinate system. Selecting the new Cartesian coordinate system x′i

′
, which has the basis

vectors ~e ′i′ and whose origin is displaced with respect to the origin of the xi coordinates by

a vector ~A, we find that

~x = ~x ′ + ~A =⇒ x′i
′

= (xi −Ai)~e ′i′ · ~ei = ai
′

i (xi −Ai), (2.139)

where ai
′

i = ~e ′i′ · ~ei are the transformation coefficients defined in connection to Eq. (1.11).
As expected, we find that the more general tensor transformations using partial derivatives
reduce to these transformation coefficients as

∂x′i
′

∂xi
= ai

′

i = aii′ =
∂xi

∂x′i′
. (2.140)
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Again, it becomes apparent that there is no difference between covariant and contravariant
indices in Cartesian coordinates as they transform in the same fashion due to the i′ ↔
i symmetry of the transformation coefficients. With the basis being independent of the
position, we may also have tensors that are defined without reference to a particular point
in space. In fact, the very first example, Example 2.1 of this chapter, involved such a tensor,
the moment of inertia, which is a property of an extended object rather than a single point,
although it is expressed with respect to a point (usually the center of mass).

Example 2.24 The Kronecker delta δab as discussed earlier is generally a tensor. When
restricted to Cartesian coordinate systems, we may exchange it for δij , which we discussed
already in Chapter 1. We have here been able to move the contravariant index down as
there is no difference between covariant and contravariant indices in Cartesian coordinates.
We also note that, due to the fact that ~ei · ~ej = δij and ~Ei = ~ei in Cartesian coordinates,
the metric tensor in Cartesian coordinates becomes

gij = ~ei · ~ej = δij . (2.141)

In fact, an equivalent definition of transformations between Cartesian coordinate systems
is affine transformations that preserve the metric tensor as δij .

Naturally, since all basis vectors and components of the metric components are constant,
the Christoffel symbols are all identically equal to zero in Cartesian coordinates.

Since the metric tensor for a Cartesian coordinate system is just the Kronecker delta
δij , it follows directly that the metric determinant is given by g = 1 in all such systems. At
the same time, we are already aware that the metric determinant is a scalar density with
weight two and therefore should transform from frame to frame along with a factor J 2.
There is only one way these two can be compatible, which is that any transition between
Cartesian coordinate systems must have a Jacobian J = ±1, where the positive sign holds
for transitions between coordinate systems with the same handedness and the negative
sign for transitions between systems with opposite handedness. This also follows from the
fact that Cartesian coordinate transformations preserve the δij form of the metric tensor,

which imposes constraints on the transformation coefficients ai
′

i . From this insight follows
that there is no distinction between tensor densities of different weights as long as we
restrict ourselves to right-handed Cartesian coordinates. In particular, all tensor densities
can be considered as tensors in right-handed Cartesian coordinates due to the tensor density
transformation of Eq. (2.110) reducing to the normal tensor transformation when J = 1,
regardless of the weight w.

Example 2.25 Our prime example of a tensor density was the permutation symbol εa1...aN .
When viewed in right-handed Cartesian coordinates, it can be taken as εi1...iN = εi1...iN =
ηi1...iN . Again we note that the positioning of the indices does not matter in this case. The
permutation symbol tensor densities, regardless of whether they are viewed as covariant
or contravariant, are equivalent to each other and so is the totally anti-symmetric tensor
ηi1...iN .
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2.5 TENSOR INTEGRALS
Tensor integrals in general coordinates will not necessarily be well defined. This will be
particularly true when we discuss curved spaces, where there is no unique way of relating
vectors at different points in the base space to each other. In this section, we will therefore
start by restricting ourselves to the integration of tensors in Cartesian coordinates and later
examine which concepts we can carry with us to integrals in more general spaces.

2.5.1 Integration of tensors in Cartesian coordinates
The integration of vectors discussed in Chapter 1 can be readily extended to the case of
tensors in Cartesian coordinates. As was the case for the integration of vectors, the volume,
surface, and line elements can be parametrised and computed and the volume element will
be an infinitesimal number, while the surface and line elements will be infinitesimal vector
quantities. Since the Cartesian bases ei1...in for any type of tensors are constant, they can
be taken out of the integral and each component can be integrated as a separate function.

2.5.1.1 Volume integration

For volume integrals, we first note that the volume element takes on the same expression
regardless of the coordinates as long as we use the Cartesian coordinates as integration
parameters. In particular, we find that

dV = ~e1 · (~e2 × ~e3) dx1dx2dx3 = ε123dx
1dx2dx3 = dx1dx2dx3. (2.142)

This also follows from the fact that J = 1 for all Cartesian coordinate transformations
and we will see the generalisation to arbitrary coordinates when we discuss more general
integrations.

Since the volume element is an infinitesimal number, the volume integral of any tensor
Ti1...in is a tensor Ii1...in of the same rank and is given by

Ii1...in =

∫
V

Ti1...indV =

∫
V

Ti1...indx
1dx2dx3, (2.143)

where V is the volume over which the integral is taken.

Example 2.26 The moment of inertia tensor of a solid object, which we have discussed
earlier, may be expressed using a volume integral. The velocity ~v of the object at a point ~x
is given by

~v = ~ω × (~x− ~x0), (2.144)

where ~x0 is the fixed point of the rotation. The mass within a small volume dV around
this point is dm = ρ dV , where ρ is the mass density of the object. The angular momentum
of this mass with respect to ~x0 is therefore given by d~L = (~x − ~x0) × dm~v and the total
angular momentum of the solid can therefore also be written

Li = ~ei ·
∫
V

ρ~x× (~ω × ~x)dV = ωj

∫
V

ρ(xkxkδij − xixj)dV, (2.145)

where we have set ~x0 = 0 for simplicity and V is the full extension of the solid. Identification
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of this expression with Eq. (2.2) shows that the moment of inertia tensor is given by the
volume integral of the tensor ρ(xkxkδij − xixj)

Iij =

∫
V

ρ(xkxkδij − xixj)dV. (2.146)

In particular, we note that if the volume mass is purely along the rotational axis, i.e., ~ω ∝ ~x,
then the angular momentum is zero as it should be.

2.5.1.2 Surface integrals

Since the surface element is an infinitesimal vector quantity, we can use it to either increase
the rank of the tensor being integrated by one by performing an outer product or decrease
it by one by contraction. There is also the possibility of using the scalar surface element, in
which case the integral results in a tensor of the same type as the integrand, just as we saw
for the volume integral. Naturally, which of these options should be used depends on the
physical situation that we wish to describe. Just as for the integrals of vector quantities,
the surface element will be given by Eq. (1.59).

Example 2.27 The stress tensor σij relates a surface element d~S to a force acting across
the surface as described in Example 2.7. Integrating over the surface S of an object, we can
find the total force acting on the object as

Fi =

∮
S

dfi =

∮
S

σijdSj . (2.147)

It should be noted that this is the external force on the object resulting from contact forces
at the surface. There is still the possibility of a force, such as gravity, acting directly on the
constituents within the volume. For example, the gravitational force on an object of mass
density ρ that takes up the volume V would be given by the volume integral

~Fg =

∫
V

ρ~g dV, (2.148)

where ~g is the external gravitational field.

Example 2.28 Coming back to the moment of inertia tensor, which we saw can be written
as a volume integral, some mass distributions will allow us to disregard one dimension of
the distribution. In the case we started with, a disc of mass M , we neglected the thickness
of the disc. This can be done as long as the thickness is much smaller than the radius R
of the disc and the volume integral with the volume density ρ can be replaced by a surface
integral with the surface density ρs

Iij =

∫
V

ρ(δijxkxk − xixj)dV →
∫
S

ρs(δijxkxk − xixj)dS. (2.149)

In our case with the disc, we can compute the moment of inertia tensor about its center
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by the following consideration. We start by introducing a coordinate system such that the
disc is in the x1-x2-plane. First of all, the term with xixj will be equal to zero whenever i
or j is equal to three as x3 = 0 everywhere on the disc. Furthermore, when (i, j) = (1, 2)
the integrand for the term x1x2 is anti-symmetric with respect to x1 → −x1 (and x2 →
−x2), while the integration domain is symmetric. Thus, the second term will only give a
contribution when i = j = 1 or 2. Due to the symmetry of the disc, the value will be the
same for both these cases and we find∫

S

ρx2
1dS =

∫ R

0

r3 dr

∫ 2π

0

ρs cos2(ϕ)dϕ = πρs
R4

4
. (2.150)

For the first term including the δij , we find that∫
S

δijρsxkxkdS = δijρs

∫ R

0

r3dr

∫ 2π

0

dϕ = πρsδij
R4

2
. (2.151)

We now take into account that the mass of the disc is

M =

∫
S

ρsdS = πR2ρs, (2.152)

resulting in

Iij =
MR2

4
(δij + δi3δj3). (2.153)

Thus, the non-zero components of the moment of inertia tensor in this coordinate system
are I11 = I22 = MR2/4 and I33 = MR2/2. These are precisely the values quoted in the
beginning of this chapter. Equivalently, including the tensor basis, this may be expressed as

I =
MR2

4
(δ + e33), (2.154)

where δ is the rank two Kronecker delta and e33 = ~e3 ⊗ ~e3.

2.5.1.3 Line integrals

As was the case with the surface integral, the line element will generally come with a
direction. Thus, also for a line integral, the resulting tensor may be of one order lower or
higher than the tensor being integrated, depending on whether or not there is a contraction
between the integrated tensor and the line element. We may also find situations when the
direction of the line element is unimportant, resulting in a tensor of the same order as the
integrand.

Example 2.29 The magnetic force on an infinitesimal part d~x of a conductor carrying a
current I is given by d~F = Id~x× ~B, where ~B is the external magnetic field. The total force
on the conductor may therefore be written as a line integral

~F = I

∫
Γ

d~x× ~B, (2.155)
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where Γ is the curve in space occupied by the conductor. In terms of the magnetic field
tensor Fij = εijkB

k introduced earlier, the force can be rewritten as

Fi = I

∫
Γ

Fijdx
j , (2.156)

i.e., in terms of the line integral of Fij contracted with the line element. Note that we have
here used Fi and Fij to denote different tensors, the first is the total force vector and the
second the magnetic field tensor.

2.5.1.4 Integral theorems

As already mentioned, the integral theorems discussed in Section 1.5 may be generalised to
the forms ∫

V

∂iTj1...jn dV =

∮
S

Tj1...jn dSi, (2.157a)∫
S

εijk∂kT`1...`n dSj =

∮
Γ

T`1...`n dx
i, (2.157b)

where we have replaced the f of Eqs. (1.139) with the general tensor component Tj1...jn
as already alluded to when we first discussed these theorems. Contractions of any of the
indices of Tj1...jn with the free index i are also possible and the integral theorems will still
hold since it does not matter whether the contraction is done before or after the integration.
This may also be seen by writing the contraction in terms of the constant Kronecker delta,
which may be moved out of the integral due to its components being constant, for example∫

V

∂iTijkdV = δi`

∫
V

∂iT`jkdV = δi`

∮
S

T`jkdSi =

∮
S

TijkdSi. (2.158)

Just as the divergence and curl theorems, these generalised integral theorems are powerful
tools that may be used in order to simplify several calculations that might otherwise be
hard to perform.

Example 2.30 The surface force acting on an object can be found by taking the surface
integral

Fi =

∮
S

σijdSj (2.159)

over its entire surface, where σij is the stress tensor. By the generalisation of the divergence
theorem, we find that

Fi =

∫
V

∂jσijdV. (2.160)

A special application of this formula is Archimedes’ principle. For an object submerged in a
fluid, the contact force from the fluid on the object will be the same as that which the fluid
would exert on an equivalent volume of fluid that replaced the object, see Fig. 2.2. Within
a stationary fluid of density ρ0 in a homogeneous gravitational field ~g, the stress tensor is
given by σij = −pδij , where p = ρ0~g · ~x is the pressure in the fluid at ~x. It follows that

Fi = −
∫
V

δij∂jp dV = −
∫
V

∂iρ0gjx
jdV = −giρ0V = −giMV , (2.161)
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p p

~Fb~Fb

Figure 2.2 According to Archimedes’ principle, the buoyant force ~Fb on an object immersed in a
fluid with the pressure field p is equal to the force on the corresponding volume if the object was
replaced by fluid. The buoyant force can be expressed as an integral over the object’s surface using
the stress tensor.

where MV = ρ0V is the mass of the displaced fluid. The force is therefore in the opposite
direction of the gravitational field and equal in magnitude to the gravitational force on a
mass MV . Including the gravitational force, the total force on the object will therefore be
given by

~Ftotal = ~g(ρ− ρ0)V, (2.162)

where ρ is the density of the object itself. If the object is denser than the fluid, the net
force is in the same direction as the gravitational field and this situation is referred to as
the object having negative buoyancy. If the fluid is denser than the object, the total force
is directed in the opposite direction from the gravitational field and the object has positive
buoyancy. In the situation where ρ = ρ0, the net force is zero and the buoyancy is neutral.

2.5.2 The volume element and general coordinates
When discussing volume integrals in general, we have so far only expressed the volume
element in Cartesian or orthogonal coordinates, where it takes the form

dV =
N∏
a=1

hadx
a. (no sum) (2.163)

This expression was derived from the volume spanned by the tangent vector basis ~Ea and
the approach remains valid for a general coordinate system. Wanting to express the volume
described by ya0 < ya < ya0 + dya, the volume is spanned by the vectors ~Eady

a (no sum),
see Fig. 2.3. In three dimensions, this results in

dV = ~E1 · ( ~E2 × ~E3)dy1dy2dy3. (2.164)

Expressing this triple product in Cartesian coordinates, we find that

dV = εijk
∂xi

∂y1

∂xj

∂y2

∂xk

∂y3
dy1dy2dy3. (2.165)
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~E1dy
1

y1

dV

~E2dy
2

~E3dy
3

y2y3

Figure 2.3 In a general coordinate system, the volume dV described by the coordinates ya0 < ya <

ya0 + dya is spanned by the vectors ~Eady
a (no sum). The volume is therefore given by the triple

product dV = ~E1 · ( ~E2 × ~E3)dy1dy2dy3. This is a good approximation as long as the dya are small
and exact when they are infinitesimal.

The quantity multiplying the differentials dya now looks stunningly familiar as the 123 com-
ponent of a completely anti-symmetric tensor with Cartesian components εijk. Fortunately,
we already know that this tensor is ηabc =

√
g εabc and it directly follows that

dV =
√
g ε123dy

1dy2dy3 =
√
g dy1dy2dy3. (2.166)

The generalisation of this argumentation to an N dimensional space is straightforward and
we find that

dV =
√
g

N∏
k=1

dyak ≡ √g dNy. (2.167)

This form of the volume element should not come as a surprise as we have already seen that
the volume element expressed in a general orthogonal coordinate system is dV = J dNy,
where J is the product of the scale factors, which, as noted earlier, is the square root of
the metric determinant in such a coordinate system.

Despite our success in expressing the volume element, integration in a general coordi-
nate system faces another obstacle that is not present in Cartesian coordinates. Unlike the
Cartesian basis vectors, the tangent vector basis ~Ea and the dual basis ~Ea are not constant.
This results in the complication that we cannot perform integrals of tensor quantities in
general coordinates by just integrating the components one by one. For integrals of tensor
quantities, we face the problem of which basis to use to express the result. Being an in-
tegral over a volume, surface, or curve, the resulting tensor quantity does not belong to a
particular point in space, so there can be no preference for any particular basis. In an affine
space, we may brush this aside and express the result in a Cartesian coordinate system, but
in more general curved spaces, there will not exist a natural way of comparing, much less
defining the sum of, tensors at different points in space. However, scalar quantities do not
require a basis and integrals of quantities with all indices contracted will therefore continue
to make sense even in general spaces.
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Figure 2.4 While the flow of a substance on a sphere may be defined as a vector at each point
of the sphere, there is no meaningful definition of the vector integral of this flow. However, it is
possible to define integrals on the sphere that describe, for example, the total flux into or out of a
given region.

Example 2.31 Consider the concentration of a substance on the surface of a sphere. At
each point on the sphere, there is a tangent vector Ja describing the flow of the substance,
see Fig. 2.4, but the tangent vector spaces at different points are different. There is therefore
no relevant way of integrating over the sphere to obtain the average flow of the substance
as a vector in any of the tangent spaces of the sphere. Of course, there may be some
notion of such an average flow if we are looking at the sphere as embedded in our three
dimensional affine space, but with a description that is restricted to the sphere only, this is
an impossibility. However, the flux integral

Φ =

∫
Γ

JadSa (2.168)

of the vector field Ja over some curve Γ, where dSa is orthogonal to the curve, is a well
defined quantity that describes the amount of substance flowing across Γ per time. These
issues will be discussed in more detail in Chapter 9.

2.6 TENSOR EXAMPLES
The last example of the preceding section gives us an appetiser of things to come when we
will consider more general spaces. We postpone this discussion for later as the discussion will
benefit from material that will be covered in the following chapters, in particular Chapter 8
on variational calculus will be of importance. Instead, we conclude this chapter by giving
some more structured examples of the application of tensor analysis within different fields
of physics. It should be stressed that these examples are only written for the purpose of
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σ21
σ12 σ22

σ32
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σ13

x1

x2
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σ33

Figure 2.5 The nine components of the stress tensor represented as forces acting on the different
faces of a cube. The stress σij represents a force in the xi direction on a surface with a normal ~ej .

discussing the application of tensor analysis in different fields and not as guides or learning
material for the subject matters. Each subject is much broader than what can be presented
here and will require dedicated texts to understand in full. However, it will provide us with
some basics and a context in which we can apply the knowledge acquired throughout this
chapter.

2.6.1 Solid mechanics
Solid mechanics is the study of solids and the forces that act within them. In the examples
given in this section, we will restrict ourselves to static situations, where any object is in
force (and torque) equilibrium. While rank two tensors are relatively common in many areas
of physics, as they represent the most general linear relationship between two vectors, solid
mechanics presents us with two of the most regularly encountered rank four tensors, the
stiffness and compliance tensors.

2.6.1.1 The stress tensor

We are already familiar with one of the main actors of solid mechanics from our earlier
examples. The stress tensor is a rank two tensor σij that relates the directed surface element
dSi to the contact force dFi acting on that surface element

dFi = σijdSj . (2.169)

For example, the component σ12 describes the force per unit area in the x1 direction when
the area element has a surface normal in the x2 direction, see Fig. 2.5. For a solid in
static equilibrium, we can find a set of differential equations that describe how the stress
tensor depends on any volume forces, most commonly a gravitational force. We do this by
considering an arbitrary volume V with a boundary surface S. Assuming that the body is
subject to a volume force fidV , where fi is a vector field, the total force on the volume is



106 � Mathematical Methods for Physics and Engineering

A
~g

`ρ
x3

Figure 2.6 A rod of density ρ, cross sectional area A, and length ` hanging from the ceiling will
be subject to internal stresses. The x3 direction is taken to point in the same direction as the
homogeneous gravitational field ~g.

given by

Fi =

∮
S

σijdSj +

∫
V

fidV, (2.170)

where the first term represents the surface forces from the rest of the solid and the second
term represents the volume force. Applying the generalised divergence theorem to this
relation, we find that

Fi =

∫
V

(∂jσij + fi)dV = 0, (2.171)

where we have used that in order for the solid to be in static equilibrium, its acceleration,
and therefore the total force acting on it, must be equal to zero. Since the volume V was
arbitrary, this relation must hold for any volume, which is true only if the integrand is
identically equal to zero, i.e.,

∂jσij = −fi. (2.172)

Given appropriate boundary conditions, this differential equation will allow us to solve for
the stress tensor for an object subjected to a force density fi.

Example 2.32 Consider a homogeneous rod of density ρ and square cross section of area
A that is hanging from the ceiling as shown in Fig. 2.6. The volume force density acting on
this rod due to gravity is given by fi = ρgδi3, where the x3 direction is defined to be in the
same direction as the gravitational field. The resulting differential equation for the stress
tensor is

∂jσij = −ρgδi3. (2.173)

With no forces acting perpendicular to the x3 direction, the resulting differential equations
for i = 1, 2 are solved by σ1j = σ2j = 0. Assuming no forces acting on the free surfaces of
the rod, we also find σ31 = σ32 = 0 as well as the only non-zero component

σ33 = ρg(`− x3). (2.174)

Note that this gives a force
~F = −~e3ρgA` = −~e3Mg, (2.175)
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where M is the mass of the rod, from the ceiling acting on the top of the rod. Not surpris-
ingly, this is the exact force needed to cancel the gravitational force of the rod.

Force equilibrium is not sufficient for an object to be in static equilibrium, we also need
to impose torque equilibrium in order not to induce rotations. Again looking at a volume
V , the torque ~τ relative to the origin is given by

τi = εijk

(∮
S

xjσk`dS` +

∫
V

xjfkdV

)
. (2.176)

Note that, due to the force equilibrium that we have already imposed, torque equilibrium
around the origin is equivalent to torque equilibrium about any other point. Just as for the
force equilibrium, we can apply the generalised divergence theorem to the surface integral,
resulting in

τi =

∫
V

εijk(∂`x
jσk` + xjfk)dV =

∫
V

εijk[σkj + xj(∂`σk` + fk)]dV

=

∫
V

εijkσkjdV, (2.177)

where we have applied the requirement of force equilibrium in the last step. Demanding
torque equilibrium requires that ~τ = 0 and since this has to hold for any volume V , the
integrand must be equal to zero. Multiplying by εi`m, we find that

εi`mεijkσjk = 2σ[`m] = 0, (2.178)

meaning that the anti-symmetric part of the stress tensor σij must vanish, i.e., the stress
tensor is symmetric.

2.6.1.2 The strain tensor

We have so far only described a situation where we have been concerned with the internal
forces inside a solid. If the solid is very stiff, the forces will not cause noticeable deformations
of the solid. However, for some applications, it is necessary to also know how the material
deforms based on the internal stresses. In order to handle this, we first need a good descrip-
tion of the deformations of the solid. We begin this endeavour by defining the displacement
field ~u(~x), which describes the displacement of a point in the solid that would be at position
~x if the solid was not strained. It follows that this point is located at

~x ′ = ~x+ ~u(~x). (2.179)

Although this field describes how each point of the solid has been displaced, a non-zero
displacement field does not necessarily mean that the solid is strained. Possibilities for such
situations include translations and rotations

x′i = Rijx
j + ai (2.180)

of the solid, where Rij are the components of a rotation matrix and ~a is a constant vector.
We thus need to relate the displacement field to the strain that is present in the solid.

In the following, we will assume that the solid is relatively stiff, meaning that the partial
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derivatives of the displacement field are much smaller than one |∂iuj | � 1. In other words,
the difference in the displacement between nearby points in the solid is much smaller than
the distance between the points. We define the linear strain between two nearby points as

ε =
ds′ − ds
ds

, (2.181)

where ds is the distance between the points in the unstrained solid and ds′ the distance
between the points after being displaced. Note that we have here used the symbol ε rather
than ε for the strain in order to avoid confusion with the permutation symbol when in-
troducing the strain tensor. For the two points ~x and ~x + ~n ds, where ~n is a unit vector
describing the direction of the original spatial separation between the points, we find that
the new displacement is given by

~x ′(~x+ ~n ds)− ~x ′(~x) ' [~n+ (~n · ∇)~u]ds. (2.182)

Squaring this relation we find that, to linear order in u,

ds′2 ' ds2[1 + ninj(∂jui + ∂iuj)] (2.183a)

and taking the square root of this expression and expanding in the small derivatives gives
us

ds′ ' ds
[
1 + ninj

1

2
(∂jui + ∂iuj)

]
. (2.183b)

It therefore follows that the linear strain is given by

ε = ninj
1

2
(∂jui + ∂iuj) = ninjεij , (2.184)

where we have defined the symmetric strain tensor

εij =
1

2
(∂jui + ∂iuj). (2.185)

The strain tensor can be used to describe the deformation of the solid in many different
manners, but we will leave most of this for dedicated texts on solid mechanics and only
provide the following example.

Example 2.33 The volumetric strain of a small element of a solid with unstrained volume
dV can be quantified as

δ =
dV ′ − dV

dV
, (2.186)

where dV ′ is the volume of the element when the solid is strained. Taking an original volume
spanned by the coordinate basis vectors d~xi = ~eidsi (no sum), we find that

d~x ′1 = (~e1 + ∂1~u)ds1, (2.187)

with the equivalent expressions for d~x ′2 and d~x ′3. The volume dV ′ is therefore given by

dV ′ = d~x ′1 · (d~x ′2 × d~x ′3) ' (1 + ∂iui)ds1ds2ds3 = (1 + εii)dV. (2.188)

Thus, the volumetric strain is given by the trace εii of the strain tensor.
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With the above example in mind, we note that it is always possible to rewrite the strain
tensor as

εij =
1

3
θδij +

(
εij −

1

3
θδij

)
︸ ︷︷ ︸

≡κij

, (2.189)

where θ is an arbitrary scalar field. With the choice of θ equal to the volumetric strain
εkk, the tensor κij becomes traceless and is known as the shear strain tensor (or deviatoric
strain tensor).

2.6.1.3 The stiffness and compliance tensors

For elastic materials, the internal stresses are linearly related to the strains in the material.
For our purposes, we will not consider more complicated situations with large strains and
inelastic materials and the most general way of linearly relating two rank two tensors is by
a rank four tensor. We define this rank four tensor in the relation between the stress and
strain tensors to be the stiffness tensor cijk`. The corresponding relation, Hooke’s law , is
given by

σij = cijk`εk` (2.190)

and the symmetry of the stress tensor implies that the stiffness tensor must be symmetric
in the first two indices cijk` = cjik` = c{ij}k`. In addition, the fact that the strain tensor
is symmetric also implies that any anti-symmetric part with respect to the last two indices
will be irrelevant for the relation and we might as well take cijk` = cij`k = cij{k`}. A general
rank four tensor would have 34 = 81 independent components. However, the symmetries of
the stiffness tensor brings this number down to 62 = 36.

Example 2.34 If a material is well described only by the deformations in one direction and
the deformation only depends on that direction, it can be regarded within a one-dimensional
setting with a single coordinate x. As a result, the stress and displacement only have one
component and can be written as σ and ε, respectively. Hooke’s law now takes the form

σ = cε, (2.191)

where c is the single component c1111 of the stiffness tensor.

By the assumption of linearity, the stiffness tensor itself is not dependent on the actual
strains or stresses in the material, only on the properties of the material itself. Depending on
the structure of the material, further simplifications may be performed to reduce the number
of independent components. The most constraining case is obtained if we assume that the
material is isotropic, meaning that the stiffness tensor must have the same components in
all frames. We already know that the rank two Kronecker delta tensor is isotropic and thus
any outer product of Kronecker deltas will also be an isotropic rank four tensor. The most
general linear combination Cijk` of such products is

Cijk` = c1δijδk` + c2δikδj` + c3δi`δjk, (2.192)

which has three independent parameters. However, only the first of these terms has the
symmetry required from the stiffness tensor and the last two terms display this symmetry
only if c2 = c3. It is possible to show that this is the only isotropic tensor of rank four
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with the required symmetries and we can therefore write the stiffness tensor of an isotropic
material on the form

cijk` = λδijδk` + µ(δikδj` + δi`δjk). (2.193)

The parameters λ and µ are material constants and we note that the stress is now related
to the strain according to

σij = λδijδk`εk` + µ(εij + εji) = λεkkδij + 2µεij . (2.194)

Decomposing the strain tensor into volumetric and shear strains, we find that

σij =

(
λ+

2µ

3

)
εkkδij + 2µκij ≡ Kεkkδij + 2Gκij . (2.195)

In this last expression we have introduced the bulk modulus K and the shear modulus G.
These are both material constants and can be found tabulated in standard reference texts.

The relation in Eq. (2.190) can also be inverted. We can do this by finding a tensor sijk`
such that

εij = sijk`σk`. (2.196)

This tensor is known as the compliance tensor , which tells us how easy it is to deform
the material, with larger components indicating larger deformation for the same stress. By
the same argumentation as for the stiffness tensor, the symmetries of the stress and strain
tensors imply the very same symmetries for the compliance tensor. The usual form of writing
the compliance tensor for an isotropic material is

sijk` =
1

E

[
1 + ν

2
(δikδj` + δi`δjk)− νδijδk`

]
(2.197a)

implying that

εij =
1

E
[(1 + ν)σij − νσkkδij ] . (2.197b)

The material constants involved here are Young’s modulus E and Poisson’s ratio ν. Being
the inverse relation of that given by the stiffness tensor, these constants are related to the
bulk and shear moduli and are also found in standard references. Relating E and ν to K
and G is left as Problem 2.41.

2.6.2 Electromagnetism
Electromagnetism is the theory describing the interactions of electric and magnetic fields
with matter based upon charges and currents. For the simplest ideas in the theory, it
is sufficient to have a description based on vector analysis using the electric field ~E and
magnetic field ~B. In free space, these fields satisfy Maxwell’s equations

∇ · ~E =
ρ

ε0
, (2.198a)

∇ · ~B = 0, (2.198b)

∇× ~E +
∂ ~B

∂t
= 0, (2.198c)

∇× ~B − 1

c2
∂ ~E

∂t
= µ0

~J, (2.198d)



Tensors � 111

where ρ is the charge density, ~J the current density, c the speed of light in vacuum, ε0 the
permittivity, and µ0 the permeability. It should be noted that, by definition, c2ε0µ0 = 1.

Once delving a bit deeper into the theory of electromagnetism, it will become ap-
parent that the use of tensors will help us significantly. In particular, when formulating
Maxwell’s equations in the framework of special relativity, it will become clear that the
electric and magnetic fields are different components of a rank two anti-symmetric tensor in
four-dimensional space-time rather than vector fields in space that depend on time. We leave
this discussion for dedicated texts and concentrate on other aspects of electromagnetism
that may be described using tensor analysis.

2.6.2.1 The magnetic field tensor

We have already encountered the magnetic field tensor Fij = εijkBk in the examples
throughout this chapter. The fact that it is an anti-symmetric tensor of rank two is closely
related to the relativistic description of electromagnetism we just mentioned. Using the
magnetic field tensor instead of the magnetic field vector ~B, Maxwell’s equations can be
recast using the relations

∇ · ~B =
1

2
εijk∂iFjk, (2.199a)

~ei · (∇× ~B) =
1

2
εijk∂jεk`mF`m =

1

2
(δi`δjm − δimδj`)∂jF`m

=
1

2
(∂jFij − ∂jFji) = ∂jFij . (2.199b)

The curl of the magnetic field vector is thus the divergence of the magnetic field tensor and
the divergence of the field vector is an anti-symmetric sum of the partial derivatives of the
field tensor. Using these expressions, we can rewrite the last two of Maxwell’s equations by
using the magnetic field tensor as

εijkεk`m∂`Em + εijk
∂Bk
∂t

= ∂iEj − ∂jEi +
∂Fij
∂t

= 0, (2.200a)

∂jFij −
1

c2
∂Ei
∂t

= Ji. (2.200b)

Hardly surprising, the first of these equations states that the time derivative of Fij is an anti-
symmetric derivative of the electric field. The third of Maxwell’s equations that involves
the magnetic field is that of ∇ · ~B, which states that the anti-symmetric sum of partial
derivatives of the magnetic field tensor in Eq. (2.199a) vanishes.

2.6.2.2 The Maxwell stress tensor

Within electromagnetism, the laws of Newton may seem to be violated unless we also at-
tribute both energy and momentum densities to the electromagnetic field. If the electromag-
netic field carries momentum, we may consider the change of momentum within a volume
V per time as a force acting on the electromagnetic field within the volume according to
Newton’s second law

~F =
d~p

dt
. (2.201)

By Newton’s third law, this force needs to be paired with an equal and opposite force.
There are two possible types of forces involved here. Adhering to the requirement that
physical laws should be local, the electromagnetic field may experience a force from matter
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x3 = 0

−q

~e3

2d

q

Figure 2.7 Two opposite charges q and −q separated by a distance 2d. We wish to compute the force
of the electromagnetic field in the upper half plane on that in the lower half plane by evaluating
the force on the surface x3 = 0 with a surface normal ~e3.

contained in the volume or by a flux of momentum in or out of the volume through the
volume’s boundary surface. The latter of these options is thus a force acting on the volume’s
surface, describing the force with which the electromagnetic field outside the volume acts
on the field inside the volume. Having read Section 2.6.1, this sounds strangely familiar and
it is natural to describe this force with a rank two tensor, the Maxwell stress tensor

σij = ε0EiEj +
1

µ0
BiBj −

1

2

(
ε0E

2 +
1

µ0
B2

)
δij , (2.202)

where E2 and B2 are the squares of the electric and magnetic field vectors, respectively. We
leave the derivation of the form of the Maxwell stress tensor for a more detailed treatise on
electromagnetism and for now only consider the following example.

Example 2.35 Consider a static situation with two charges q and −q separated by a
distance 2d, see Fig. 2.7. In this setting, we know that the force on each of the charges
should have the magnitude

F =
q2

4πε0(2d)2
(2.203)

and be directed in the ~e3 direction for the lower charge q and in the −~e3 direction for the
upper charge −q. However, taking the local perspective, these are not forces between the
charges themselves, but rather forces with which the fields act on the charges. By Newton’s
third law, we therefore expect the charges to act on the fields with a force of the same
magnitude, but opposite direction. In order for the field to remain static, the force on the
field in the x3 < 0 region from that in the x3 > 0 region must therefore precisely balance
the force from the charge q.

The electric field from the charges on the surface x3 = 0 are given by

~Eq =
q

4πε0r3
(ρ~eρ + d~ez), ~E−q =

−q
4πε0r3

(ρ~eρ − d~ez), (2.204a)
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where we have introduced polar coordinates and r2 = ρ2 + d2. It follows that the total
electric field is given by

~E = ~Eq + ~E−q =
qd~ez

2πε0r3
=

qd~e3

2πε0r3
. (2.204b)

Since there are no currents in the problem, the magnetic field is equal to zero and the surface
force on the field in the x3 < 0 region from a small surface element ~ezdx

1dx2 is given by

dFi = σi3dx
1dx2 = ε0

(
EiE3 −

1

2
E2δi3

)
dx1dx2. (2.205)

The field ~E3 is in the ~e3 direction and we therefore have E = E3 and Ei = δi3E. It follows
that

d~F =
q2d2

8π2ε0

1

(ρ2 + d2)3
~e3dx

1dx2. (2.206)

Integrating this over the entire surface (the easiest way of doing this is using polar coordi-
nates on the surface), we find that

~F =
q2

4πε0(2d)2
~ez, (2.207)

exactly the force needed to balance the force from the charge at x3 = −d on the field. While
this example was static and we could have been satisfied with applying Coulomb’s law for
an interaction between two charges, it demonstrates the ideas of the electromagnetic field
being subject to forces as well as the concept of locality.

2.6.2.3 The conductivity and resistivity tensors

You are very likely familiar with Ohm’s law V = IR, where V is the electric potential
difference across, I the current through, and R the resistance of a resistor. The resistance R
is a physical characteristic of the dimensions of the resistor and the material it is made from.
A more fundamental way of writing this relationship is to express the current density ~J as
a linear function of the electric field ~E. By now, we are familiar with the most general form
of a linear relationship between two vectors and know that it is given by a rank two tensor
σij as

Ji = σijEj . (2.208)

This tensor is the conductivity tensor of the material and the notation using σij may be
unfortunate seeing that we have already used it for the stress tensor of solid mechanics
as well as for the Maxwell stress tensor (at least in those cases they were both related
to forces). However, these are all very common notations and it should be clear from the
context which is intended.

Just as the stiffness tensor we encountered earlier, the conductivity tensor depends only
on the material and if the material is isotropic, then the conductivity must also be. The
only isotropic rank two tensor is the Kronecker delta and multiples of it and it follows that

σij = σδij (2.209a)
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Figure 2.8 Graphite consists of sheets of carbon atoms arranged in a hexagonal grid (left). As a
result, the conductivity is high within the sheets, but poor between them, leading to an anisotropic
conductivity tensor. The situation is similar to thin copper sheets stacked alternately with an
insulator (right). The direction ~n normal to the sheets is singled out as the direction with low
conductivity.

for such materials. Since there is only one single number σ that characterises the material,
it is known as the conductivity of the material. For isotropic materials we therefore have

~J = σ ~E, (2.209b)

i.e., the current density is directly proportional to the electric field.
Although many conductors are isotropic, at least at the relevant scales, there are ma-

terials with an atomic structure that implies high electric conductivity in some directions
and low in others. A typical example of such a material is graphite, which consists of sev-
eral layered sheets of carbon atoms, see Fig. 2.8. The conductivity in the directions of the
sheets is relatively high, while transmitting a current perpendicular to the sheets requires
a stronger electric field. The resulting relation between the electric field and the resulting
current can be written as

~J = σ0~n( ~E · ~n) + σ1~n× ( ~E × ~n), (2.210)

where ~n is a unit vector normal to the sheets, σ0 is the conductivity perpendicular to the
sheets, and σ1 the conductivity along the sheets. Writing this in tensor notation, we find
that

Ji = σ0ninjEj + σ1εijkεk`mnjn`Em = [σ0ninj + σ1(δij − ninj)]Ej (2.211a)

or in other words
σij = σ0ninj + σ1(δij − ninj). (2.211b)

A macroscopic analogue of this situation would be stacking sheets of copper alternately
with sheets of rubber. On a scale larger than the typical sheet thickness, such a stack would
conduct electricity very well along the copper sheets, but poorly in the stacking direction.

In analogy to the inversion of the relation between the stress and strain tensors, the
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relation between current density and electric field may also be inverted resulting in the
relation

Ei = ρijJj , (2.212)

where the resistivity tensor ρij satisfies ρijσjk = δik, i.e., it is the inverse of the conductivity
tensor.

2.6.3 Classical mechanics
The use of tensors in more advanced classical mechanics is abundant. In Lagrange’s and
Hamilton’s formulations of mechanics, tensors and curved spaces play a major role for
the most general form of the theory. Since we have not yet touched upon curved spaces,
our discussion in this section will be limited to some more basic examples, which should
be conceptually simpler. Classical mechanics will be treated in a more general setting in
Chapter 10.

2.6.3.1 The moment of inertia tensor

Our very first example of a tensor was taken from the realm of classical mechanics. The
moment of inertia tensor was introduced as a description of the linear relationship between
the angular velocity ~ω and the angular momentum ~L

Li = Iijωj (2.213)

relative to a fixed point of the body. Note that we have here assumed a Cartesian basis. As a
result, the index placement is irrelevant and we have moved them all down. In Example 2.26,
we showed that the moment of inertia of an object with respect to the origin is given by
the integral

Iij =

∫
V

ρ(δijxkxk − xixj)dV, (2.214)

where V is the volume of the object. In many situations, when considering rotational motion,
we are either interested in the momentum of inertia with respect to a point around which the
object rotates freely, or around its center of mass. In both cases, we will here only consider
the rotational motion. In the case of rotation around the center of mass, any translational
motion may be factored out and in the case of a fixed point, the only motion is rotational,
meaning that the velocity of a point ~x in the rotating object is given by ~v = ~ω × ~x. This
will be discussed in more detail in Section 10.1.2.

In many senses, the moment of inertia is to rotational motion what mass is to linear
motion. As an example of this, the kinetic energy in linear motion is given by the familiar
expression mv2/2. Using this to express the kinetic energy of each small part of the object,
we can find the object’s total kinetic rotational energy

Erot =
1

2

∫
V

ρ(~ω × ~x) · (~ω × ~x)dV =
1

2
~ω ·
∫
V

ρ[~x× (~ω × ~x)]dV

=
1

2
~ω · ~L =

1

2
ωiIijωj . (2.215)

In the same way that forces are related to the change in momentum, torques are related
to changes in the angular momentum. The torque ~τ required for an angular acceleration
~α = ~̇ω is therefore given by

τi = L̇i =
d

dt
(Iijωj) = İijωj + Iijαj . (2.216)
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Figure 2.9 For a disc in free rotation, the angular momentum ~L need not be parallel to the principal

symmetry direction ~n of the disc. This will lead to the symmetry axis ~n precessing around ~L with
an angular velocity Ω, resulting in a wobbling behaviour. We here also show the vectors ~n × ~L,
which is orthogonal to both ~n and ~L and its time derivative ~̇n× ~L.

The time derivative İij of the momentum of inertia tensor satisfies the relation

İijωj = εijkωjIk`ω`, (2.217)

the demonstration of which is left as Problem 2.45. As can be seen from this expression, the
angular acceleration ~α may be therefore non-zero even if the torque acting on the object is
zero.

Example 2.36 We have previously computed the momentum of inertia tensor for a disc
and found that it is given by

Iij = I0(δij + ninj), (2.218)

where I0 = MR2/4 and ~n is a unit vector normal to the disc, see Fig. 2.9. This vector will

rotate with the disc and fulfil the relation ~̇n = ~ω × ~n. Writing ~ω = ωn~n+ ωt~t, where ~t is a
vector orthogonal to ~n, i.e., in the plane of the disc, we find that

~L = I0(2ωn~n+ ωt~t). (2.219)

If the disc is freely rotating without an applied torque, then by definition ~̇L = 0 and we
find that

d(~n · ~L)

dt
= ~̇n · ~L = I0(~ω × ~n) · (2ωn~n+ ωt~t) = 0. (2.220)

Therefore, the projection of ~n onto the angular momentum ~L is constant, which means that
it is just rotating around ~L, since it is a unit vector. Accordingly, the vector ~n× ~L, which is
orthogonal to both ~n and ~L will also be a vector of constant magnitude rotating around ~L
with the same angular frequency Ω as ~n. We may find this angular frequency by comparing
the magnitudes of ~n× ~L and d(~n× ~L)/dt = ~̇n× ~L as shown in the figure. The result for Ω
is thus given by

Ω2 =
[I0(~ω × ~n)× (2ωn~n+ ωt~t)]

2

[I0~n× (2ωn~n+ ωt~t)]2
= 4ω2

n + ω2
t . (2.221)
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If the disc is rotating mainly around its symmetry axis ~n, i.e., if ωn � ωt, we obtain Ω ' 2ωn.
This means that the disc will wobble around the axis parallel to the angular momentum
with an angular frequency that is twice that with which the disc is spinning. The factor
of two arises from the ratio of the disc’s moment of inertia along the symmetry axis and
the moment of inertia in the other two directions. Objects for which the moment of inertia
displays symmetry around one rotational axis, but that have a different ratio between the
moment of inertia in the different directions, will lead to another relation between Ω and ωn.

As a final observation, we note that we can find the power dissipated into rotational
energy of the object by differentiating the rotational energy with respect to time

dErot

dt
= ωiIijαj + ωiİijωj = ωiτi. (2.222a)

Again, we note the resemblance to linear motion, where the power dissipated into an object
would be given by ~v · ~F . Due to the form of İijωj , see Eq. (2.217) the second term in the
middle expression vanishes and we also have

dErot

dt
= ωiIijαj = Ljαj . (2.222b)

The equations of rotational motion being similar to those for linear motion is no coincidence,
but a direct result of a more general formalism, where the degrees of freedom of a mechanical
system are described using an appropriate number of generalised coordinates.

2.6.3.2 The generalised inertia tensor

As we have seen for the moment of inertia tensor, the relations we found were in one-to-
one correspondence with similar expressions for linear motion, replacing masses with the
moment of inertia and velocities with the angular velocity. It should come as no surprise
that this similarity does not appear by accident, but rather results from the application of
a more general framework to the special cases of linear motion and rotation.

For a large class of mechanical systems, the configuration space is a general space of
N -dimensions, i.e., the spatial configuration of the system may be described by N coordi-
nates ya (see Section 10.2.1). One typical example of this is the double pendulum shown in
Fig. 2.10, the configuration of which may be fully described by the two angles ϕ1 and ϕ2.
The kinetic energy T in such a general system can be written on the form

T =
1

2
Mabẏ

aẏb, (2.223)

where ẏa = dya/dt and Mab is the generalised inertia tensor . Due to the symmetry of this
expression in ẏa and ẏb, we can take the generalised inertia tensor to be symmetric.

Example 2.37 For a particle of mass m moving in three-dimensional space, the configu-
ration space is a three-dimensional affine space, which we can describe using the Cartesian
coordinates xi or, equivalently, by the position vector ~x. Its kinetic energy is given by the
expression

T =
1

2
m~v 2 =

1

2
m~̇x 2 =

1

2
mδij ẋ

iẋj (2.224)
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Figure 2.10 A planar double pendulum with lengths `1 and `2 and masses m1 and m2. The con-
figuration of the double pendulum is completely determined by the two angles ϕ1 and ϕ2.

and so the inertia tensor is Mij = mδij . However, we could also describe the motion of the
particle using a curvilinear coordinate system ya, which would result in the expression

T =
1

2
mgabẏ

aẏb, (2.225)

i.e., the inertia tensor would be proportional to the metric gab with the mass m as the
proportionality constant.

Example 2.38 The configuration space of a freely rotating object may be described by
the three Euler angles φa, that parametrise an arbitrary rotation in three dimensions. The
components of the angular velocity ~ω in a Cartesian coordinate system will generally be a
linear combination of derivatives of the Euler angles

ωi = f ia(φ)φ̇a. (2.226)

As a result, the rotational kinetic energy may be written in the form

Erot =
1

2
ωiIijωj =

1

2
f iaIijf

j
b φ̇

aφ̇b. (2.227)

We therefore find that the generalised inertia tensor in this coordinate system is Mab =
Iijf

i
af

j
b .

Example 2.39 For the double pendulum in Fig. 2.10, the positions of the masses may be
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described in Cartesian coordinates as

~x1 = `1[− cos(ϕ1)~e1 + sin(ϕ1)~e2], (2.228a)

~x2 = ~x1 + `2[− cos(ϕ2)~e1 + sin(ϕ2)~e2]. (2.228b)

The kinetic energy in the system is given by

T =
1

2
(m1~̇x

2
1 +m2~̇x

2
2 ) =

1

2
[M`21ϕ̇

2
1 +m`22ϕ̇

2
2 + 2m`1`2 cos(ϕ1 − ϕ2)ϕ̇1ϕ̇2], (2.229)

where M = m1 +m2 and m = m2. Identifying with the expression

T =
1

2
Mabẏ

aẏb =
1

2
(M11ϕ̇

2
1 +M22ϕ̇

2
2 + 2M12ϕ̇1ϕ̇2), (2.230)

where we have explicitly used the symmetry M12 = M21, we find that

M11 = M`21, M22 = m`22, M12 = m`1`2 cos(ϕ1 − ϕ2). (2.231)

One thing to note is that the generalised inertia tensor possesses all of the properties
normally associated to a metric. In fact, it defines a metric on the configuration space,
which will often not be a flat space. We will see more of this when we discuss Lagrangian
mechanics in Chapter 10. As for the discussion on curved spaces, we postpone this until we
have discussed variational calculus in Chapter 8.

2.7 PROBLEMS
Problem 2.1. Derive the transformation properties for the components of a tensor of type
(n,m) as quoted in Eq. (2.18).

Problem 2.2. Explicitly write down the tensor basis eab = ~Ea ⊗ ~Eb, where ~Ea is the
tangent vector basis in polar coordinates, in terms of the Cartesian basis ~ei ⊗ ~ej .

Problem 2.3. Verify that the rank two zero tensor 0⊗ 0 satisfies the relation

T + 0⊗ 0 = T (2.232)

for any rank two tensor T and that all its components are zero irrespective of the coordinate
system used.

Problem 2.4. In an isotropic medium, the polarisation ~P of the medium is directly pro-
portional to the electric field ~E and can be written as

~P = ε0χ~E, (2.233)

where χ is the electric susceptibility of the medium. In a non-isotropic medium, this is no
longer true, but the polarisation and electric field are still vectors and their relation is linear
such that

P i = ε0χ
i
jE

j . (2.234)

Show that the electric susceptibility χij is a rank two tensor.
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Problem 2.5. Consider Ohm’s law, see Eq. (2.208), for an anisotropic medium where the
conductivity tensor, in Cartesian coordinates, is given by

σij = σ0δij + λninj , (2.235)

where λ is a scalar and ~n is a unit vector, which may be taken to be ~n = ~e3.

a) Writing the electric field as ~E = E0[cos(α)~n+ sin(α)~t], where α is the angle between
~E and ~n and ~t is a unit vector perpendicular to ~n, find the corresponding current
density ~J .

b) Find the angle between ~E and ~J as a function of the angle α. For which values of the

angle α are ~E and ~J parallel?

Problem 2.6. Assume that we had instead chosen to define tensors by the transformation
properties related to different coordinate systems, i.e., we define that

T
a′1...a

′
n

b′1...b
′
m

=

(
∂y′a

′
1

∂ya1

)
. . .

(
∂y′a

′
n

∂yan

)(
∂yb1

∂y′b
′
1

)
. . .

(
∂ybm

∂y′b
′
m

)
T a1...anb1...bm

. (2.236)

Verify explicitly that the following expressions transform in the correct way, and therefore
are tensors according to this definition

a) T ab = cSab,

b) T abc = Sabc + V abc,

c) T abcd = Sab Vcd.

Here, c is assumed to be a scalar while the S and V are assumed to be tensors (and thus
follow the appropriate transformation rules).

Problem 2.7. Verify that the definition of the contraction in Eq. (2.24) is independent of
the coordinates chosen, i.e., that

Cλµ(e′
a′1...am
b′1...b

′
n

) = ( ~E′aλ · ~E′c)( ~E′bµ · ~E
′c)
⊗
` 6=µ

~E′b`

⊗
k 6=λ

~E′ak (2.237)

gives the same result as Eq. (2.24) for the contraction of any tensor.

Problem 2.8. Consider an expression Tabv
awb that is invariant under general coordinate

transformations for any vectors ~v and ~w. Show that Tab are the components of a type (0, 2)
tensor.

Problem 2.9. Assuming that the tensor T ab is symmetric in the coordinates ya, show that
it must also be symmetric in the coordinates y′a

′
.

Problem 2.10. Verify the following statements:

a) The symmetric part of an anti-symmetric tensor and the anti-symmetric part of a
symmetric tensor vanish.

b) The (anti-)symmetric part of a (anti-)symmetric tensor is equal to the tensor itself.
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Problem 2.11. Consider the arbitrary tensors Tab and Sab. Show that

T{ab}S
[ab] = T[ab]S

{ab} = 0, (2.238)

i.e., that if we symmetrise one of the tensors and anti-symmetrise the other, the contraction
of the symmetrised indices with the anti-symmetrised ones gives zero. Use this result to
show that the expression Tabv

avb for an arbitrary vector ~v only depends on the symmetric
part of Tab.

Problem 2.12. Show that the only tensor Tabc that fulfils the symmetry relations

Tabc = −Tbac = Tacb (2.239)

is necessarily the type (0, 3) zero tensor.

Problem 2.13. The general type (3, 0) tensor has N3 independent components, where N
is the number of dimensions of the space. A general anti-symmetric tensor T abc satisfies the
relations T {ab}c = T a{bc} = 0 that restrict the number of independent components. Count
the number of independent such relations and conclude what the number of independent
components of T abc is. In the same fashion, find the number of independent components of
a symmetric tensor Sabc.

Problem 2.14. The inverse metric tensor is defined in Eq. (2.55). Starting from this
definition, verify that the components gab transform as the components of a type (2,0)
tensor.

Problem 2.15. The magnetic field ~B around a straight wire carrying a current I in the
positive z-direction at ρ = 0 has the contravariant vector components

Bφ =
µ0I

2πρ2
, Bρ = Bz = 0 (2.240)

in cylinder coordinates (note that ~Eφ is not a unit vector). By using the expression for the
metric tensor and its inverse in this coordinate system, find the covariant vector components
of ~B.

Problem 2.16. Verify that for a scalar field φ the partial derivatives ∂aφ with respect to the
coordinates naturally form the covariant components of a vector, i.e., their transformation
properties coincide with what you would expect from covariant vector components.

Problem 2.17. Derive the transformation rules for the Christoffel symbols Γcab under
changes of coordinate system.

Problem 2.18. Show that the contracted Christoffel symbols Γbab can be written in terms
of a partial derivative of the logarithm of the square root of the metric tensor

Γbab = ∂a ln(
√
g). (2.241)

Problem 2.19. Using the results from Problem 2.18, show that the divergence of a general
anti-symmetric type (2, 0) tensor T ab may be written as

∇aT ba =
1
√
g

∂

∂ya
(
T ba
√
g
)
, (2.242)

where g is the metric determinant.
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Problem 2.20. Starting from the definition of spherical coordinates and using the expres-
sions for the tangent vector basis ~Er, ~Eθ, and ~Eϕ, compute the components of the metric
tensor gab and the Christoffel symbols Γcab in spherical coordinates.

Problem 2.21. Use the expressions for the tangent vector basis in cylinder coordinates in
order to find the Christoffel symbols Γcab in these coordinates.

Problem 2.22. A curve in a three-dimensional space may be parametrised by giving the
three spherical coordinates as functions r(t), θ(t), and ϕ(t) of the curve parameter t. Using
the expressions for the metric tensor components found in Problem 2.20, write down an
integral in terms of these functions that describes the length of a general curve when the
curve parameter is given by 0 < t < 1. Use this expression to find the length of the curve

r(t) = R0, θ(t) = θ0, ϕ(t) = 2πt. (2.243)

Problem 2.23. In Problems 1.49 and 1.50, we introduced the hyperbolic coordinates u
and v

x1 = veu, x2 = ve−u (2.244a)

and parabolic coordinates t and s

x1 = ts, x2 =
1

2
(t2 − s2), (2.244b)

respectively, and computed the corresponding tangent vector and dual bases. Use your
results from these problems to write down the metric tensor gab and Christoffel symbols
Γcab in these coordinate systems.

Problem 2.24. In Example 1.26 we introduced a non-orthogonal coordinate system in a
two-dimensional space based on the coordinates y1 = x1−x2 and y2 = x2, where x1 and x2

are Cartesian coordinates. Compute the components of the metric tensor gab and its inverse
gab in this coordinate system. Use your result to write down the general expression for the
length of a curve given by the functions y1(t) and y2(t).

Problem 2.25. Derive the transformation rules for the expression ∂av
b, where vb are

the contravariant components of a vector field, and verify that it does not transform as
the components of a type (1, 1) tensor and then verify that ∇avb does transform as the
components of a type (1, 1) tensor.

Problem 2.26. Explicitly verify the following identities for the covariant derivative:

a) ∇avbT cd = vb∇aT cd + T cd∇avb

b) ∂av
bwb = vb∇awb + wb∇avb

c) ∇ava = gab∇avb

Problem 2.27. Use the expressions for the metric tensor in spherical coordinates found
in Problem 2.20 to explicitly write down the divergence ∇ · ~v in terms of the contravariant
vector components va and functions of the coordinates. Verify that your result is the same
as that presented in Eq. (1.211b). Hint: You will need to express the physical components
of ṽa in terms of the contravariant components va to make the comparison.
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Problem 2.28. Use the generalised expression for the Laplace operator ∇2 to write down
the action of the Laplace operator on a scalar field Φ

∇2Φ = gab∇a∇bΦ (2.245)

in a general coordinate system in terms of the Christoffel symbols Γcab and the inverse metric
tensor gab. Use the expressions for the Christoffel symbols and the metric tensor in cylinder
coordinates to verify that your expression coincides with Eq. (1.200d).

Problem 2.29. Compute the divergence of the tangent vector bases in cylinder and spher-
ical coordinates.

Problem 2.30. Apply your results from Problem 2.18 and the fact that ∇agbc = 0 to
verify that the action of the Laplace operator on a scalar field can be written as

∇2φ =
1
√
g
∂a
(√
g gab∂bφ

)
, (2.246)

where g is the metric determinant.

Problem 2.31. Verify that

a) the addition of two tensor densities of the same type and weight is a new tensor density
of the same type and weight as the original ones,

b) the multiplication of two tensor densities with weights w1 and w2 is a tensor density
of weight w1 + w2, and

c) the contraction of two free indices (one covariant and one contravariant) in a tensor
density results in a new tensor density with the same weight as the original one

by explicitly checking the transformation rules.

Problem 2.32. The Jacobian determinant for a coordinate transformation ya → y′a
′

is
given in Eq. (2.111). Assume that we perform a second coordinate transformation y′a

′ →
y′′a

′′
with Jacobian determinant J ′. There will also be a corresponding direct coordinate

transformation from ya to y′′a
′′

with Jacobian determinant J ′′. Verify that the Jacobian
determinants satisfy the relation

JJ ′ = J ′′. (2.247)

In particular, show that J ′ = 1/J when y′′a
′′

= ya. Use this result to check that the
transformation of a tensor density, defined in Eq. (2.110), is the same when doing the
transformations one after the other as when doing the transformation directly from ya to
y′′a

′′
.

Problem 2.33. Again consider the coordinate system introduced in Example 1.26 (see
also Problem 2.24) with the addition of a third dimension, parametrised by the additional
orthogonal coordinate y3 = 2x3. Compute the metric determinant g in this coordinate
system and use your result to write down an explicit expression for each of the components
of the cross product ~v × ~w in the ya coordinates using the relation ηabc =

√
g−1εabc.

Problem 2.34. Show that the divergence of the totally antisymmetric tensor ηa1...aN =
εa1...aN /

√
g vanishes identically in any number of dimensions N . Hint: Apply the results of

Problem 2.18.
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Problem 2.35. Begin from the expression for the curl of a vector field ∇×~v in a Cartesian
basis and use a change of coordinates to write down its general expression in an arbitrary
coordinate system with the help of the tensor ηabc and the metric gab. Use your result to write
down the expression for the covariant components of the quantity ~v×(∇× ~w)+ ~w×(∇×~v).

Problem 2.36. Using the result from Problem 2.35, compute the components of the curl
of the dual basis in cylinder and spherical coordinates. Verify that your final result coincides
with what you would obtain if you used Eq. (1.193).

Problem 2.37. Use the relation given in Eq. (2.129) to show that it also holds that

δa1...anb1...bn
= n!δa1[b1

. . . δanbn], (2.248)

i.e., the same relation holds for anti-symmetrisation of the covariant indices as for the
contravariant ones.

Problem 2.38. Start from the definition x′i
′

= Ri
′

i x
i + Ai

′
of an affine transformation

from a Cartesian coordinate system xi to a new coordinate system x′i
′

and the statement
that Cartesian coordinate transformations preserve the form gij = δij of the metric tensor.
Show that this requirement implies that

Ri
′

i R
i′

j = δij (2.249a)

and that
xi = Ri

′

i x
′i′ +Bi (2.249b)

for some Bi.

Problem 2.39. Consider a fluid with a varying density ρ(~x) and velocity field ~v(~x). Write
down integrals describing the following quantities:

a) The total kinetic energy in a volume V .

b) The total momentum of the fluid inside a volume V .

c) The total angular momentum relative to the point ~x = ~x0 of the fluid inside a volume
V .

Problem 2.40. Use your results from Problem 2.23 in order to write down an expression
for the volume element dV in hyperbolic and parabolic coordinates.

Problem 2.41. Starting from Eqs. (2.195) and (2.197b), express Young’s modulus E and
Poisson’s ratio ν in terms of of the bulk modulus K and the shear modulus G.

Problem 2.42. Use the anti-symmetry and the definition Fij = εijkBk of the magnetic
field tensor to:

a) Show that FijFjk is symmetric in the free indices i and k.

b) Compute FijFjk in terms of the magnetic field Bi.

c) Use the result of (b) to express the Maxwell stress tensor in the magnetic field tensor
Fij rather than Bk.

Problem 2.43. In Example 2.35, we computed a surface force on the fields in the static
situation where two charges q and −q were separated by a distance 2d. Repeat this compu-
tation for the situation when the charges are equal.
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~g

ϕ

m1

m2

r

Figure 2.11 The mechanical system in Problem 2.46. The configuration of the system is fully
described by the coordinates r and ϕ. The mass m1 moves freely in the horizontal plane and the
mass m2 is moving vertically and is affected by the gravitational field ~g.

Problem 2.44. Consider a static situation and a volume V in which there are no charges
or currents, i.e., Maxwell’s equations with ρ = 0 and ~J = 0 are fulfilled. Show that the total
force on the electromagnetic field inside the volume is equal to zero.

Problem 2.45. We just stated that the moment of inertia tensor satisfies the relation

İijωj = εijkωjIk`ω`. (2.250)

Show that this relation is true by starting from Eq. (2.146) and using the fact that ~v = ~ω×~x.

Problem 2.46. A mechanical system consists of a mass m1 that is free to move in a
horizontal plane connected to a mass m2 by a thread of fixed length that passes through
a small hole in the plane, under which the mass m2 hangs vertically. This system may be
given the general coordinates r and ϕ as shown in Fig. 2.11. The gravitational field ~g is
assumed to act vertically. Find the generalised inertia tensor for the system expressed in
the r and ϕ coordinates.

Problem 2.47. In a rotating coordinate system, the fictitious centrifugal force on a particle
of mass m with a displacement ~x from the rotational center is given by

~Fc = m~ω × (~ω × ~x), (2.251)

where ω is the angular velocity. Verify that this may be written in the form

F ic = T ijxj , (2.252)

where T is a tensor. Express the components of T in terms of the massm and the components
of the angular velocity ~ω. Discuss the requirements for the centrifugal force to vanish.

Problem 2.48. A particle moving in a gravitational potential φ(~x) is affected by a gravi-

tational force ~F = m~g, where ~g = −∇φ is the gravitational field. Consider the difference in
acceleration between a particle at ~x and one at ~x− d~x, where d~x is a small displacement

d~a = ~g(~x)− ~g(~x− d~x). (2.253)
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Working in Cartesian coordinates, show that d~a is related to d~x through a relation of the
form

dai = T ijdx
j , (2.254)

where T is a rank two tensor. Also find an expression for T in terms of the gravitational
potential φ and compute it in the special case of movement in the gravitational potential
outside a spherical mass distribution

φ(~x) = −GM
r
. (2.255)

Note: The differential acceleration experienced by the separated particles defines the tidal
force between the particles. The tensor T therefore describes the tidal effect.

Problem 2.49. The magnetic force on the small volume dV with a current density ~(~x) is
given by

d~F = ~× ~B dV, (2.256)

where ~B is the magnetic field, which satisfies the conditions

∇ · ~B = 0, ∇× ~B = µ0~. (2.257)

Show that the total magnetic force on a volume V can be written as

~F =

∮
S

~eiT
ijdSj , (2.258)

where S is the boundary of V and T is a rank two tensor. Also find an expression for the
components of T .

Problem 2.50. Consider a four-dimensional space where we have introduced an additional
orthogonal coordinate x0 = ct and introduce the completely anti-symmetric tensor Fµν

defined by
F i0 = Ei and F ji = cεijkB

k, (2.259)

where the indices µ and ν run from 0 to 3, the indices i, j, and k from 1 to 3, ~E is the
three-dimensional electric field, and ~B the three-dimensional magnetic field. Introducing
the four-dimensional vector Kµ with components

K0 =
ρ

ε0
and Ki =

1

cε0
J i, (2.260)

where ρ is the charge density and ~J the three-dimensional current density, verify that the
differential equation

∂µF
µν = Kν (2.261)

summarises half of Maxwell’s equations. Note: This construction will arise very naturally
when treating the electromagnetic field in relativity. The four dimensional space we have
introduced, which includes the time coordinate t, is the space-time of special relativity.
Using the index 0 instead of 4 for the time direction is purely conventional.



C H A P T E R 3

Partial Differential Equations
and Modelling

Physics is in its essence an experimental science, based on making quantitative predictions
for how different systems behave under a set of given conditions and checking experimentally
that these predictions are fulfilled. In order to make quantitative predictions, a mathematical
model of the system in question must be at hand and a central part of physics is therefore
the procedure of accurately describing a given physical system using mathematical tools. In
this chapter, we will discuss this procedure and develop tools that can be used for a large
variety of different situations. The aim is to familiarise ourselves with physical modelling as
well as to introduce some of the differential equations that will be studied in detail in later
chapters.

3.1 A QUICK NOTE ON NOTATION
Before delving deep into the business of modelling the world around us using differential
equations, it will be beneficial to introduce a handful of different ways of denoting partial
derivatives. Each of these notations have their advantages and disadvantages, as some equa-
tions will be clearer using one of them and others benefit from a more compact notation.

We have already encountered the notation

∂

∂xi
= ∂i (3.1)

and we will continue to use it extensively in this and the following chapters. In addition to
the spatial coordinates, our partial differential equations will also depend on time and we
introduce the similar notation

∂

∂t
= ∂t. (3.2)

Apart from this, it will sometimes be beneficial to write the partial derivatives of a function
u as u with an additional subscript, i.e.,

∂u

∂y
= uy or

∂u

∂xi
= ui, (3.3)

where y may be any parameter, i.e., xi or t. For tensor fields, with indices of their own, we
can still use this notation and it will also be found in many textbooks. In order not to mix
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p, T , ρ

V , M

p, T , ρ V + V ′, M +M ′

p, T , ρ

V ′, M ′

Figure 3.1 Considering a homogeneous system made up from several subsystems, intensive prop-
erties such as pressure, temperature, and density are the same for the system as a whole as well
as for the subsystems. Extensive properties such as mass and volume may be different between the
subsystems and their value for the whole system is the sum of the values for the subsystems.

the indices of the original tensor with those of the partial derivatives, they are separated
by a comma, i.e.,

Tjk,i = ∂iTjk. (3.4)

In curvilinear coordinates, where there is a difference between the partial derivatives and
covariant derivatives, the covariant derivative is instead indicated by switching the comma
for a semi-colon ∇aTbc = Tbc;a. We will generally not make extensive use of this notation
for tensor fields, but it is good to know that it exists. For second order derivatives, we adopt
the similar convention

∂2u

∂y2
= ∂2

yu = uyy,
∂2u

∂y∂z
= ∂y∂zu = uyz (3.5)

and the generalisation of this to higher order derivatives is straightforward.

3.2 INTENSIVE AND EXTENSIVE PROPERTIES
Considering a physical system, there are generally a number of different physical properties
that may be associated with it. These quantities can be subdivided into two different cate-
gories depending on how they change when the boundaries of the of the system under study
changes. A property that does not change when we redraw the boundaries of a system (as-
suming the system is homogeneous) is an intensive property . As such, an intensive property
does not depend on how large part of a system we consider. Typical intensive properties
include temperature, pressure, and density. If we consider a given material, these quantities
will all be the same regardless of the amount of material we have as long as the conditions
are kept the same for the additional material.

Contrary to intensive properties, extensive properties do change when we redraw the
system boundaries and are proportional to the system size, see Fig. 3.1. Expressed in a
different way, an extensive property is additive between system parts. Given a system that
can be subdivided into two or more subsystems, the extensive property in the full system
is the sum of the same extensive property for each of the subsystems. Some examples of
extensive properties are mass, volume, particle number, electrical charge, and momentum.
These are all properties that add up between different parts of a system.



Partial Differential Equations and Modelling � 129

Extensive property System size Intensive property
Mass [kg] Volume [m3] Density [kg/m3]
Charge [C] Volume [m3] Charge density [C/m3]
Charge [C] Area [m3] Surface charge density [C/m2]
Force [N] Area [m2] Pressure [N/m2]
Mass [kg] Amount [mol] Molar mass [kg/mol]
Heat capacity [J/K] Mass [kg] Specific heat capacity [J/kg K]
Momentum [Ns] Mass [kg] Velocity [m/s]

Table 3.1 Some examples of intensive properties related to extensive properties by a given measure
of system size. It is worth noting that volume is not the only possible measure of system size, but
other extensive properties, such as area or mass, may also be of interest depending on what is being
described. The SI units for each property are quoted in square brackets.

Given two different extensive properties, an intensive property may be defined as the
quotient between the two extensive ones. For instance, the density is the ratio between a
system’s total mass and its volume. In fact, when we need to define the size of a system, we
can often do so by giving the value of an extensive property such as the volume or mass.
With this in mind, there is a natural relation between extensive and intensive properties if
a given extensive property is used to denote system size.

If we use the volume of a system as a measure of its size, there will be an intensive
property associated to each extensive property. This intensive property is the concentration,
or density , of the extensive property, i.e., the extensive property divided by the system
volume. Several examples of intensive properties defined in this fashion can be found in
Table 3.1.

As a consequence of extensive properties adding up when combining systems, it is often
possible to obtain an extensive property by integrating the corresponding intensive property
over the system size. In such integrals, we may also change the measure of system size, e.g.,
from volume to mass, and under such a change, the resulting Jacobian of the variable change
will be an intensive property.

Example 3.1 Taking the air contained in a room as an example, it does not matter whether
or not we consider 1 cm3 or 1 dm3 of the air, the intensive properties temperature, pressure,
and density of this air will be the same. However, the mass of air contained in 1 cm3 is
not the same as the mass contained in 1 dm3. If we wish to compute the heat capacity at
constant volume CV of a given amount of air, we can do so by integrating the specific heat
capacity at constant volume cV over the masses dM of small subsystems

CV =

∫
cV dM. (3.6a)

However, it may be easier to describe the system size in terms of volume, in which case a
change of variables leads to

CV =

∫
cV
dM

dV
dV =

∫
cV ρ dV, (3.6b)

which is an integration of the intensive property cV ρ over the volume.
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The world of physics is full of conservation laws for a number of different extensive
properties, stating that if a system does not interact with its surroundings in any way,
the extensive property will not change. This also means that if we divide this system in
two, then any decrease of the extensive property in one part must be accompanied by an
equivalent increase of the extensive property in the other part.

Example 3.2 Consider the total momentum of ~p of a system on which there are no
external forces. According to Newton’s second law ~F = d~p/dt, the momentum in the system
is conserved. If we subdivide the system into two parts, one with momentum ~p1 and the
other with momentum ~p2, then ~p1 + ~p2 = ~p is conserved. This results in

d~p1

dt
+
d~p2

dt
= 0 =⇒ ~F1 = −~F2, (3.7)

where ~Fi = d~pi/dt is the force acting on each subsystem. Thus, if there is a net force
~F1 acting on the first subsystem, then there is also a net force −~F1 acting on the second
subsystem. This should sound strangely familiar as it is nothing else than Newton’s third
law of action-reaction forces.

In the following, we will not only consider situations where the total amount is conserved,
but also look at processes where there is a net production or loss of a given extensive
property, for example if there is an external force acting on our system.

3.3 THE CONTINUITY EQUATION
A central tool in physics modelling is the continuity equation, which is a relation among
different intensive properties based on an extensive property that may flow from one system
to another. For the purpose of the continuity equation, it is most convenient to work with
the volume and area of a system as descriptions of the system size. Let us therefore assume
that we are looking at a volume V , which may be a part of a larger system and has a
boundary surface S. If we are interested in an extensive property Q in this volume, we can
relate it to the concentration q = dQ/dV by integration

Q =

∫
dQ =

∫
V

dQ

dV
dV =

∫
V

q(~x, t) dV. (3.8)

After reading the previous chapters, volume integrals of this type should be familiar as it is
the volume integral of a scalar field q(~x, t), which may depend both on the position ~x and
the time t. This gives us some hope of being able to apply the machinery already discussed
as we work our way forward.

We now wish to describe, in mathematical terms, how Q changes with time. Taking the
time derivative, we find that

dQ

dt
=

∫
V

∂q

∂t
dV (3.9)

as long as the system boundaries are kept fixed. On its own, this equation does not tell us
very much and in order to be useful, we must relate it to other physical quantities. We do
this by considering what type of processes could lead to this change. Assuming that Q is
continuously transported within a system there are two possibilities, the first of which is a
change of Q inside the volume V by production. The source density κ(~x, t) is an intensive
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Figure 3.2 The flux out of a volume V through its boundary S depends on the magnitude and
direction of the current ~ in relation to the surface normal ~n. At (a) the current is directed in the
normal direction, providing an outflux proportional to the magnitude of ~, while at (b) the current
is parallel to the surface and therefore does not result in a net flux out of the volume. At (c)
the current has a component both parallel and perpendicular to the surface, but since the scalar
product with ~n is positive, it results in a net outflux. At (d) the scalar product with the normal is
negative, resulting in a net influx. In the right part of the figure, we show the decomposition of ~
into components parallel ~‖ and perpendicular ~⊥ to the surface, i.e., ~⊥ is parallel to the surface
normal. Only the component ~⊥ is relevant for the flux through the surface.

property related to Q that tells us how much of Q that is produced per volume and time.
The corresponding extensive property

K =

∫
V

κ(~x, t) dV (3.10)

therefore tells us the total production of Q within the volume V per unit time. Naturally,
this production will add to Q with time. It should also be noted that destruction of Q
may also occur inside the volume. In this case, κ will be negative and correspond to a sink
density .

The second possibility of changing Q is if there is an in- or outflux through the boundary
surface S. In order to model this flux we introduce the current density ~(~x, t), which describes
the flow of Q with time. In order to change Q inside the volume V , the flow needs to have
a component parallel to the surface normal ~n, see Fig. 3.2. With the surface normal chosen
to point out of the volume, the outflux Φ of Q is given by

Φ =

∮
S

~ · d~S. (3.11)

Just as for the source term, the result of this integral may be negative, which should just
be interpreted as a net influx.

Collecting the pieces, the change in Q with time is given by the net production in V
minus the outflux through the surface S and we obtain

dQ

dt
= K − Φ =

∫
V

∂q

∂t
dV =

∫
V

κ dV −
∮
S

~ · d~S. (3.12)

This relation involves two volume integrals and one surface integral. Would it not be fan-
tastic if we could somehow rewrite the surface integral as a volume integral too? As it so
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happens, we do know how to do this as the surface integral is taken over a closed surface
and the divergence theorem applies, leading to∮

S

~ · d~S =

∫
V

∇ · ~ dV, (3.13)

which in turn results in ∫
V

(
∂q

∂t
+∇ · ~− κ

)
dV = 0. (3.14)

Since we have made no particular choice for the volume V , this equation must hold for all
sub-volumes of the system and the only way of satisfying this is if the integrand is identically
equal to zero. This gives us the continuity equation

∂q

∂t
+∇ · ~ = κ (3.15)

that relates the change in concentration with time to the source density and the divergence
of the current density.

The continuity equation is very general and applies to a large variety of different situ-
ations and quantities. However, in order to apply it successfully and actually compute the
change in the concentration, we need to provide a model for the current density ~ and the
source density κ.

Example 3.3 We can apply the continuity equation to electrical charge inside a conducting
material. Since electrical charge is a conserved quantity, there can be no source or sink
and we have a situation with κ = 0. At the same time, Ohm’s law for an isotropic and
homogeneous conductor tells us that ~ = σ ~E, where σ is the conductivity and ~E the electric
field. Inserting this into the continuity equation, we find that

∂ρ

∂t
= −∇ · ~ = −σ∇ · ~E. (3.16a)

Applying Gauss’s law, this relation turns into

∂ρ

∂t
= − σ

ε0
ρ. (3.16b)

The only stationary solution to this, assuming non-zero conductivity σ is ρ = 0. If the
charge density ρ is not zero, it will decrease exponentially with decay constant σ/ε0.

Example 3.4 Let us assume that we take a handful of sand and throw it into the air
such that it disperses without interactions between the grains, which is a good first ap-
proximation. Let us also assume that grains that are close have similar velocities so that
the velocity of a grain at point ~x can be well approximated by a velocity field ~v(~x, t). The
current density ~ related to the grain concentration will then be equal to ~ = n~v, where
n is the number concentration of grains. Since no new grains are produced, the continuity
equation becomes

∂n

∂t
+∇ · (n~v) = 0. (3.17)

This type of equation is relatively common and describes a convective flow without sources.
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~g

Figure 3.3 The flow of water out of a faucet is widest at the faucet and becomes narrower as it falls
in a gravitational field ~g. This is a result of the water speeding up under the influence of gravity.

This last example is a special case of a convection current . In convection, the extensive
quantity is assumed to be transported with some velocity ~v, which depends on position and
possibly on time. Convection currents may arise in several different ways as the origin of
the velocity field may differ. Typical examples are when particles of a given substance are
carried along with the flow of a fluid or when their motion is predetermined based on some
initial conditions. The common property of convection currents is that they in all cases take
the form

~ = ρ~v, (3.18)

where ρ is the concentration of the extensive quantity. The insertion into the continuity
equation yields the convection equation

∂ρ

∂t
+∇ · ρ~v =

∂ρ

∂t
+ ~v · ∇ρ+ ρ∇ · ~v = κ, (3.19)

where κ is again the source term. We can also see that if the velocity field can be argued to
be divergence free, then the convection equation may be further simplified as the divergence
of the current is then equal to the directional derivative of ρ with respect to the velocity ~v.

Example 3.5 It is not necessary to consider the volume of the system to be three-
dimensional, but we may consider one-dimensional or two-dimensional systems as well,
in which case the concentrations become linear or area concentrations. As an example of
this, let us consider the steady, non-turbulent flow of water out of a faucet, see Fig. 3.3. In
the steady state, the water stream is narrower at the bottom, which most people will be
familiar with as the situation can be readily observed in any kitchen with a sink. Taking
the linear density in the vertical direction, we find that the flow of water in this direction
can be described as

j = ρ`v, (3.20)

where ρ` is the linear density and v the velocity of the water. Note that we have dropped
the vector arrows here due to the problem being one-dimensional. The velocity, given by
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the initial velocity v0 and the acceleration due to gravity g, will be given by

v =
√
v2

0 + 2gx. (3.21)

Assuming a stationary state, i.e., a state where the linear density does not change with
time, we find that

dj

dx
=
dρ`
dx

v + ρ`
g

v
= 0 =⇒ dρ`

dx
= −ρ`

g

v2
0 + 2gx

< 0. (3.22)

It follows that the linear density will decrease as the water falls and since water is well
approximated as having fixed volume density, this means that the cross sectional area of
the water stream must decrease. This may be argued in a simpler manner. However, the
main point of this example is the realisation that the volume considered need not be three
dimensional and how the current can be modelled in terms of the velocity.

3.4 THE DIFFUSION AND HEAT EQUATIONS
Armed with the continuity equation, we are ready to derive one of the more common partial
differential equations in classical physics, namely the diffusion equation

∂tu−D∇2u = κ, (3.23)

where u is an intensive quantity, often a concentration, D is a constant, and κ a source
term. This form of this equation is also known as the heat equation, just because it appears
also in heat conduction (sometimes referred to as heat diffusion) problems. The diffusion
equation and methods for solving it will be a central theme in large parts of the remainder
of this book. The methods we will apply will be of interest for solving not only diffusion
and heat conduction problems, but will also be applicable in more modern contexts, such
as quantum mechanics, due to the similarity to the Schrödinger equation. The mathematics
behind diffusion and heat conduction are equivalent, but let us go through each of the
phenomena in turn.

3.4.1 Diffusion and Fick’s laws
Assume that we wish to describe the diffusion of some extensive property U with a cor-
responding concentration u. By the argumentation in the previous section, the continuity
equation will apply to this setting and what we need to do in order to model the situation
is to model the current density ~ in a reasonable fashion. For diffusion, we are not inter-
ested in a current which is due to a bulk movement of U and so the current density will
not be proportional to the concentration u itself. Instead, we want to describe a situation
where U moves from regions of higher concentrations to regions with lower concentration
and the direction of the concentration change is naturally given by the gradient ∇u of the
concentration. We thus have a situation where we wish to relate the vector field ~ to the
vector field ∇u and for our current purposes, we assume that the current is linearly related
to ∇u, indicating that the current will be larger if the concentration is changing faster. The
most general linear relationship between two vectors is given by a rank two tensor and we
therefore write down

ji = −Dij∂ju, (3.24)
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where Dij is the diffusivity tensor , which describes how easy it is for the property to move
in the volume. The negative sign in this relation is introduced in order for the diffusivity
tensor to be positive definite when U is flowing from regions with high concentration to
regions with low concentration, meaning that the property will tend to spread out through
the material. In the opposite scenario, when U flows from low to high concentration, the
resulting differential equation would become unstable and U tend to accumulate in a small
region. The form of Eq. (3.24) may be derived from random movements of the property
U , which will result in more movement out of high concentration regions than out of low
concentration regions. However, this is an argument that we will not go through here and
instead we will just state the relation as is.

Inserting the current density into the continuity equation, we obtain

∂tu+ ∂iji = ∂tu− ∂i(Dij∂ju) = ∂tu−Dij∂i∂ju− (∂iDij)(∂ju) = κ, (3.25)

which is the most general form of a partial differential equation describing how the concen-
tration u of a diffusing substance develops in time. The diffusivity tensor is a tensor field
that may depend on the spatial position, which is the reason for the appearance of the term
involving its divergence ∂iDij . However, if the material is homogeneous, the tensor field Dij

is constant and its divergence is equal to zero. Another simplification occurs if the diffusion
is locally isotropic. In such scenarios, the diffusivity tensor is proportional to the Kronecker
delta in each point and we may write

Dij = Dδij , (3.26)

where D is a scalar field. The current density for this case is given by

~ = −D∇u, (3.27a)

which is known as Fick’s first law of diffusion. The corresponding partial differential equa-
tion is then given by

∂tu−D∇2u− (∇D) · (∇u) = κ. (3.27b)

Finally, if the diffusion is both homogeneous and isotropic, then the scalar field D is constant
and we obtain diffusion equation

∂tu−D∇2u = κ. (3.28)

Even in this case, there remains a large variety of different possibilities for modelling the
source term κ, which will lead to different situations with different possible approaches for
solutions. The case when there is no source term present is sometimes referred to as Fick’s
second law of diffusion.

Example 3.6 We might want to predict the concentration of a radioactive material within
a homogeneous and isotropic substance without convection currents. Assuming that the
diffusivity of the radioactive material in the substance is D, the concentration will follow
the diffusion equation, but we must ask ourselves what the source term κ will be. The
number of radioactive nuclei decaying within a volume V in a short time dt is given by
λNdt, where N is the total number of radioactive nuclei in the volume and λ the decay
constant, which satisfies λ = 1/τ , where τ is the half-life of the decaying nuclei. It follows
that source density is given by

κ = −λn, (3.29)
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where n is the number density of radioactive nuclei, which therefore satisfies

∂tn−D∇2n = −λn. (3.30)

Note that this source term is going to be negative and therefore describes a sink. This is
hardly surprising as radioactive decay decreases the total amount of radioactive nuclei and
we have not assumed any production.

3.4.2 Heat conduction and Fourier’s law
In most aspects, the mathematics behind heat conduction is equivalent to that used to derive
the diffusion equation. The quantity we are interested in describing is the temperature
T in a given volume. In order to accomplish this, we choose to study the heat U . The
intensive property related to the heat is the heat concentration u, which in turn relates to
the temperature through the specific heat capacity cV and mass density ρ as

T =
u

cV ρ
. (3.31)

It should be noted that both cV and ρ will generally be material dependent, implying that
cV ρ is a scalar field that may vary in space.

Similar to how a diffusion current is linearly related to the gradient of the concentration,
we expect that heat conduction will transfer heat from warmer regions to colder regions,
the direction of which is described by the gradient ∇T of the temperature. Assuming the
most general linear relationship between this gradient and the heat current, we find that

ji = −λij∂jT, (3.32)

where λij is the heat conductivity tensor. Just as the diffusivity, the heat conductivity is
material dependent and may or may not be isotropic or homogeneous, implying different
simplifications. Inserted into the continuity equation for heat, the most general form of the
differential equation describing heat conduction is given by

∂u

∂t
− ∂iλij∂jT =

∂u

∂t
− λij∂i∂jT − (∂iλij)(∂jT ) = κ. (3.33)

As for the case of diffusion, the most simplifying assumption is that the material is isotropic
and homogeneous, leading to λij = λδij , where λ is a constant. Assuming that the back-
ground material properties cV and ρ do not change with time, we then find that

cV ρ ∂tT − λ∇2T = κ, (3.34)

which describes how the temperature in the material changes with time. The only difference
compared to the diffusion case is the appearance of the factor cV ρ, which may be absorbed
into λ if constant.

Example 3.7 We can consider the heat conduction in a material of constant density ρ,
heat capacity cV , and heat conductivity λ. If there is a heat source in the material at the
point ~x0, releasing heat at a rate K, the heat production inside a volume V is given by∫

V

κ(~x)dV =

{
K, (~x0 ∈ V )

0, (~x0 /∈ V )
. (3.35a)
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or, dividing through by K, ∫
V

κ(~x)

K
dV =

{
1, (~x0 ∈ V )

0, (~x0 /∈ V )
. (3.35b)

Comparing to Eq. (1.221), this is the defining property of the three-dimensional delta func-
tion δ(3)(~x − ~x0). It follows that the source term κ for a point source producing heat at a
rate K at the point ~x0 is given by

κ(~x) = Kδ(3)(~x− ~x0). (3.36)

In general, the three-dimensional delta function may be used to describe different point
sources or the concentration of any extensive quantity located at a single point in space.
Naturally, this is usually a simplification, but it will result in reasonably good results as
long as the size of the source is indistinguishable from a point given the precision of mea-
surements.

3.4.3 Additional convection currents
For both diffusion and heat conduction, it may happen that the transportation is not neces-
sarily only due to Fick’s or Fourier’s laws. Instead, there may also be additional convective
currents that are also going to lead to transportation. The perhaps most straightforward
example of this is when heat is conducted in a non-stationary medium, resulting in the heat
being carried along with the medium in addition to being dispersed through conduction.
In a situation such as this, there will be current contributions from both conduction and
convection. The total heat current ~ will then be a sum of the different contributions

~ = ~conduction + ~convection = −λ∇T + u~v, (3.37)

where we have assumed the medium to be homogeneous and isotropic. The same argumen-
tation can be applied to diffusion with additional convection.

In order to have a solvable model, the velocity field ~v must be modelled just as for pure
convection and just as the source term needs to be modelled for diffusion.

Example 3.8 Consider the spread of small particles of density ρ in a stationary fluid of
density ρ0 and assume that the diffusivity of the particles in the fluid is D, see Fig. 3.4.
Since the particles and fluid generally have different densities, there will be a net force due
to gravity and buoyancy. Particles will therefore be accelerated if they are not also subject
to a resistance to motion from the fluid. We assume that force equilibrium between these
forces occurs fast and at the terminal velocity ~v0. The corresponding convective current,
i.e., the current without diffusion, is therefore

~convection = u~v0, (3.38)

where u is the concentration of particles. Inserting this and the diffusion current into the
continuity equation, we end up with

∂tu−D∇2u+ ~v0 · ∇u = 0, (3.39)
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Figure 3.4 Apart from a diffusion current, a convection current may arise for particles of density

ρ immersed in a fluid with a different density ρ0. The gravitational force ~Fg is not balanced by the
buoyant force ~Fb alone, but if a particle is moving at terminal velocity ~v0, there is also a drag force
~Fd resulting in force balance. This results in a convection current with velocity ~v0.

since ~v0 is constant and therefore divergence free. In particular, we can here note that in
the limit of negligible diffusion, i.e., very small diffusivity, the movement of the particles
is dominated by the terminal velocity. On the other hand, if the terminal velocity is very
small, which may occur, e.g., if the densities ρ and ρ0 are very similar, then we instead
recover the diffusion equation.

3.5 THE WAVE EQUATION
Another partial differential equation of significance in many physics applications is the wave
equation

∂2
t u− c2∇2u = f, (3.40)

where c is the wave velocity and f is a source term. The big difference compared to the
diffusion equation is the appearance of a second derivative with respect to time which, as
we shall see later on, changes the behaviour of the solutions.

Example 3.9 In one spatial dimension, the source free (f = 0) wave equation takes the
form

∂2
t u− c2∂2

xu = (∂t + c∂x)(∂t − c∂x)u = 0. (3.41)

This will be fulfilled if ∂tu = ±c∂xu, which is solved by

u(x, t) = g(x± ct). (3.42)

The shapes of these solutions remain unchanged with time but travel with a velocity c in
the negative x-direction for the positive sign and the positive x-direction for the negative
sign. This can be deduced from the fact that at time t1, the function g(x1± ct1) will be the
same as g(x0) when x1 ± ct1 = x0. Thus, in time t1, the solution has been translated by an
amount ∓ct1 as u(x1, t1) = u(x1 ± ct1, 0), see Fig. 3.5.
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u(x,0)

u(x, t1)

ct1

x

Figure 3.5 A travelling wave of the form u(x, t) = g(x − ct) at times t = 0 and t = t1. The wave
shape is the same at any time, but is translated in the direction of propagation.

S

u(x0, t)

S

θ(x0 + dx, t)

' ux(x0)dx

θ(x0, t)

x0 + dxx0
dx

u(x0 + dx, t)

Figure 3.6 The geometry of a small part of a string with tension S along with the forces acting on it
as a result of the tension. We are interested in the transversal movement of the string and therefore
consider the projection of the forces on the transversal direction only. The tension is assumed to
be approximately constant throughout the string.

The wave equation appears in several physical situations, sometimes as an approximative
description for small deviations from an equilibrium and sometimes as an exact description
given the underlying assumptions. Let us discuss a small subset of these situations in order
to use them in examples later on and to see how the wave equation may arise as a result of
physical modelling.

3.5.1 Transversal waves on a string
When considering the wave equation, the typical example is often transversal waves on a
string with relatively high tension. The modelling that will lead to the wave equation for this
string can be based on considering the transversal forces acting on an infinitesimal part of
the string with length dx such that the x coordinate is between x0 and x0 +dx, see Fig. 3.6.
The free-body diagram of this part of the string contains a number of forces. We will here
only consider the transversal movement and assume that the strain in the string due to the
transversal movement is not large enough to significantly change the string tension, which
is assumed to be S. The transversal component of the force acting on the string is given by

F = S(x0 + dx) sin(θ(x0 + dx, t))− S(x0) sin(θ(x0, t)) + f(x0, t)dx, (3.43)
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where f(x0, t) is the external force density per unit length acting on the string at x0 and
θ(x, t) is the angle the string makes with the longitudinal direction at position x, both at
time t. The first two terms on the right-hand side are of the form g(x0 + dx)− g(x0), where
g = S sin(θ), which is equal to g′(x0)dx for small dx. We find that

F = [∂x(S sin(θ)) + f ]dx, (3.44)

which by Newton’s second law must be equal to the mass of the string element multiplied
by the transversal acceleration. The mass of the element is given by m = ρ`dx, where ρ`
is the linear mass density, and the acceleration is just the second time derivative of the
transversal deviation u. We therefore end up with

F = ma = ρ`(∂
2
t u)dx = [∂x(S sin(θ)) + f ]dx. (3.45)

The sine appearing in this expression may be written as

sin(θ) =
∂xu√

1 + (∂xu)2
' ∂xu, (3.46)

where the last approximation holds under the assumption that |∂xu| � 1, which will be
true for small deviations from the equilibrium position. With the tension S being assumed
constant for our purposes, this leads to

∂2
t u−

S

ρ`
∂2
xu =

f

ρ`
, (3.47)

where we have cancelled the factor dx on both sides of the force equation. This is the wave
equation with a wave speed of c2 = S/ρ`. Thus, the wave speed for propagation of transversal
waves on a string increases with increasing string tension and decreases with string density.
As we shall see when we solve the wave equation later on, the characteristic frequencies of
a guitar or piano string increases with increasing wave speed. That the frequency increases
with increasing tension and decreases with string density should be a familiar fact to anyone
who is familiar with a string instrument.

Example 3.10 A special case of the sourced wave equation occurs when the string is also
subjected to a resistance to movement, such as a damping force due to transferring part of
the oscillation energy to a surrounding medium, e.g., in the form of sound waves. Assuming
that the resistance from the surrounding medium gives rise to a force density f = −k∂tu,
where k is a non-negative constant, see Fig. 3.7, the wave equation now becomes

∂2
t u+ k∂tu− c2∂2

xu = 0. (3.48)

This is the damped wave equation, which is able to describe oscillations with inherent energy
losses. Of course, other external forces may also act on the string, making the right-hand
side non-zero.

3.5.1.1 Wave equation as an application of continuity

The above derivation may also be constructed as a consequence of the continuity equation for
the momentum in the transverse direction. The momentum current j(x0, t) is the momentum
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f = −kut(x, t)

v = ut(x, t)

Figure 3.7 For a damped string, we assume that there is a force density f proportional to the local
velocity v = ut of the string. Since the force and the velocity have opposite directions, this will
result in a net loss of energy in the string.

transfer per time unit, i.e., force, from the string at x < x0 on the string at x > x0. Using
the same logic as before, this can be approximated by j = −S∂xu. The source term is
given by the force density κ = f , since this is the momentum density added to the string
per length and time unit. Finally, the momentum density itself is given by ρ`v, where v
is the transversal velocity, which may be written as the time derivative of the transversal
deviation u. Inserted in the continuity equation, we then obtain the relation

∂t(ρ`∂tu)− ∂x(S∂xu) = ρ`∂
2
t u− S∂2

xu = f. (3.49)

This is the same as Eq. (3.47) after division by ρ`. Note that, since we are only dealing with
a dependence on one spatial dimension, the x-direction, the gradient and divergence have
both reduced to the partial derivative ∂x.

3.5.2 Transversal waves on a membrane
The very same argumentation as that used for the string may be used for a two-dimensional
membrane. While our parameters in the case of the string were the string tension S and the
linear density ρ`, the parameters for the membrane are the membrane surface tension σ and
the surface density ρA. The membrane tension σ is generally a tensor, but for simplicity we
consider the case where the tensor is isotropic and homogeneous. The force across a small
section d~̀ along the surface will also be along the surface but orthogonal to the section, see
Fig. 3.8. In order to construct the direction of this force vector, we take the cross product
between d~̀ with the surface normal ~n, which will always be a vector in the surface plane,
since it is orthogonal to ~n, and it will have length |d~̀| and be orthogonal also to d~̀, since

d~̀ is also orthogonal to ~n. It follows that the force across the section is given by

d~F = d~̀× ~nσ (3.50)

and in order to find the force we need to find a description for ~n.
Let us assume a coordinate system such that the surface extends in the x1- and x2-

directions when stationary and that the membrane movement occurs in the x3-direction.
As for the case with the string, we will assume that the change of the strain in the membrane
is negligible so that the tension σ is constant. If the displacement of the membrane in the
x3-direction is u(x1, x2, t) ≡ u(~x2, t), where we have introduced ~x2 as the position vector on
the two-dimensional surface, then the three dimensional surface describing the membrane
shape at time t is given by

x3 = u(~x2, t) ⇐⇒ f(~x3, t) ≡ x3 − u = 0, (3.51)
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Figure 3.8 We consider the force equation in the transversal direction for a small section of a two-

dimensional membrane between the points A, B, C, and D. The force d~F on the section d~̀ will be
orthogonal to both d~̀ as well as the surface normal ~n and the surface tension.

where ~x3 is the three-dimensional position vector ~x3 = ~x2 + x3~e3. In other terms, the
membrane at time t is a level surface of f(~x3, t). As discussed in Section 1.4.3, the gradient
of a function will always be normal to its level surfaces and we must have

~n = α∇f = α(−~e1∂1u− ~e2∂2u+ ~e3), (3.52)

where α is a normalisation constant. Requiring that ~n2 = 1, we find

α =
1√

1 + (∂1u)2 + (∂2u)2
' 1, (3.53)

where the approximation holds for oscillations such that |∂iu| � 1. Making this approxima-
tion is the membrane equivalent of assuming that the sine of the angle θ which the string
makes with the longitudinal direction was given by ∂xu in Eq. (3.46).

With these considerations in mind, we are ready to discuss the force on a small part of
the membrane, given by x1

0 < x1 < x1
0 + dx1 and x2

0 < x2 < x2
0 + dx2. Let us start with the

forces acting on the sections with fixed x2. The section d~̀ at x2 = x2
0 is given by

d~̀= dx1~e1 + ~e3[u(~x2,0 + ~e1dx
1, t)− u(~x2,0, t)] ' dx1[~e1 + ~e3u1(~x2,0, t)], (3.54)

since this is the difference vector between the two corners A and B, see Fig. 3.8. It is
here important to keep track of the fact that this section is evaluated at x2 = x2

0, since
the opposite section will be evaluated at x2 = x2

0 + dx2. Ignoring this fact, the leading
contribution would cancel and we would be left with zero net force. Performing the cross
product, we find that the force on the section between A and B is

d~FAB = σ d~̀× ~n ' −σdx1[~e2 + ~e3u2(~x2,0, t)], (3.55)

where terms of second order or higher in ∂iu have been neglected. In the same way, we can
write the force on the section between C and D as

d~FCD = σdx1[~e2 + ~e3u2(~x2,0 + dx2~e2, t)] (3.56)
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and their sum becomes

d~FAB + d~FCD = σdx1~e3[u2(~x2,0 + dx2~e2, t)− u2(~x2,0, t)] ' σdx1dx2~e3u22. (3.57)

The equivalent argument for the BC and DA sections results in a similar term, but with
u22 replaced by u11. With an additional force area density f(~x2, t), Newton’s second law in
the x3-direction becomes

ρA(∂2
t u)dx1dx2 = σ(u11 + u22)dx1dx2 + f dx1dx2. (3.58)

Cancelling the differentials and dividing through by ρA, we again end up with the wave
equation

∂2
t u−

σ

ρA
∇2u =

f

ρA
. (3.59)

It should be noted that the Laplace operator ∇2 here only acts on the x1 and x2 directions.
However, taking it as a three-dimensional Laplace operator is also not the end of the world
as u does not depend on x3 and the three-dimensional Laplace operator therefore reduces
to the two-dimensional one.

3.5.3 Electromagnetic waves
While the wave equation for transversal waves on the string and on the membrane were
based on approximations, including the small deviation approximation, there are situations
where the wave equation is exact as far as the underlying modelling goes. An important
example of this is the wave equation for electromagnetic fields, which is based on Maxwell’s
equations (see Eqs. (2.198)). Taking the time derivative of Eq. (2.198c) results in

∇× ∂t ~E + ∂2
t
~B = 0, (3.60)

which involves a time derivative of the electric field ~E. Luckily, we can express this time
derivative in the magnetic field ~B and current density ~J by applying Eq. (2.198d) and doing
so leads to

∂2
t
~B + c2∇× (∇× ~B − µ0

~J) = 0. (3.61)

The ∇× (∇× ~B) expression may be simplified as

∇× (∇× ~B) = ∇(∇ · ~B)−∇2 ~B = −∇2 ~B, (3.62)

since Eq. (2.198b) tells us that ∇ · ~B = 0. The insertion of this simplification into our
differential equation finally results in

∂2
t
~B − c2∇2 ~B =

1

ε0
∇× ~J, (3.63)

which is a sourced wave equation for the magnetic field ~B with wave velocity c. In fact,
Maxwell’s equations are usually written in terms of ε0 and µ0 only rather than using c2. It
is only once electromagnetic waves are identified with light that the wave equation gives us
c = 1/

√
ε0µ0 as a prediction for the speed of light.

Similar arguments to the one above will also show that the electric field ~E satisfies a
sourced wave equation. There are many other aspects to electromagnetic waves, but we
leave them for a dedicated discussion on electromagnetism.
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Figure 3.9 The region where we wish to find a solution to partial differential equations is generally
bounded in both space and time. The boundary conditions (BC) on the spatial surface S may
depend on time as well as on the point on S, while the initial conditions (IC) at t = 0 will be
functions on the full spatial volume V .

3.6 BOUNDARY AND INITIAL CONDITIONS
People familiar with with ordinary differential equations will know that, in order to find a
unique solution, it is necessary to specify a sufficient number of boundary conditions. This
does not change when encountering partial differential equations. In the diffusion and heat
equations, the parameter space of interest involves not only a spatial volume, but also a
time interval, usually from the initial time (often denoted t0 or defined to be t = 0) and
forward. Since the diffusion and heat equations are differential equations in both time and
space, the boundary of the interesting parameter region is both the spatial boundary of
the region we study as well as the entire volume for the initial time t0, see Fig. 3.9. The
exception to this will occur when we search for stationary states, i.e., states that do not
depend on time.

Physically, the notion of initial and boundary condition relate to the initial state of the
system and how the system interacts with the surroundings at the boundaries. For a given
sufficient set of initial and boundary conditions, the solution will be unique, a cornerstone in
the scientific assumption of a system behaving in the same way under the same conditions,
thus ensuring that the underlying theory is predictive.

With the above in mind, we generally assume that we have a problem described by a
partial differential equation in the volume V for time t > t0. A boundary condition is then
of the form

f(u(~x, t), ~x, t) = 0, (3.64)

where ~x is a point on the surface S, which is the boundary of V . The function f may
depend on both the point on the surface ~x as well as on time t. It may also contain different
derivatives of u. An initial condition is of the form

g(u(~x, t0), ~x) = 0, (3.65)

where ~x may now be any point in the volume V and, as in the case of the boundary
conditions, g may contain derivatives of u.
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3.6.1 Boundary conditions
For ordinary differential equations, there are generally as many independent solutions as
the order of the differential equation. In the case of partial differential equations that are
second order in the spatial derivatives, along with some additional conditions on the form of
the differential operator, it is sufficient to give either the function value, normal derivative,
or a linear combination thereof, in order for the solution to be unique. In particular, the
mentioned conditions are satisfied by the Laplace operator, which we will study extensively.
We will get back to this in a short while after discussing some types of boundary conditions
that we will encounter.

3.6.1.1 Dirichlet conditions

In many physical applications, it is reasonable to assume that the value of the sought
function is known on the boundary. The corresponding boundary condition

u(~x, t) = f(~x, t), (3.66)

valid for all ~x on the boundary of the volume and where f is a known function, is classified
as a Dirichlet boundary condition.

Example 3.11 A drum may be described as a circular membrane of radius R, which is
held fixed in the drum frame at the edges. If the drum frame is rigid, at least in comparison
to the membrane, this means that the membrane edge is not subject to transversal motion
and thus

u(ρ = R,φ, t) = 0, (3.67)

where u is the transversal displacement of the membrane and we have introduced polar
coordinates with the center of the membrane as the origin. Since the displacement satisfies
the wave equation, which includes the Laplace operator, these boundary conditions will
be sufficient to provide a unique solution once sufficient initial conditions have also been
specified.

Example 3.12 A sphere of some material is immersed in an oil bath of temperature T0.
If the heat transfer from the oil bath to the sphere is very efficient, then the surface of
the sphere will quickly adapt to the oil bath temperature and we will have the boundary
condition

T (r = R, θ, ϕ, t) = T0, (3.68)

where we have introduced spherical coordinates centred at the middle of the sphere and as-
sumed that the sphere has radius R. The temperature in the sphere is furthermore assumed
to satisfy the heat equation and the boundary condition is therefore sufficient in order to
solve the problem if we in addition specify sufficient initial conditions.

In general, Dirichlet boundary conditions apply whenever we keep something fixed at
the boundary of the relevant volume.



146 � Mathematical Methods for Physics and Engineering

m

x0

utt(x0)

θ(x0)

S

Figure 3.10 A string with tension S ending in a ring of mass m at x0 that moves freely without
friction in the transversal direction. Newton’s second law for the ring in the transversal direction
gives the boundary condition, which becomes a Neumann boundary condition in the limit m→ 0.

3.6.1.2 Neumann conditions

Another commonly encountered type of boundary conditions are Neumann boundary con-
ditions, which are conditions on the normal derivative of the function we are solving for,
i.e.,

~n · ∇u = f(~x, t) (3.69)

everywhere on the volume boundary. Here, ~n is the surface normal of the boundary and f
is a known function. As we have seen, the gradient often represents a current and physically
Neumann conditions therefore tend to appear whenever there is no net flow out of the
volume.

Example 3.13 Consider the diffusion of a substance with concentration u within a volume
V , which is completely sealed off such that none of the substance may pass the boundary
surface S anywhere. In this situation, the flow out of a small part d~S of the surface will be
given by

dΦ = ~ · d~S = 0 =⇒ ~n · ~ = 0. (3.70)

For diffusion, the current ~ obeys Fick’s first law and we obtain

~n · ∇u = 0, (3.71)

where we have divided by the diffusivity D. Thus, the resulting boundary condition is a
condition on the normal derivative of u.

Example 3.14 Consider an oscillating string with an end at x = x0, which is attached
to a ring of mass m that is moving frictionlessly along a pole, see Fig. 3.10. Since the ring
is free to move along the pole, the only force in the transversal direction is that from the
string itself. By the same argumentation used in the derivation of the wave equation on the
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string, this force is given by

F = − Sux(x0, t)√
1 + ux(x0, t)2

' −S∂xu, (3.72)

where the approximation holds for small oscillations. Since the ring’s transversal displace-
ment is tied to the string’s we find that

ma = mutt(x0, t) = −Sux(x0, t) (3.73)

at the string endpoint. If the mass of the ring is negligible, this gives us the Neumann
boundary condition

ux(x0, t) = 0. (3.74)

This example may also be derived by considering the transversal momentum transfer from
the string to the ring. Since no transversal force may act on the pole, all of the momentum
flow from the string at the endpoint will end up in the ring. The change in the ring’s
momentum is therefore given by the momentum current j = −S∂xu. When considering that
the ring momentum is mut(x0, t), equating the time derivative of this with the momentum
current brings us back to the situation just described.

3.6.1.3 Robin boundary conditions

Although it is often a good approximation, it is seldom the case that the actual physical
boundary conditions are either Dirichlet or Neumann conditions. Instead, a more accurate
description is often given by the Robin boundary condition

α(~x, t)u(~x, t) + β(~x, t)~n · ∇u = k, (3.75)

where, at every point on the boundary, at least one of the functions α and β is non-zero, and
k is a, possibly vanishing, constant. Naturally, the requirement that one of the functions
α and β must be non-zero is related to the fact that the boundary condition should be a
condition on each point of the surface.

Example 3.15 One important occurrence of Robin boundary conditions is Newton’s law
of cooling , which states that the heat current in the interface between two materials is
proportional to the difference in temperature between the materials, with the heat being
transferred to the colder one. It may be expressed mathematically as a requirement on the
temperature and current at the boundary

~n · ~ = α(T − T0), (3.76)

where ~ is the heat current, α is a heat transfer coefficient , T is the temperature within
the material for which we wish to solve the heat equation, and T0 is the temperature of
the surrounding medium. Some simplifying assumptions here are to assume that the heat
transfer coefficient α is independent of the point on the surface and of the temperature
and that T0 is a constant, i.e., the surrounding material has the uniform temperature T0.
Applying Fourier’s law to express the current ~, we find that

αT + λ~n · ∇T = αT0, (3.77)
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which is a Robin boundary condition.

Example 3.16 Another situation where Robin conditions apply is in the case where there
are both convection and diffusion currents in a material and the transfer out of a given
volume must be kept to zero. A possible situation where this occurs is Example 3.8. Since
the total current is given by

~ = −D∇u+ ~v0u, (3.78)

the condition that the current in the normal direction should be zero turns into the Robin
boundary condition

~n · ~ = −D~n · ∇u+ (~n · ~v0)u = 0, (3.79)

where we can identify α = ~n · ~v0, β = −D, and k = 0 in Eq. (3.75).

An important class of Robin boundary conditions requires that α and β have the same
sign everywhere. This is related to the solution of problems using Sturm–Liouville theory,
which we will discuss in Section 5.3. It should also be noted that both Dirichlet and Neu-
mann boundary conditions are special cases of Robin conditions with β = 0 and α = 0,
respectively.

3.6.2 Initial conditions
While the boundary conditions specify how our quantity of interest behaves at the surface
of the relevant volume, the initial conditions, as the name suggests, specify the initial state
of the system. The initial conditions are only specified on one boundary, the initial time,
and not on every boundary as was the case with the boundary conditions we just discussed.
In general, in order to find a unique solution, the number of initial conditions at every
point in the volume must be equal to the degree of the highest order time derivative in the
differential equation. For ordinary differential equations, this is familiar to anyone who has
looked at Newton’s second law in the form

m~̈x = ~F (~x), (3.80)

where m is the mass of an object, ~x(t) its position at time t, and ~F a position dependent
force field. In order to fully solve for the motion ~x(t), we need to define the initial position

~x(0) as well as the initial velocity ~̇x(0), which is in line with the equation being a second
order differential equation.

Being of first order in the time derivative ∂t, the diffusion equation requires only one
initial condition, namely the initial concentration of the diffusing substance. By contrast,
the wave equation is of second order and requires the specification of both the value and
rate of change for the sought function at t = t0.

Example 3.17 In the case of a substance diffusing in a medium, a possible initial condition
is that the concentration of the substance is constant in the entire relevant volume. In this
case, the initial condition

u(~x, t0) = u0, (3.81)
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a

`

x

x0

Figure 3.11 A string pulled at x0 only is released from the resulting stationary state. The initial
conditions include the string having the shape shown in this figure and ut(x, t0) = 0.

where u0 is the constant concentration, is sufficient to determine the concentration at any
later time t > t0, assuming that appropriate boundary conditions are also given.

Example 3.18 A string of length `, which is fixed at its ends, is pulled transversally at
x = x0 and takes the shape shown in Fig. 3.11, which may be described by

f(x) =

{
a x
x0
, (x ≤ x0)

a `−x
`−x0

, (x > x0)
. (3.82)

It is then released from rest at time t = t0, which results in the initial conditions

u(x, t0) = f(x), ut(x, t0) = 0. (3.83)

The latter of these conditions just states that the string is not moving transversally at time
t0 and is necessary in order for a unique solution to exist, since the wave equation is of
second order in the time derivative ∂t.

When writing down a problem in equations, we will from now on explicitly write out the
partial differential equation, boundary, and initial conditions, as long as they are available.
We will do so including a note on what each equation describes for the model in question,
(PDE) for partial differential equation, (BC) for boundary condition, and (IC) for initial
condition. Quoting the available information like this is often beneficial, as it will provide
structure to the problem to be solved.

Example 3.19 The transversal oscillations on the string in Example 3.18 may be assumed
to follow the source free wave equation with wave velocity c. Assuming that the ends of the
string are fixed and that the initial conditions are given by the previous example, the full
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problem for finding the transversal displacement u is formulated as

(PDE) : utt − c2uxx = 0, (3.84a)

(BC) : u(0, t) = u(`, t) = 0, (3.84b)

(IC) : u(x, t0) = f(x), ut(x, t0) = 0. (3.84c)

3.6.3 Uniqueness
Let us take a step back and look at how it may be argued that solutions to the partial
differential equations described with boundary and initial conditions are unique. We are
going to do so by utilising energy methods. If we consider a wave equation problem in the
volume V with Dirichlet boundary conditions

(PDE) : utt − c2∇2u = f(~x, t), (~x ∈ V ) (3.85a)

(BC) : u(~x, t) = g(~x, t), (~x ∈ S) (3.85b)

(IC) : u(~x, t0) = h1(~x), ut(~x, t0) = h2(~x), (~x ∈ V ) (3.85c)

where S is the boundary of V and f , g, h1, and h2 are known functions, we can prove
the uniqueness of u by assuming that it is not unique and showing that this leads to a
contradiction. Let us therefore assume that there exists two different solutions u and v,
which both solve the given problem. We can then form the difference function w = u − v,
which must be a non-zero function if our assumption that u and v are distinct should hold.
Using that u and v both fulfil the differential equation as well as boundary and initial
conditions, we find that

(PDE) : wtt − c2∇2w = 0, (~x ∈ V ) (3.86a)

(BC) : w(~x, t) = 0, (~x ∈ S) (3.86b)

(IC) : w(~x, t0) = 0, wt(~x, t0) = 0. (~x ∈ V ) (3.86c)

Introducing the energy functional

E[u] =
1

2

∫
V

[u2
t + c2(∇u)2]dV, (3.87)

which depends on the function u taken as argument, we find that

dE[w]

dt
=

∫
V

[wtwtt + c2(∇wt) · (∇w)]dV =

∫
V

c2[wt∇2w + (∇wt) · (∇w)]dV. (3.88)

This expression is exactly Green’s first identity, see Eq. (1.126), with ϕ = wt and ψ = w
and we obtain

dE[w]

dt
=

∮
S

wt∇w · d~S = 0, (3.89)

since wt = 0 on the entire surface due to w being identically zero on S, due to the boundary
conditions. Since w(~x, t0) = 0 and wt(~x, t0) = 0, we find that E[w](t0) = 0 and the zero
derivative implies that E[w] = 0 for all t. However, we must have

E[w] ≥ 0, (3.90)
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since all terms in the integral are positive. This inequality becomes an equality only if w
is identically zero everywhere and since we have found that E[w] = 0 for all t, the only
possible conclusion is that w = 0, contrary to our starting assumption. It therefore follows
that the solution to the partial differential equation with the given boundary and initial
conditions is unique.

The reason that this method is called an energy method is that E[u] may be interpreted,
up to a multiplicative constant, as the energy in the volume V . Similar considerations may
be applied to the diffusion equation as well as to other types of boundary conditions.

3.7 PDES IN SPACE ONLY
One differential equation that we have so far not treated in this chapter is Poisson’s equation

∇2u(~x) = −ρ(~x), (3.91)

where u is an unknown function in some volume V and ρ is known. Unlike the diffusion and
wave equations, Poisson’s equation does not have any time dependence and therefore will
not need any initial conditions. We have already seen some examples of situations where
Poisson’s equation applies in Chapter 1.

Example 3.20 In a static situation, the electric field ~E is curl free, as indicated by
Maxwell’s equations with ∂t ~B = 0. Thus, in this situation there exists a scalar potential V
such that

~E = −∇V. (3.92)

Inserting this relation into Gauss’s law, we find that

−∇ · ~E = ∇2V = − ρ

ε0
, (3.93)

where ρ is the charge density and ε0 the permittivity. The electrostatic potential V therefore
satisfies Poisson’s equation.

In many situations Poisson’s equation appears as a description of system configurations
that minimise the total energy or another property of a system. In particular, an important
class of solutions to the diffusion and wave equations are stationary solutions, which are
solutions that do not depend on time. For these solutions, all time derivatives vanish and
the diffusion and wave equations take the forms

∇2u = − κ
D

and ∇2u = − f
c2
, (3.94)

respectively, i.e., the stationary solutions satisfy Poisson’s equation. Naturally, to find sta-
tionary states, it is not necessary to specify any initial conditions and only the boundary
conditions will be of relevance for solving these equations.

Example 3.21 If an oscillating string is located in a gravitational field of strength g, there
will be an external force density f = −ρ`g acting on every part of the string. Inserting this
force density into the wave equation, we find that

∂2
t u− c2∂2

xu = −g. (3.95)
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For a stationary solution, it holds that ∂2
t u = 0 and we end up with the differential equation

∂2
xu =

g

c2
=
ρ`g

S
, (3.96)

which is Poisson’s equation in one dimension with a constant source term −ρ`g/S. This
equation has the general solution u = ρ`gx

2/2S + Ax + B, where A and B are arbitrary
constants which will be determined by the boundary conditions. Note that this is the solution
for a string where the gravitational force is small enough not to violate |∂xu| � 1. This
is true as long as ρ`gL/S � 1, where L is the total length of the string, i.e., for strings
with a large tension in comparison to the product of the gravitational field strength, string
density, and string length. A word of warning is appropriate here. As argued, this solution
is only true for strings under large tension. We will discuss the case when a string is only
suspended at its endpoints in Chapter 8.

It is important to note that, while stationary states do not evolve with time, this is
not equivalent to stating that there is nothing happening in the system. For example, in a
system satisfying Poisson’s equation, we may still have ∇u 6= 0, implying that ~ 6= 0 for a
stationary solution to the diffusion equation. Thus, there can still be currents within the
system, but they are arranged in such a way that the quantity u does not change with time.
Another way of stating this is reexamining the continuity equation for a stationary solution

∇ · ~ = κ, (3.97)

since ∂tu = 0. The requirement for a solution to be stationary is therefore that the divergence
of the current density is equal to the source density.

Example 3.22 Consider the case of a single point source in three dimensions constantly
producing a substance with a rate P , which then diffuses throughout space with diffusivity
D. The source term is then given by κ = Pδ(3)(~x), where δ(3)(~x) is the three-dimensional
delta function (see Eq. (1.221)), and the differential equation to solve for the stationary
solution is

∇2u = −Pδ
(3)(~x)

D
. (3.98)

Assuming the concentration goes to zero at infinity, we have already solved this problem in
Example 1.33, where we discussed the point source and found that

~ =
P

4πr2
~er (3.99)

(note that, for Fick’s first law, u is a scalar potential for the current density). Thus, in the
stationary solution, there is a current in the direction away from the source and with a
magnitude decreasing with the square of the distance. As the area of a sphere centred on
the production point grows as r2, the fluxes through all such spheres are the same for the
stationary solution.

One special case of Poisson’s equation that holds particular importance is the case where
the source term is zero, i.e.,

∇2u = 0. (3.100)
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In fact, it is so special that it has warranted its own name, Laplace’s equation. Based on
the discussion we have had so far, we can conclude that this equation describes stationary
states where there are no sources. In order for such a situation to hold any interest, the
boundary conditions must be non-trivial. This may occur, e.g., when we have a soap film
inside a non-planar wire frame.

Another important situation appears when we consider steady state solutions. Unlike
stationary solutions, all time derivatives of a steady state solution do not necessarily vanish.
Instead, we impose the slightly less constraining requirement that some properties of the
solution, for example the amplitude of oscillation, should not change with time. Taking the
wave equation as an example, we may consider solutions of the form

u(~x, t) = cos(ωt)v(~x). (3.101)

Inserting this into the wave equation, we obtain

−(ω2 + c2∇2)v =
f

cos(ωt)
. (3.102)

This is particularly useful if either f = 0 or f = g(~x) cos(ωt). In the first of these situations,
we obtain the Helmholtz equation

∇2v + k2v = 0, (3.103a)

where k = ω/c, and in the second the inhomogeneous Helmholtz equation

∇2v + k2v = −g(~x)

c2
. (3.103b)

The Helmholtz equation may be regarded as an eigenvalue equation for the operator −∇2,
a fact that we shall be using extensively later on. It may also be used to solve situations
with time varying boundary conditions or external forces using an assumed steady state.

Example 3.23 Consider the drum from Example 3.11 with the modification that instead
of fixing its boundary, the boundary is undergoing simple harmonic motion with angular
frequency ω. This imposes the boundary conditions

(BC) : u(ρ = R,φ, t) = A cos(ωt), (3.104)

where A is a constant amplitude. Assuming a steady state u = v(~x) cos(ωt), the wave equa-
tion results in the Helmholtz equation for v as described above. This is not self consistent
unless the boundary conditions for v are time independent, but luckily

u(ρ = R,φ, t) = v(ρ = R,φ) cos(ωt) = A cos(ωt), (3.105a)

leading to the boundary condition

(BC) : v(ρ = R,φ) = A, (3.105b)

which does not depend on time t.
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Regarding the uniqueness of the solutions to Poisson’s equation, it can be proven much
in the same way as for the time-dependent diffusion and wave equations. However, there is
one exception, which occurs when all of the boundary conditions are Neumann conditions.
Given a solution to Poisson’s equation ∇2u = −ρ with Neumann conditions ~n · ∇u = g
on the boundary, we can always shift u by a constant, i.e., v = u + C without affecting
either the differential equation or the boundary conditions. Instead, there is a consistency
condition between the inhomogeneities ρ and g, which may be obtained by integrating ∇u
over the boundary ∮

S

g dS =

∮
S

∇u · d~S =

∫
V

∇2u dV = −
∫
V

ρ dV, (3.106)

where we have used the boundary condition in the first step, the divergence theorem in the
second, and Poisson’s equation in the third. If this condition is not fulfilled, no solution to
the problem exists.

3.8 LINEARISATION
A linear differential operator L̂ of order m is a differential operator which maps a function
to a linear combination of u and its partial derivatives of order m and lower. In particular,
it may be written as

L̂u =
∑
|α|≤m

aα∂αu, (3.107)

where α = (α1, . . . , αN ) is a multi-index , i.e., a combination of N numbers, and |α| =
α1 + . . .+ αN . We have also introduced the notation

∂α = ∂α1
1 . . . ∂αNN , (3.108)

where N is the total dimension of the space. The constants aα are generally functions that
may be different for each value of the multi-index α.

Example 3.24 The wave operator in one spatial dimension and time ∂2
t − c2∂2

x is an
example of a linear differential operator of order two. Since the total dimension of the
parameter space is two, with the parameters being time t and position x, the multi-indices
α = (αt, αx) have two entries. The only non-zero coefficients aα in the linear combination
giving the wave operator are

a(2,0) = 1 and a(0,2) = −c2. (3.109)

In a similar fashion, the diffusion operator and Laplace operators are also examples of linear
differential operators of order two.

In fact, all of the differential operators that we have encountered so far have been linear
differential operators, with the exception of the wave equations on the string and membrane
before we made the assumption of small oscillations, which would have turned out to be

utt − c2∂x

(
ux√

1 + u2
x

)
= 0 (3.110)

for the the string without an additional force density. However, it should be noted that
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any of the differential equations we have encountered may turn out to include a non-linear
differential operator if the source term is not linear in u. We define a linear differential
equation to be a differential equation of the form

L̂u = f, (3.111)

where L̂ is a linear differential operator and f is a known function which does not depend
on u. Furthermore, if f = 0 the differential equation is homogeneous and, consequently, if
f 6= 0 the differential equation is inhomogeneous. Likewise, we can classify boundary and
initial conditions as linear and homogeneous if on the boundary of the relevant region

B̂u = g and g = 0, (3.112)

respectively, where B̂ is a linear differential operator and g is a function. A linear problem
is a problem where both the partial differential equation as well as the boundary and initial
conditions are linear.

Example 3.25 The damped wave equation from Example 3.10

(PDE) : utt + kut − c2uxx = 0 (3.113)

is a linear and homogeneous differential equation. If the string is fixed at the endpoints,
then the boundary conditions

(BC) : u(0, t) = u(`, t) = 0, (3.114)

where ` is the string length are also homogeneous. Specifying initial conditions on u and
ut, the problem can be solved but, in order to obtain a non-trivial solution, at least one of
the initial conditions must be inhomogeneous.

The last comment in the example above is an important one. If the differential equation
as well as the boundary and initial conditions are linear and homogeneous, then u = 0 will
be a solution. Based on the uniqueness of the solution, this implies that this is the only
solution to such a problem, which is rather uninteresting.

On the other hand, an issue which is interesting is that any differential equation may be
written as a linear differential equation for small deviations from a known solution. Assume
that we have a non-linear differential equation

(PDE) : F(∂αu) = f(~x), (3.115)

where F(∂αu) is a function of u and its partial derivatives up to some order m, f(~x) is an
inhomogeneity, and the boundary conditions are given by

(BC) : G(∂αu) = g(~x), (3.116)

where G is also a function of u and its partial derivatives and g(~x) is a function on the
boundary. If we have found one solution u0 to this differential equation with given inhomo-
geneities in the differential equation f = f0 and boundary condition g = g0, then we can
study solutions u = u0 + εv, for f = f0 + εf1 and g = g0 + εg1, where ε is assumed to be a
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small number. Expanding the differential equation to first order in ε results in

F(∂α(u0 + εv)) ' F(∂αu0) + ε
dF(∂α(u0 + εv))

dε

∣∣∣∣
ε=0

= f0(~x) + ε
dF(∂α(u0 + εv))

dε

∣∣∣∣
ε=0

= 0. (3.117)

Here, the term F(∂αu0) = f0(~x), since u0 is assumed to be a solution of the differential
equation with the inhomogeneity f0. In order for this equation to hold to linear order in ε,
we therefore need the derivative evaluated at ε = 0 to be equal to f1. By applying the chain
rule, this condition may be written as

dF(∂α(u0 + εv))

dε

∣∣∣∣
ε=0

=
∑
|α|≤m

∂F
∂(∂αu)

∣∣∣∣
u=u0

d

dε
∂α(u0 + εv)

∣∣∣∣
ε=0

=
∑
|α|≤m

∂F
∂(∂αu)

∣∣∣∣
u=u0

∂αv = f1(~x). (3.118)

Note that the partial derivatives of F are taken with respect to its arguments, which are
different partial derivatives of the function u. Evaluated at u = u0, these partial derivatives
are known functions and the resulting differential equation for v is linear and homogeneous.
A similar argument is then applied to the boundary condition.

Example 3.26 The perhaps most common application of linearisation occurs for time-
dependent differential equations with stationary solutions. For example, imagine that we
wish to solve the diffusion equation with a source term that is a function of u, i.e.,

(PDE) : ut −D∇2u = f(u), (3.119)

and that we have homogeneous Dirichlet boundary conditions u = 0 on the boundary of
the volume of interest V . A stationary solution to this problem ũ(~x) would then satisfy

−D∇2ũ = f(ũ), (3.120)

and the homogeneous boundary condition. Letting u = ũ + v, where v is assumed to be a
small deviation as long as the initial condition only deviates slightly from ũ, we find that

ũt −D∇2ũ− f(ũ)︸ ︷︷ ︸
=0

+vt −D∇2v = f(ũ+ v)− f(ũ), (3.121)

where we have used the fact that ũ is a solution to the differential equation with the source
term f(ũ). Since v is assumed small, we can use f(ũ + v) − f(ũ) ' vf ′(ũ) and obtain the
differential equation

vt −D∇2v = vf ′(ũ) (3.122)

for the deviation v. Since ũ satisfies the homogeneous boundary conditions, we also find
that u = ũ+ v = v = 0 on the boundary. The inhomogeneity required to have a non-trivial
solution for v will arise from any initial deviation from the stationary state, a deviation that
must be small in order for our procedure to be valid.



Partial Differential Equations and Modelling � 157

It should be noted that deviations will sometimes grow even if they start out as small
deviations. In those situations, the solution to the linearised differential equation will be
valid only as long as the deviation may be considered small.

3.9 THE CAUCHY MOMENTUM EQUATIONS
We have seen examples of how the continuity equation may be used to derive several im-
portant differential equations. Let us now examine how the continuity equation for different
properties may be used in modelling by considering the momentum and mass continuity
equations in a streaming fluid. A fluid is a medium, which may be, e.g., a gas or a liquid,
whose shear strain is not able to generate any forces and therefore flows under any shear
stress. Instead, as we will discuss, there may be a force related to the shear strain rate. This
force is related to the viscosity of the fluid.

In any fluid, we may consider the flow velocity field ~v(~x, t), which is the velocity of the
fluid at a given point in space and time, along with the density field ρ(~x, t), which describes

the density of the fluid. The momentum density ~P is then the intensive property given by

~P =
d~p

dV
=
dm

dV

d~p

dm
= ρ~v, (3.123)

where we have used that d~p = ~v dm is the momentum and dm is the mass enclosed in a
small volume dV . Using the continuity equation for momentum, we find that

∂Pi
∂t

+ ∂jjij = ρ
∂vi
∂t

+ vi
∂ρ

∂t
+ ∂jjij = fi, (3.124)

where ~f is a force density acting in the volume dV . It should here be noted that, since the
momentum density is a vector, the momentum current density is a rank two tensor with
components jij describing the current density of momentum in the xi-direction flowing in
the xj-direction. The time derivative ∂ρ/∂t may be expressed using the continuity equation
for mass, which takes the form

∂ρ

∂t
= −∇ · (ρ~v), (3.125)

where we have used that the mass transport is a convective process given by the flow of
the medium to write ~mass = ρ~v and assumed that there is no mass source or sink. The
continuity equation for the momentum is now given by

ρ
∂vi
∂t
− vi∂j(ρvj) + ∂jjij = fi (3.126)

and the remaining task is to model the momentum current density jij . There are generally
two different contributions to this current, the first being the convective transport of mo-
mentum by the flow ~v. Since the convective current is given by the density multiplied by
the flow velocity, we find that

jconv
ij = ρvivj , (3.127)

or in other terms, using the outer product notation, jconv = ρ~v ⊗ ~v. This momentum flow
is illustrated in Fig. 3.12.

The second contribution to the momentum current density comes from any forces acting
on the surface of the volume. If the stress tensor is σij , then the contribution from these
forces to the momentum current is

jforce
ij = −σij . (3.128)
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~n

S

ρ~v dV

~v dt

dV

Figure 3.12 In a time dt, the volume dV = ~v dt ·d~S flows through a surface d~S. This volume carries
with it a momentum ρ~v dV , resulting in a momentum current.

Note that the minus sign arises due to σij describing the forces acting on the volume and
therefore represents a flux of momentum into the volume instead of out of it. Combining
these two contributions to the momentum current density, we find that

jij = ρvivj − σij (3.129)

and inserting this into the continuity equation for momentum yields

ρ
∂vi
∂t
− vi∂j(ρvj) + ∂j(ρvivj − σij) = ρ

∂vi
∂t

+ ρvj∂jvi − ∂jσij = fi. (3.130)

It is common to also write fi in terms of the force per mass rather than the force per volume,
i.e., using that

d~F = ~g dm = ~g
dm

dV
dV = ~gρ dV ≡ ~f dV, (3.131)

where ~g is the force per mass. This choice is particularly natural in the case when the
external force is due to a gravitational field. Doing this replacement and moving the term
arising from the stress tensor to the right-hand side of the equation, we finally end up with

∂vi
∂t

+ vj∂jvi = gi +
1

ρ
∂jσij . (3.132)

These are the Cauchy momentum equations, which apply to the flow of any general fluid.
There are several applications in fluid mechanics where additional assumptions may be made
and these equations may be rewritten in a more particular form, we shall discuss some of
these cases shortly. Let us first remark that the left-hand side of the Cauchy momentum
equations may be rewritten as

∂vi
∂t

+ vj∂jvi =
Dvi
Dt

, (3.133)

where D/Dt is the material derivative defined by

Df

Dt
=
∂f

∂t
+ (~v · ∇)f. (3.134)

The material derivative represents a change with time of an intensive property f for a point
flowing with the medium.
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Example 3.27 Consider a fluid that does not support any internal stresses, i.e., there are
no internal forces in the fluid such that σij = 0. The Cauchy momentum equations now
become

D~v

Dt
= ~g, (3.135)

with the interpretation that the velocity of a particle flowing with the fluid changes pro-
portionally to the force per mass. For a gravitational field, this is nothing else than the
statement that the acceleration for a point flowing with the fluid is equal to the gravita-
tional acceleration.

Example 3.28 In hydrostatics, stationary fluids are considered, implying that the velocity
field vanishes identically ~v = 0. In this situation, there will be no shear forces in the fluid
as they cannot be supported. The stress tensor can then be written as σij = −pδij , where
p is the pressure. From the Cauchy momentum equations follows that

1

ρ
∇p = ~g. (3.136)

This is nothing but a statement on how the pressure varies with respect to a force field ~g.
In particular, when the force field is a homogeneous gravitational field ~g = −g~e3, we find
that

p = −ρgx3 + p0, (3.137)

where p0 is the pressure at x3 = 0. This linear dependence of the pressure on the coordinate
x3 should be familiar to most physics students. We note that, since ρ~g = ∇p, the vector field
ρ~g must be curl free in order for its scalar potential p to exist. We come to the conclusion
that there are no solutions to the Cauchy momentum equations with ~v = 0 for which ρ~g
has a non-zero curl.

3.9.1 Inviscid fluids
An inviscid fluid is a fluid where there are no shear forces regardless of the movement of
the fluid. Therefore, as in Example 3.28, the stress tensor is given by

σij = −pδij . (3.138)

This reduces the Cauchy momentum equation to

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p+ ~g, (3.139)

which is one of the Euler equations describing inviscid flows. The remaining Euler equations
are the continuity equations for mass and energy, respectively,

∂ρ

∂t
+∇ · (ρ~v) = 0, (3.140a)

∂ε

∂t
+∇ · [~v(ε+ p)] = 0, (3.140b)
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where ε = ρe+ ρ~v 2/2 is the energy density, the two terms representing the internal energy
with specific internal energy per mass e, and the kinetic energy due to the movement of
the fluid. The current term ~vε represents the convective flow of energy while the ~vp term
results from the work done by the pressure forces.

Example 3.29 For a homogeneous incompressible fluid, the density in a small volume
is constant along the flow, in other words the volume taken up by each part of the fluid
remains the same. This can be expressed as the material derivative of the density vanishing,
giving us

∂ρ

∂t
+∇ · ρ~v =

Dρ

Dt
+ ρ∇ · ~v = ρ∇ · ~v = 0 =⇒ ∇ · ~v = 0 (3.141)

from the continuity equation for mass. If the fluid is also inviscid and the force per mass ~g
has a potential φ such that ~g = −∇φ, we find that

D~v

Dt
= −1

ρ
∇p−∇φ, (3.142)

which we may multiply by the momentum density ρ~v and simplify to

1

2

D(ρ~v 2)

Dt
+ (~v · ∇)(p+ ρφ)− φ(~v · ∇)ρ = 0. (3.143)

If we are considering stationary flows, all quantities involved are time independent and the
material derivative is equivalent to the directional derivative in the direction of the flow
D/Dt = ~v · ∇ and we find

D

Dt

(
1

2
ρ~v 2 + p+ ρφ

)
− φDρ

Dt
= ρ

D

Dt

(
1

2
~v 2 +

p

ρ
+ φ

)
= 0, (3.144)

where we have used that Dρ/Dt = 0 for an incompressible flow. It directly follows that

1

2
~v 2 +

p

ρ
+ φ = constant (3.145)

along the flow lines, i.e., along the path taken by any small fluid parcel. This relation is
known as Bernoulli’s principle.

Example 3.30 The isentropic flow of a gas is both adiabatic and reversible. In particular,
this means that an ideal gas obeys the adiabatic gas law

pV γ = constant ⇐⇒ p = Kργ , (3.146)

where γ = cp/cV is the ratio between the heat capacities for fixed pressure and fixed volume
and K is a constant. With no force field ~g acting on the gas, which is a good approximation
for many cases, there exists a stationary solution p = p0, ρ = ρ0, ~v = 0 to the Euler
equations. Linearising the general problem around this solution, the momentum and mass
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continuity equations state that

∂~v

∂t
= − 1

ρ0
∇p1, (3.147a)

∂ρ1

∂t
+ ρ0∇ · ~v = 0, (3.147b)

where p = p0 + p1 and ρ = ρ0 + ρ1 (note that the velocity ~v is expanded around ~v = 0 so
we do not need to introduce a new variable for the linear term).

Linearising the adiabatic gas law results in

p1 = Kγργ−1
0 ρ1 =⇒ ρ1 =

ρ0

γp0
p1 (3.148)

and inserting this into Eq. (3.147b) leads to

∂p1

∂t
+ γp0∇ · ~v = 0. (3.149)

Finally, differentiation of this relation with respect to time t and subsequent insertion of
the mass continuity equation yields the wave equation

∂2p1

∂t2
− c2∇2p1 = 0, (3.150)

where the wave velocity is given by c2 = γp0/ρ0. This equation thus describes waves of
pressure deviations p1 in a gas, i.e., sound waves.

3.9.2 Navier–Stokes equations
A particular form of the Cauchy momentum equation relies upon a series of quite general
assumptions. When we were discussing stress and strain theory in the solid mechanics case
(see Section 2.6.1), we made some similar assumptions so some arguments from there will
be beneficial also in this case, the big difference being that the stress in a fluid cannot
be linearly related to the strain tensor. However, the stress in a fluid may depend on the
velocity field ~v. As for the solid mechanics case, we make the assumption that the stresses
do not depend on fluid movements which are overall translations or rotations, leading us to
define the strain rate tensor

εij =
1

2
(∂ivj + ∂jvi) (3.151)

in analogue with the strain tensor defined for the solid case. The next assumption is that
of a linear relationship between the strain rate tensor εij and the stress tensor σij . Again
in analogue to the solid case, this generally leads us to define the rank four viscosity tensor
Cijk` which enters in the relation

σij = Cijk`εk`. (3.152)

If the stress is symmetric, then it can be argued on the same grounds as for the stiffness
tensor that Cijk` is symmetric in the first two indices as well as in the last two. This is
the case for fluids that cannot carry any significant intrinsic angular momentum, i.e., an
angular momentum related to the rotation of the constituents. In addition, fluids are very
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commonly isotropic, leading to the viscosity tensor necessarily being isotropic as well and
based on the symmetries we must have

Cijk` = λδijδk` + µ(δikδj` + δi`δjk), (3.153)

where λ is the bulk viscosity and µ the dynamic viscosity . Using the Kronecker deltas to
perform the contractions, the relation between the viscous stress and the strain rate tensor
is given by

σij = λεkkδij + 2µεij =

(
λ+

2

3
µ

)
εkkδij + 2µ

(
εij −

1

3
εkkδij

)
, (3.154)

where the first term is the isotropic stress and the second the traceless deviatoric stress.
Sometimes the second viscosity ζ = λ+ 2µ/3 is introduced to slightly simplify this expres-
sion.

In the above, we note that εkk = ∂kvk = ∇ · ~v. This means that for an incompressible
fluid there is no isotropic stress due to viscosity. In this situation, the viscous stress is only
due to the strain rate that for the isotropic part means a change in volume and there may
still be a thermodynamic pressure p providing an isotropic stress, while it is the deviatoric
stress that necessarily is zero for a fluid with zero strain rate. Inserted into the Cauchy
momentum equation, this leads to

ρ
Dvi
Dt

= ρgi + ∂i(ζεkk − p) + 2µ∂jεij −
2

3
µ∂iεkk

= ρgi − ∂ip̃+ µ∂j∂jvi +
µ

3
∂i∂jvj (3.155a)

or in other terms

ρ
D~v

Dt
= ρ~g −∇p̃+ µ∇2~v +

µ

3
∇(∇ · ~v), (3.155b)

where we have introduced the mechanical pressure p̃ = p− ζ∇·~v. This is the Navier-Stokes
momentum equation for a compressible fluid. In general, just as the Euler equation, this
equation needs to be supplemented with additional assumptions on the continuity of mass
and energy as well as appropriate boundary conditions in order to fully describe the flow.
It should also be noted that we have assumed the viscosities λ and µ to be constants. In
general, this may not be true as the viscosity may depend on several parameters, including
density and pressure.

Example 3.31 Consider an incompressible stationary flow in a fixed direction, which may
be taken to be ~e3, see Fig. 3.13. The velocity field may then be written as ~v = v~e3, where v
is a scalar field that, due to the incompressibility condition ∇ ·~v = ∂3v = 0, cannot depend
on x3 and therefore is a function of x1 and x2 only. If the flow is driven by a pressure
gradient ∇p = ~e3p0/`, then the Navier-Stokes momentum equation takes the form

(PDE) : 0 = −p0

`
+ µ∇2v =⇒ ∇2v =

p0

`µ
. (3.156)

The velocity v therefore satisfies Poisson’s equation with a constant source term. In order
to solve this equation, we need to impose boundary conditions. For the fixed direction flow
to make sense, the region of interest must be translationally invariant in the x3 direction
and the region in the x1-x2-plane is independent of x3. This is the region in which we wish
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x3

~v = v(~x)~e3
V

Figure 3.13 A parallel flow through a cylinder along the cylinder symmetry axis, taken to be the ~e3

direction. Assuming that the stationary flow is pressure driven, that the fluid has a shear viscosity
µ, and that the flow is incompressible, the flow can be computed.

to solve for v and we refer to it as V . One possible set of boundary conditions, called no
slip conditions, is given by requiring that the flow velocity is zero at the region boundary
S, resulting in the Dirichlet boundary condition

(BC) : v(~x ∈ S) = 0. (3.157)

Taking the flow region to be a cylinder of radius R, the region V is a disc of radius R on
which we use polar coordinates ρ and φ. Due to the rotational symmetry of the problem,
both in the differential equation and the boundary conditions, the solution cannot depend
on φ and we find that v is only a function of the parameter ρ, v = v(ρ). Inserting this into
the differential equation leads to

v′′(ρ) +
1

ρ
v′(ρ) =

p0

`µ
, (3.158)

which may be solved using an integrating factor ρ. The resulting solution is given by

v(ρ) =
p0

4`µ
(ρ2 −R2). (3.159)

It should be noted that we have imposed a regularity condition v(0) < ∞ in order to fix
one of the integration constants to zero. As should be expected, the resulting flow is in the
negative ~e3 direction since ρ ≤ R. Naturally, this corresponds to a flow from higher to lower
pressure. Furthermore, the flow is proportional to the driving pressure gradient p0/` and
inversely proportional to the viscosity µ of the fluid.

While this model may be very rudimentary, it does demonstrate some basic dependencies
of a pressure driven flow. The actual situation is often not going to result in a flow of this
type, even if the container through which a fluid flows would be infinite, there is no guarantee
that the solution is going to be stable even if it exists. This must be checked explicitly and is
often not the case in fluid dynamics. However, we will continue to use this and flows based
on similar assumptions as very rudimentary models mainly for illustrative purposes.
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~v(~x)

S0

V0

V1

S1

dV
dS

~n

Figure 3.14 During a time dt, the surface S0 moves to the surface S1 according to the displacement
field ~v dt. If the flow is incompressible, the enclosed regions V0 and V1 will have the same volume,
resulting in ∇ · ~v = 0. The lower right corner shows the volume dV flowing out through a surface
d~S per time unit.

3.9.3 Incompressible flow
We have already discussed incompressible flows and seen the condition ∇ · ~v = 0 resulting
from requiring the material derivative of the density to be equal to zero. Let us briefly
comment on this condition and find its geometrical interpretation. Consider a volume V0

with boundary S0 as depicted in Fig. 3.14. The material within this volume will move
according to the velocity flow ~v, meaning that the material at the point ~x at time t0 will
be at the point ~x + ~v dt at time t0 + dt for small dt. The material at the surface S at t0
will form a new surface S1 at t0 + dt, as shown in the figure. By assumption of continuous
deformation of the fluid, the surfaces will both enclose the same material and the question
we wish to answer is how the volumes of the enclosed volumes relate to each other.

Looking at a small surface d~S, the volume swept out by this surface while moving with
velocity ~v during a time dt is given by

dV = ~v · d~S dt. (3.160)

This is also depicted in the right part of Fig. 3.14. Summing over the entire surface S0, this
swept volume will represent the difference between the volumes enclosed by S0 and S1. By
applying the divergence theorem, we find that

dV0

dt
=

∮
S0

~v · d~S =

∫
V0

∇ · ~v dV. (3.161)

It follows that if ∇ · ~v = 0, then the change in the volume occupied by the material does
not change with time.

An alternative way of arriving at the same result is to compute the volume V1, enclosed
by the surface S1, using the integral

V1 =

∫
V1

dV. (3.162)
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Making a change of variables to ~x ′ = ~x− ~v dt, we find that

V1 =

∫
V0

J dV0, (3.163)

where J is the Jacobian determinant of the transformation, given by

J =
1

N !
εi1...iN εj1...jN

N∏
k=1

∂xik
∂x′jk

=
1

N !
δi1...iNj1...jN

N∏
k=1

(δikjk + dt ∂jkvik)

' 1

N !
δi1...iNi1...iN

+
dt

(N − 1)!
δi1i2...iNj1i2...iN

∂j1vi1 = 1 + dt δi1j1∂j1vi1 = 1 + dt∇ · ~v, (3.164)

where we have used the properties of the generalised Kronecker delta from Section 2.3.4
and kept terms only to linear order in dt. It follows that

V1 =

∫
V0

(1 + dt∇ · ~v)dV0 = V0 + dt

∫
V0

∇ · ~v dV0, (3.165)

which gives the same result for V1 − V0 as that obtained in Eq. (3.161).

3.10 SUPERPOSITION AND INHOMOGENEITIES
A fundamental tool in the treatment of linear differential equations, partial as well as
ordinary, is the superposition principle. As we have discussed, a general linear differential
equation will be of the form

(PDE) : L̂u = f, (3.166a)

where L̂ is a linear differential operator and f is some function that does not depend on u.
If we also have linear boundary and initial conditions of the form

(BC/IC) : B̂u = g (3.166b)

on the boundary (spatial as well as temporal) where B̂ is also a linear operator, then the
problem is linear and allows superposition of the solutions. This means that if we have two
functions u1 and u2 which solve the problem for different inhomogeneities, f1 and g1 for u1

and f2 and g2 for u2, then the sum u1+2 = u1 + u2 is a solution to the problem

(PDE) : L̂u1+2 = f1+2 = f1 + f2, (3.167a)

(BC/IC) : B̂u1+2 = g1+2 = g1 + g2, (3.167b)

where again the boundary condition is only valid on the boundary. In order to arrive at this
conclusion, we use the linear property of the differential operator L̂

L̂(u1 + u2) = L̂u1 + L̂u2 = f1 + f2 (3.168)

and similarly for the operator B̂ specifying the boundary conditions.

Example 3.32 The superposition principle is useful for combining solutions to linear
problems into new solutions. A typical example is given by the electrostatic potential of two
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point charges q1 and q2 at points ~x1 and ~x2, respectively. The differential equation satisfied
by the electrostatic potential Φ is

∇2Φ = − ρ

ε0
, (3.169)

which follows from Maxwell’s equations. The Laplace operator ∇2 is linear and the potential
for a single point charge q is given by

Φ =
q

4πε0r
, (3.170)

where r is the distance to the charge. From the superposition principle therefore follows
that the total potential for both charges is given by

Φ =
1

4πε0

(
q1

|~x− ~x1|
+

q2

|~x− ~x2|

)
. (3.171)

The electric field ~E can be deduced from this potential through the relation ~E = −∇Φ.

The above example shows the power of superposition, i.e., we can take the solutions for
two different inhomogeneities and use them to construct the solution to a new problem.
In fact, this method is very general and we may do the same also for a continuous charge
distribution ρ(~x). If we consider the contribution from a small volume dV0 around ~x0, the
contribution from the charge within that volume is given by

dΦ(~x) =
1

4πε0

dq

|~x− ~x0|
=
ρ(~x0)

4πε0

dV0

|~x− ~x0|
. (3.172)

Summing the contributions by integration over the entire charge distribution, we find that

Φ(~x) =
1

4πε0

∫
ρ(~x0)

|~x− ~x0|
dV0. (3.173)

This is an example of a solution expressed using an integral with a Green’s function
G(~x, ~x0) = −1/4π|~x − ~x0|. We shall return to this method for solving partial differential
equations in Chapter 7.

In a similar fashion, superposition may be used to split a problem into several problems,
each of which is easier to solve than the original one. In the following, we will discuss some
possible approaches.

3.10.1 Removing inhomogeneities from boundaries
In many situations, in particular when solving linear partial differential equations using se-
ries methods, see Chapter 6, it is beneficial to work with homogeneous boundary conditions.
Consider the linear problem

(PDE) : L̂u = f, (~x ∈ V ) (3.174a)

(BC) : B̂u = g, (~x ∈ S1) (3.174b)

where S1 is part of the boundary of V . We can exchange the boundary condition for a
homogeneous boundary condition by selecting any function u0 that satisfies the boundary
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condition, without any regard for the differential equation, and requiring that u = v + u0.
Inserting this into the linear problem, we obtain a new linear problem

(PDE) : L̂v = f − L̂u0, (~x ∈ V ) (3.175a)

(BC) : B̂v = 0, (~x ∈ S1) (3.175b)

for v. Since we can compute L̂u0, we can find the new inhomogeneity in the differential
equation and possibly obtain a problem that is easier to solve. It should be noted that there
may also be other boundary conditions and it may not always be the best idea to find a
function u0 that makes all boundary conditions homogeneous.

Example 3.33 Let us take a situation where we are studying transversal oscillations of
a string for which one end is fixed and the other is subjected to forced oscillations with
angular frequency ω and amplitude A

(PDE) : utt − c2uxx = 0, (3.176a)

(BC) : u(0, t) = 0, u(`, t) = A sin(ωt), (3.176b)

(IC) : u(x, 0) = ut(x, 0) = 0. (3.176c)

We have here also assumed that the string is initially at rest with zero transversal displace-
ment at t = 0. A function that fulfils both boundary conditions is u0(x, t) = A sin(ωt)x/`
and letting u = u0 + v, we find that v must satisfy

(PDE) : vtt − c2vxx = Aω2 sin(ωt)
x

`
, (3.177a)

(BC) : v(0, t) = 0, v(`, t) = 0, (3.177b)

(IC) : v(x, 0) = 0, vt(x, 0) = −Aωx
`
. (3.177c)

At first glance, this may seem like a loss, we just traded a single inhomogeneity in a bound-
ary condition for inhomogeneities in both the differential equation as well as the initial
conditions. However, as we will discuss in Chapters 5 and 6, having homogeneous boundary
conditions will be a prerequisite for expanding solutions into series using Sturm–Liouville
theory. Besides, we can always find the solution for the inhomogeneous differential equa-
tion and the inhomogeneous initial condition separately and construct the full solution by
superposition.

3.10.2 Using known solutions
The method discussed above is even more powerful if we do care about which function u0 to
choose. In particular, if we have a problem to which we can find a solution, disregarding any
initial conditions, using it as u0 will remove the inhomogeneities from both the boundaries
as well as from the differential equation. Consider the linear problem

(PDE) : L̂u = f, (3.178a)

(BC) : B̂u = g, (3.178b)

(IC) : Îu = h, (3.178c)
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where the boundary condition is valid on the spatial boundary of the volume V in which
we wish to solve for u and the initial condition is valid at t = 0. If it exists, the stationary
or steady state solution u0 must fulfil both the differential equation as well as the boundary
conditions, but will generally not satisfy the initial condition. Again taking u = v + u0, we
now find that

(PDE) : L̂v = f − L̂u0 = 0, (3.179a)

(BC) : B̂v = g − B̂u0 = 0, (3.179b)

(IC) : Îv = h− Îu0, (3.179c)

where the initial condition will generally not be homogeneous. However, both the differential
equation and the boundary conditions are homogeneous and after finding the most general
solution to these, the final solution may be found by adapting the resulting free parameters
to the initial conditions.

Example 3.34 Let us study heat conduction along an insulated rod of length ` without
a heat source and initially with the temperature T0 everywhere. Furthermore the ends are
being held at temperatures T1 and T2, respectively, and we have the linear problem

(PDE) : Tt − aTxx = 0, (3.180a)

(BC) : T (0, t) = T1, T (`, t) = T2, (3.180b)

(IC) : T (x, 0) = T0. (3.180c)

The stationary solution to this problem is T st = T1 +(T2−T1)x/` and defining T = u+T st,
we find that

(PDE) : ut − auxx = 0, (3.181a)

(BC) : u(0, t) = 0, u(`, t) = 0, (3.181b)

(IC) : u(x, 0) = T0 − T1 − (T2 − T1)
x

`
. (3.181c)

The resulting problem for u is therefore homogeneous in both the differential equation as
well as the boundary conditions. In order to solve the problem, we need to find the general
solution for the homogeneous differential equation and boundary conditions and adapt it
to the inhomogeneous initial conditions.

This approach is the partial differential equation equivalent of first finding a particular
solution to an ordinary differential equation and then adding a homogeneous solution to it
in order to adapt it to the boundary conditions. In this case, we find a solution that matches
both the differential equation as well as the boundary conditions and use it as the particular
solution. A solution to the homogeneous problem is then added and the freedom in choosing
it is used to adapt the full solution to the original initial conditions. It should also be noted
that a similar approach may be used for problems that are not time dependent by instead
leaving out one of the spatial boundaries when looking for a particular solution.

3.11 MODELLING THIN VOLUMES
In many physical situations where a volume may be considered thin in one or more direc-
tions, it is often possible to rewrite the full model in terms of a lower dimensional one by
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making an assumption of the solution being approximately constant in the thin dimension.
In order to illustrate this, we will consider the heat conduction problem in three dimensions
within the volume 0 < x3 < h, where h may be considered small, the meaning of which must
be interpreted in terms of the temperature diffusivity a and the typical time scales involved
in the problem. We will assume a source density κ(~x, t) and that the boundary conditions
at x3 = 0 and h are given by Newton’s law of cooling with heat transfer coefficient α and
external temperature T0. The resulting linear problem is of the form

(PDE) : Tt − a∇2T = κ(~x, t), (0 < x3 < h) (3.182a)

(BC) : αT + λ∂3T = αT0, (x3 = h) (3.182b)

αT − λ∂3T = αT0, (x3 = 0) (3.182c)

(IC) : T (~x, 0) = T1(~x). (3.182d)

We now introduce the x3 average f̄(x1, x2, t) of any function f(~x, t) as

f̄ =
1

h

∫ h

0

f(~x, t)dx3, (3.183)

with the aim of finding a differential equation that will describe the x3 averaged temperature
T̄ . Note that the given problem does not have any boundary conditions in the x1 and x2

directions and that the resulting differential equation for T̄ should not involve any boundary
conditions, but be a problem in two dimensions.

Dividing the differential equation for T by h and integrating with respect to x3, we now
find that

T̄t − a∇2T̄ − a 1

h

∫ h

0

∂2
3T dx

3 = κ̄, (3.184)

where we have used that

∇2T̄ =
1

h

∫ h

0

(∂2
1 + ∂2

2)T dx3, (3.185)

since the partial derivatives may be moved outside of the integral and T̄ does not depend
on x3. Luckily, the integral in Eq. (3.184) has an integrand that is a total derivative and we
can perform it without trouble∫ h

0

∂2
3T dx

3 = [∂3T ]x
3=h
x3=0 = α(2T0 − T |x3=h − T |x3=0) ' 2α(T0 − T̄ ), (3.186)

where we have assumed that T |x3=h + T |x3=0 ' 2T̄ , i.e., that the averaged temperature
is roughly the mean value of the boundary temperatures. This is a good approximation as
long as h may be considered small. For the initial condition, we average both sides with
respect to x3, resulting in the problem

(PDE) : T̄t − a∇2T̄ = κ̄− 2a
α

h
(T̄ − T0), (3.187a)

(IC) : T̄ (x1, x2, 0) = T̄1(x1, x2). (3.187b)

This problem is now a two-dimensional approximation of the full three-dimensional problem
and the boundary in the thin x3 direction has been exchanged for an additional temperature
dependent source term. It should be noted that this source term corresponds to a source
whenever T̄ < T0, corresponding to a net influx of heat, and to a sink whenever T̄ > T0,
corresponding to a net outflux of heat.

This approach works well in the case of Robin or Neumann boundary conditions. If
the boundary conditions in the thin direction are of Dirichlet type, we cannot use them to
express the normal derivative as done in Eq. (3.186).
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Physical dimension Symbol Typical units
Length L m, mm, yards, light years
Time T s, days, weeks, years
Mass M kg, g, tonnes
Temperature Θ K
Electric charge Q C

Table 3.2 The five basic physical dimensions, the symbols used to represent them, and some typ-
ical units in which they are measured. Generally, the physical dimension of any quantity may be
expressed as a product of these dimensions.

3.12 DIMENSIONAL ANALYSIS
Although often taken almost for granted, let us briefly remind ourselves on the use of phys-
ical dimensions and their importance when it comes to physics in general and differential
equation modelling in particular. All physical quantities are not just numbers to be put
into an equation, but are associated with a physical dimension. There are five basic phys-
ical dimensions, summarised in Table 3.2, and the physical dimension of any quantity will
generally be some product of powers of these. As physical quantities are multiplied together,
the physical dimension of the resulting quantity is the product of the physical dimensions
of the original quantities. Similarly, when the ratio between two physical quantities is taken
the result is the ratio of the physical dimensions. Given a physical quantity q, we will denote
its physical dimension as [q].

Example 3.35 An object travels a distance ` at constant velocity v during the time t.
The velocity may be computed as v = `/t and the involved physical dimensions are [`] = L,
[t] = T and [v] = [`]/[t] = L/T. As such, ` is a length, which is measured using length units,
t is a time, which is measured in time units, and v is a velocity, which is measured in units
of length per time. This example should already be familiar to most, but illustrates the
general idea that is prevalent throughout physics.

While quantities of different physical dimension may be multiplied and divided with each
other to yield new quantities of yet a third physical dimension, it makes no sense to add or
subtract quantities of different physical dimension as the result would be nonsense, there
just is no way of adding 1 m and 0.2 s and getting a meaningful answer. The exception to
this general rule is when an underlying equivalence between the two dimensions is assumed,
for example by using units such that a normally dimensionful natural constant becomes
dimensionless. This is common in both quantum mechanics and relativity, where one will
often use units such that Planck’s constant ~ = 1 and the speed of light in vacuum c = 1,
respectively. In these situations, it is always possible to reinsert the natural constants into
the resulting expressions using dimensional analysis.

Example 3.36 In relativity with units such that [c] = L/T = 1, we find that L = T and
so the number of basic physical dimensions is reduced by one. The dimensionless gamma
factor is then given by

γ =
1√

1− v2
. (3.188)
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If we wish to use a different set of units where L 6= T, the subtraction in the denominator
must be dimensionless in order for the gamma factor to be dimensionless. It follows that
the term v2 must be multiplied by some power of c in order to have the correct dimensions,
i.e., we must make the substitution v2 → cαv2. We can find the power α by ensuring that

[cαv2] = L2+αT−2−α = 1 =⇒ α = −2. (3.189)

The expression for the gamma factor with c reinserted is therefore

γ =
1√

1− v2

c2

. (3.190)

In particular, the idea that quantities with different physical dimensions may not be
added applies to functions, which must receive arguments with the appropriate physical
dimension in order to be meaningful. For example, a quantity with physical dimension
cannot be the argument of the function f(x) = x + x2 as it would involve adding two
quantities with different physical dimension, [x] and [x]2, respectively. On the other hand,
for the function f(x) = x`+ x2, where [`] = L the argument must be dimensionful as both
terms must have the same dimension. This requirement tells us that

[x][`] = [x]L = [x]2 =⇒ [x] = L. (3.191)

Common mathematical functions such as the exponential function, the logarithm, sines,
and cosines may all be written in the form of series expansions

f(x) =

∞∑
n=0

anx
n, (3.192)

where the coefficients an are dimensionless. By the discussion above, the argument x must
therefore be dimensionless and it is useful to remember that all of these functions must have
dimensionless arguments, it is meaningless to talk about the logarithm of a length ln(`).
However, it is always possible to take the logarithm of a length divided by some reference
length `0, i.e., ln(`/`0), as the argument is then dimensionless.

Dimensional analysis also provides us with a very powerful tool for estimating the de-
pendence of a physical quantity of interest on other given physical quantities. By knowing
the dimension of the target quantity and the given quantities, we can perform the following
procedure:

1. Identify the dimension of the target quantity.

2. Write down a general product of powers of the given quantities.

3. Identify the dimension of the product constructed in 2 with the dimension of the
target quantity. Each basic physical dimension must come with the correct power.

4. Solve the ensuing linear system of equations to find the appropriate dependence.
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T

m

xk

Figure 3.15 A basic spring-mass system. The dependence of the period T of completing one full
oscillation in the x-direction on the mass m and spring constant k may be deduced through dimen-
sional analysis.

Example 3.37 We are interested in finding out how the period of oscillation T for a
spring-mass system with mass m and spring constant k, see Fig. 3.15, depends on these
quantities. The most general product we may write using m and k is mαkβ , where α and
β are to be determined. We know that the target quantity T has dimensions [T ] = T and
that [m] = M. The dimension of k can be deduced from the force relation

F = kx =⇒ [F ] =
ML

T2
= [k][x] = [k]L, (3.193)

where x is the displacement from the position where the mass is when the spring is relaxed.
It follows that [k] = M/T2 and that

T = [m]α[k]β = Mα+βT−2β =⇒ α+ β = 0, −2β = 1. (3.194)

Solving the system of equations leads to α = −β = 1/2 and thus
√
m/k is the only

combination of m and k that has the physical dimension of time. In general, this may have
to be corrected through multiplication by a dimensionless constant C that must be found by
modelling and solving the system, but the final solution must be on the form T = C

√
m/k.

3.12.1 Units
When dealing with variables that have physical dimension, we must always select a set of
units to work with. A complete set of units is defined by specifying reference values for all
of the basic physical dimensions that are of relevance. In the general case, with all the five
basic physical dimensions listed in Table 3.2, we would have to specify a reference value ui
for each of them, where the index i denotes the corresponding basic physical dimension,
which we will call the base unit . The table also lists some common choices of units used for
each of the basic physical dimensions.

Once the base units have been selected, any quantity p that has the physical dimension
of the base unit X will have a measured value λp in this set of units given by

p = λpuX, (3.195)

such that λp is dimensionless. As we have seen, a quantity may also have a physical di-
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mension that is the product of powers of all the basic ones. In particular, if we consider a
quantity p such that

[p] =
∏
i

Xαii , (3.196)

where Xi is one of the basic physical dimensions, we find that we can use the unit

up =
∏
i

uαiXi
(3.197)

as a unit for p.

Example 3.38 If we want to consider how a particle moves there are two basic physical
dimensions which are of relevance, length L and time T. A common choice for the base units
uL and uT is given by

uL = 1 m and uT = 1 s. (3.198)

Any length ` can now be written as a number λ` multiplied by uL and any time t can be
written as a number λt multiplied by uT. When we wish to describe velocities, which have
physical dimension L/T, we would obtain αL = 1 and αT = −1, indicating that velocities
should be measured in terms of the unit

uv =
uL

uT
=

1 m

1 s
= 1

m

s
. (3.199)

As people who have spent a significant amount of time in both countries using imperial
units (feet, gallons, pounds, etc.) and countries using the metric system (meters, kilograms,
etc.) will be painfully aware of, the choice of the base units is arbitrary and different default
choices have developed in different places. Using different base units will naturally result
in different measured values for the same physical quantity, but there is some order to the
madness. Consider a physical dimension X for which we could use the base unit uX or the
base unit u′X. Any quantity p with the physical dimension of X can now be expressed in
terms of either of these base units as

p = λpuX = λ′pu
′
X, (3.200)

where λp and λ′p are the measured values in the respective units. In particular, since uX has
physical dimension X, it can be expressed as uX = xXu

′
X and doing so we find that

λpxXu
′
X = λ′pu

′
X, (3.201)

implying that λ′p = λpxX. Finding the transformation relation for the composite units, we
find that the measured value of a quantity p which has physical dimensions according to
Eq. (3.196) changes as

λ′p = λp
∏
i

xαiXi
. (3.202)
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Example 3.39 When measuring lengths, we could choose to use with the unit of uL = 1 m
or with the unit of u′L = 1 ft. In converting measured values between these two units, we
would make use of the relation 1 ft = 0.3048 m, implying that

xL =
1 m

1 ft
=

1

0.3048
' 3.28. (3.203)

An area A has physical dimension L2 and the measured value λA in terms of m2 will be
related to the measured value λ′A in terms of ft2 as

λ′A = x2
LλA ' 10.8λA. (3.204)

As a direct consequence of the above discussion, any dimensionless physical quantity,
such as the ratio between two lengths, has all of the αi = 0 and consequently we find that
if p is dimensionless, then

λp = λ′p
∏
i

x0
Xi = λ′p, (3.205)

i.e., the measured value of a dimensionless quantity does not change when we change the
base units.

3.12.2 The Buckingham π theorem
Consider a situation where we have n different physical variables qi that we know are related
and that these have units built upon k different basic physical dimensions. Any physical
relation connecting these variables can be written in terms of a dimensionless function

f(q1, . . . , qn) = 0, (3.206)

but the freedom in how this function can be constructed can be significantly reduced through
means of dimensional analysis.

Example 3.40 In the case of constant motion in one dimension starting at the origin, we
may want to relate the displacement from the origin x, the time t, and the velocity v. We
already know that the resulting relationship can be written as x = vt, but let us put it on
the form of Eq. (3.206). By dividing with x on both sides and subtracting one, we find that

0 =
vt

x
− 1 ≡ f(x, t, v), (3.207)

where f(x, t, v) is the dimensionless function describing the physical relationship between
x, t, and v.

With our assumption of there being k different basic physical dimensions, we will have
at most k variables that have an independent physical dimension in the sense that all other
variables will have the same dimension as some combination of the first k. If this is not
the case, we have a degenerate situation and could essentially select a smaller set of basic
physical dimensions. For our purposes here, we will assume that there are k variables that
have independent physical dimension and that we order those to be the first k of the set
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of variables qi. By our assumption, any qi with i > k now has a physical dimension that is
dependent on the dimension of the first k variables. Concretely, we find that

[qi] =

k∏
j=1

[qj ]
βij , (3.208)

where the βij are numbers and i > k. Defining the new variable

Qi(q1, . . . , qk) =

k∏
j=1

q
βij
j , (3.209)

we therefore find that [Qi] = [qi] and we can construct a dimensionless quantity

πi−k =
qi
Qi

(3.210)

that can be used to rewrite the physical relationship between the qi as

0 = f(q1, . . . , qn) = f(q1, . . . , qk, π1Qk+1, . . . , πn−kQn)

≡ F (q1, . . . , qk, π1, . . . , πn−k). (3.211)

However, by assumption, the qi with i ≤ k have independent physical dimension and it
is therefore not possible to construct any dimensionless product of powers of these which
depends on them. As a result, the function F must be independent of these variables and
we find that

F (π1, . . . , πn−k) = f(q1, . . . , qn) = 0, (3.212)

where we have removed the dependence on the qi from F . The physical relationship among
all of the qi can therefore be rewritten as a relationship between the n − k dimensionless
variables πi. This result is known as the Buckingham π theorem, where the π refers to the
dimensionless variables, and is a central result in dimensional analysis.

Example 3.41 As an application of the Buckingham π theorem, let us reconsider the
problem of Example 3.37, where we wished to find the form of the relationship between the
spring constant k, the mass m, and the period of oscillation T . These parameters depend
on the two basic physical dimensions M and T and so any physical relationship should be
possible to express in terms of 3−2 = 1 dimensionless parameter π. Taking q1 = T , q2 = m,
and q3 = k, we find that

[q3] = [k] = [T ]−2[m]1 = [q1]−2[q2]1 =⇒ Q3 =
m

T 2
. (3.213)

Directly applying the definition of the dimensionless π parameter now results in

π =
q3

Q3
=
kT 2

m
(3.214)

and the physical relationship between them must take the form

F (π) = 0 =⇒ π =
kT 2

m
= F−1(0) ≡ C2, (3.215)
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where F−1 is the inverse of the function F and C2 is a dimensionless constant. Solving for
the period of oscillation gives us

T = C

√
m

k
, (3.216)

which is the exact same result as in Example 3.37.

Example 3.42 Let us consider a situation where there will be several dimensionless com-
binations πi and we know the actual result, motion with constant acceleration a and initial
velocity v starting at the origin and we are looking for the dependence of the displacement
x on time t. The basic physical units involved in this situation are length L and time T and
the known result is of the form

x = vt+
at2

2
, (3.217)

but we wish to know how far dimensional analysis will get us. The choice of dimensionally
independent quantities in this case is arbitrary so let us therefore consider two different
choices, starting with x and t. For the remaining two quantities v and a, we find that the
corresponding dimensionless variables are

π1 =
vt

x
and π2 =

at2

x
, (3.218)

respectively. The physical relationship between the quantities must therefore be of the form

F (π1, π2) = 0. (3.219)

We note that this is the requirement for a level curve in the two-dimensional π1-π2-plane
and, as long as this curve is a one-to-one relationship, we can write π1 as a function of π2

π1 = g1(π2) =⇒ vt

x
= g1

(
at2

x

)
. (3.220)

Comparing to the known result, we find that g1(π2) = 1 − π2/2, but there is no way
of figuring this out from dimensional analysis alone. With this choice of dimensionally
independent quantities, it is therefore not possible to solve for x, since it appears both on
the left-hand side and in the argument of g1 on the right-hand side.

A different choice of dimensionally independent quantities could have been v and a. In
this scenario, we would instead obtain

π′1 =
xa

v2
and π′2 =

at

v
, (3.221)

where we have introduced the primes to distinguish these dimensionless variables from the
previous ones. In the same fashion, we conclude that

π′1 = g2(π′2) =⇒ x =
v2

a
g2

(
at

v

)
, (3.222)

where it should be noted that g2 is not the same function as the g1 we obtained when
using different dimensionally independent quantities. This is as far as we will get based
on dimensional analysis alone, but comparison with the known relationship would give us
g2(π′2) = π′2 + π′22 /2.
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3.12.3 Dimensional analysis and modelling
Whenever writing down a physical model, in terms of differential equations or otherwise, it
is good practice to make sure that it is dimensionally consistent. We can always do this by
ensuring that all of the terms in a given expression have the same physical dimension and
that any function in the expression is taking arguments with the appropriate dimension.
Throughout this chapter, we have modelled different physical situations using differential
equations and integrals. It is therefore worth having a look at how these relate to dimensional
analysis.

For any derivative, ordinary as well as partial, we are looking at limits of the form

df

dx
= lim
h→0

f(x+ h)− f(x)

h
. (3.223)

For the expression inside the limit to be dimensionally consistent, the dimension of h must
be equal to [x] for the argument of f(x + h) to be meaningful. As the dimension of the
expression does not change with h, it will also be the dimensions of the derivative, i.e.,[

df

dx

]
=

[f ]

[h]
=

[f ]

[x]
. (3.224)

In a more physical approach, the derivative is essentially a small change in f , which must
have units of [f ], divided by a small change in x, which must have units of [x], thereby
giving a dimension [f ]/[x] for the derivative df/dx.

Example 3.43 Let us deduce the physical dimension of the diffusivity D, which appears
in the diffusion equation

ut −D∇2u = κ. (3.225)

For the left-hand side to be meaningful, both terms must have the same physical dimension
and it follows that

[D] =
[ut]

[∇2u]
. (3.226)

The nominator here is the dimension of the derivative of u with respect to time t and we
therefore find that [ut] = [∂u/∂t] = [u]/T and the denominator contains second derivatives
with respect to the lengths xi, e.g., [∂2u/∂(x1)2] = [u]/[x1]2 = [u]/L2. Inserting this into
the above equation for [D], we obtain

[D] =
[u]/T

[u]/L2
=

L2

T
. (3.227)

The diffusivity of any quantity u therefore has dimensions of length squared divided by
time, regardless of the dimension of u.

A similar approach may be taken to the dimensional analysis of integrals. Considering
that an integral is in essence nothing more than the limit of a sum, its dimension will be
given by [∫

f(x) dx

]
= [f ][dx] = [f ][x], (3.228)

i.e., it will be the product of the dimensions of the integrand and that of the variable being
integrated over. One important thing to remember is that integrals over multiple variables
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will give a contribution to the dimension from every variable that is being integrated over.
In particular, for a three-dimensional volume integral, [dV ] = L3.

3.12.4 Parameters as units
In some situations when a physical problem depends on a number of unknown physical
input parameters, it can be useful to use these input parameters to define the base units as
much as possible. This is particularly applicable when attempting to solve such a problem
numerically as the resulting problem will generally be dimensionless and depend at most on
a number of dimensionless parameters. This lets us solve a well defined numerical problem
without having to assume anything about the unknown physical variables and at the end
the result may be rescaled with the correct physical units in order to produce a meaningful
result. The procedure for doing so is best illustrated through an example.

Example 3.44 Consider the one-dimensional heat transport problem in a material

(PDE) : Tt − aTxx = 0, (3.229a)

(BC) : T (0, t) = 0, T (`, t) = T0, (3.229b)

(IC) : T (x, 0) = 0, (3.229c)

where T (x, t) is the temperature at position x at time t, ` is the length of the one-dimensional
region we are interested in, and a is a material constant with physical dimension L2/T. One
end of the region is being held at zero temperature, the other at temperature T0, and the
entire system is initially at zero temperature. This problem contains three basic physical
dimensions, length L, time T, and temperature Θ and we have three unknown physical
variables T0, a, and `. Using these to construct base units of the correct physical dimensions,
we find that

uL = `, uT =
`2

a
, and uΘ = T0. (3.230)

The remaining physical quantities in the problem may now be written in terms of these
units as

x = `ξ, t =
`2

a
τ, and T = T0θ(ξ, τ), (3.231)

where ξ, τ , and θ are all dimensionless quantities. The partial differential equation now
takes the form

(PDE) : θτ − θξξ = 0, (3.232a)

(BC) : θ(0, τ) = 0, θ(1, τ) = 1, (3.232b)

(IC) : θ(ξ, 0) = 0, (3.232c)

which is a differential equation where the numerical values of the input parameters are
known and therefore can be put directly into a computer without specifying any of the
unknown parameters T0, a, and `. The resulting numerical solution for θ(ξ, τ) is illustrated
in Fig. 3.16. Note how we in this figure have selected to use the original quantities as axis
labels rather than introducing the dimensionless quantities θ, ξ, and τ , e.g., we have used
T/T0 instead of θ.
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Figure 3.16 The evolution of the temperature in Example 3.44 based on a numerical solution to the
resulting dimensionless problem. The solution is shown for at/`2 = 0.03, 0.1, 0.3, and 1, respectively
(lower to upper curve).

3.13 MODELLING WITH DELTA FUNCTIONS
We have already run into the delta function and the three-dimensional delta function. Let
us examine them a bit closer and figure out some of their important properties and how
they may be used to model densities that may be considered very thin, i.e., points, lines,
and surfaces. The defining property of the one-dimensional delta function is∫

δ(x− x0)f(x)dx = f(x0) (3.233)

as long as x0 is within the integration boundaries. For any expression of this type, we
can examine its physical dimension in order to deduce the physical dimension of the delta
function by looking at the dimensions of the integral

[δ(x− x0)][f ][dx] = [f ] =⇒ [δ(x− x0)] =
1

[x]
. (3.234)

In other words, the one-dimensional delta function has a physical dimension that is the
reciprocal of the physical dimension of its argument. This is important to remember when
using delta functions in modelling, as the physical dimension of the delta function will
be needed to do the proper dimensional consistency checks. In a similar fashion, we can
consider the N -dimensional delta function with the defining relation∫

δ(N)(~x− ~a)f(~x)dNx = f(~a) (3.235)

as long as ~a is within the integration region. As a result, we find that [δ(N)] = 1/[x]N .
In N dimensions, we now know that δ(N)(~x) has the physical dimension of the reciprocal

of the volume. If we multiply it by an extensive physical quantity Q, such as a charge or
a mass, we will have a quantity that has the same dimension as a concentration of that
physical quantity. Indeed, the resulting function Qδ(N)(~x−~a) will be describing the density
if we gather an amount of the extensive quantity at the point ~a. This is also in accordance
with the fact that ∫

V

Qδ(N)(~x− ~a) dV =

{
Q, ~a ∈ V
0, otherwise

, (3.236)
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i.e., the total amount of the quantity in the volume V is Q if ~x = ~a lies within the volume
and zero otherwise.

Example 3.45 An electrical point charge with magnitude q in the origin in three dimen-
sions can be described by the electric charge density

ρ(~x) = qδ(3)(~x). (3.237)

The dimension of an electric charge density should be charge per volume and indeed we
find that

[ρ] = [q][δ(3)(~x)] =
Q

L3
. (3.238)

In what follows, we will specialise to the case where the extensive quantity is a charge,
but it should be kept in mind that the general approach is valid regardless of the type of
extensive quantity we are dealing with. In other words, we could just as well be talking
about a mass or another extensive quantity gathered at a single point, line, or surface.

3.13.1 Coordinate transformations
Using Cartesian coordinates xi, we can express the N -dimensional delta function δ(N) in
terms of one-dimensional delta functions of the coordinates as

δ(N)(~x− ~a) =

N∏
i=1

δ(xi − ai). (3.239)

We can verify that this gives the proper integration property by integrating this along with
a function f(~x) = f(x1, . . . , xN ) to obtain∫

f(x1, . . . , xN )

N∏
i=1

δ(xi − ai)dxi = f(a1, . . . , aN ) = f(~a), (3.240)

where we have used the defining property of the one-dimensional delta functions and as-
sumed that ~x = ~a is inside the integration region. This is nothing else than the defining
property of δ(N)(~x− ~a).

In some situations, using Cartesian coordinates may not be the best option and we may
then ask ourselves the question of how the N -dimensional delta function can be expressed
in terms of one-dimensional delta functions of general coordinates. Since it should be zero
everywhere but at the point ~a, we can make the ansatz

δ(N)(~x− ~a) = D(~a)

N∏
b=1

δ(yb − ab), (3.241)

where ab are the general coordinates of the point for which ~x = ~a. The function D(~a) that
precedes the product of one-dimensional delta functions is necessary as the coordinates may
not have the appropriate physical dimensions and so this must somehow be ensured.
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Example 3.46 In the case of polar coordinates in a two-dimensional space, we find that

[δ(2)] =
1

L2
= [D][δ(r − ar)][δ(φ− aφ)] =

[D]

L
, (3.242)

since the angle φ is dimensionless [φ] = 1. It follows that the function D must satisfy
[D] = 1/L.

Writing down the defining relation of the N -dimensional delta function and expressing
it in the curvilinear coordinates, we find that

f(~a) =

∫
f(y1, . . . , yN )D(~a)

(
N∏
b=1

δ(yb − ab)

)
J dy1 . . . dyN = f(~a)D(~a)J (~a), (3.243)

where J is the Jacobian determinant. It follows that D(~a) = 1/J (~a) and therefore

δ(N)(~x− ~a) =
1

J (~a)

N∏
b=1

δ(yb − ab). (3.244a)

In particular, in orthogonal coordinates the Jacobian determinant may be expressed as the
product of the scale factors and we find that

δ(N)(~x− ~a) =

N∏
b=1

δ(yb − ab)
hb

. (3.244b)

Example 3.47 In spherical coordinates in three dimensions, the scale factors are given by
hr = 1, hθ = r, and hϕ = r sin(θ). As a consequence, the three-dimensional delta function
at the point ~x0 with coordinates r = r0, θ = θ0, and ϕ = ϕ0 will be given by

δ(3)(~x− ~x0) =
1

r2
0 sin(θ0)

δ(r − r0)δ(θ − θ0)δ(ϕ− ϕ0). (3.245)

Looking at the dimensions of this expression, they are also consistent with [δ(3)] = 1/L3 as
the pre-factor has dimensions of 1/L2, the radial delta function 1/L, and the angular delta
functions are dimensionless. Note that it does not matter whether we use r0 and θ0 or r
and θ in the factor in front of the delta functions as the delta functions are non-zero only
when r = r0 and θ = θ0.

3.13.2 Lines and surfaces
As we have just seen, the N -dimensional delta function can be used to describe densities of
point charges. However, point charges are not the only type of charges where the density
becomes singular due to having a finite amount of charge within a region with vanishing
volume. In three-dimensional spaces, we can also have an extensive quantity distributed
along a line or on a surface, which both have zero volume. Let us therefore demonstrate
how these can be described using delta functions.
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In the case of a point charge in three dimensions, we found that the density was described
by three delta functions, each corresponding to one of the three conditions necessary to
specify a single point. In the case of a line or a surface, they will instead be specified using
two and one conditions, respectively. The first order of business is therefore to write the
density of the line charge and surface charge as

ρ(~x) = ρ`(~x)f1(~x)δ(g1(~x))δ(g2(~x)) and ρ(~x) = σ(~x)f2(~x)δ(h(~x)), (3.246)

respectively, where ρ`(~x) is the linear density of the line charge, σ(~x) the surface density
of the surface charge, fi(~x) are normalising functions, gi(~x) = 0 are the conditions for the
line, and h(~x) = 0 is the condition for the surface. We can now normalise these densities
properly by making sure that whenever we integrate over a volume V containing a given
part of the line Γ or part of the area S, the resulting total charge is given by

Q =

∫
Γ

ρ`(~x)d` and Q =

∫
S

σ(~x)dS, (3.247)

respectively. By definition of the density, this charge should also be given by

Q =

∫
V

ρ(~x)dV. (3.248)

Using the delta functions to remove the superfluous integrals, we can find the normalising
functions fi(~x).

Example 3.48 Consider a surface charge density on the sphere of radius R given by
σ(θ, ϕ). The defining condition for the sphere is h(~x) = r − R = 0 in spherical coordinates
and we therefore make the ansatz

ρ(~x) = σ(θ, ϕ)f2(~x)δ(r −R). (3.249)

The resulting charge within a volume V will then be given by

Q =

∫
V

σ(θ, ϕ)f2(~x)δ(r −R)r2 sin(θ)dr dθ dϕ. (3.250)

Using the delta function to perform the integral over r, we find that

Q =

∫
S

σ(θ, ϕ)f2(~x)R2 sin(θ)dθ dϕ, (3.251)

where S is the surface on the sphere r = R that is contained in the volume V . The surface
element on the sphere is given by dS = R2 sin(θ)dθ dϕ and we end up with

Q =

∫
S

σ(θ, ϕ)f2(~x)dS =

∫
S

σ(θ, ϕ)dS. (3.252)

Since this should hold for any volume V , we conclude that f2(~x) = 1 in this case. The
density of the surface charge is therefore described by

ρ(~x) = σ(θ, ϕ)δ(r −R). (3.253)

Again, the physical dimensions of this expression are consistent. A surface charge density
should have physical dimension Q/L2 and a charge density Q/L3. Since the one-dimensional
delta function δ(r −R) has the physical dimension of 1/[r] = 1/L, the physical dimensions
of both sides of the expression match.
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Example 3.49 A line charge along the line θ = θ0 and ϕ = ϕ0 in spherical coordinates
has the linear charge density ρ`(r). The constraining functions are given by g1(θ) = θ − θ0

and g2(ϕ) = ϕ− ϕ0, respectively, and we make the ansatz

ρ(~x) = ρ`(r)f1(~x)δ(θ − θ0)δ(ϕ− ϕ0). (3.254)

Integrating over a spherical shell with R < r < R + ε, where ε is a small positive number,
we find that the total charge within this shell is given by

Q =

∫ R+ε

r=R

∫ π

θ=0

∫ 2π

ϕ=0

ρ`(r)f1(r, θ, ϕ)δ(θ − θ0)δ(ϕ− ϕ0)r2 sin(θ)dr dθ dϕ

=

∫ R+ε

R

ρ`(r)f1(r, θ0, ϕ0)r2 sin(θ0)dr ' ρ`(R)f1(R, θ0, ϕ0)R2 sin(θ0)ε. (3.255a)

On the other hand, the charge should also be given by

Q =

∫ R+ε

R

ρ`(r)dr = ρ`(R)ε. (3.255b)

As a result, we can identify the normalisation

f1(r, θ, ϕ) =
1

r2 sin(θ)
. (3.256a)

and therefore the line charge is described by the charge density

ρ(~x) =
ρ`(r)

r2 sin(θ)
δ(θ − θ0)δ(ϕ− ϕ0). (3.256b)

Again, we can easily verify that this charge density has dimensions of Q/L3.

The above examples are special cases of the situation when the described line or surface is
a coordinate line or surface in orthogonal coordinates. For an orthogonal coordinate system,
let us look at a surface described by y1 = a1, but remember that the argumentation will
be the same regardless of which coordinate we place the constraint on. A surface charge on
this surface will be described by the charge density

ρ = σf2δ(y
1 − a1). (3.257)

Integrating over a volume V , expressing it in the orthogonal coordinate system, and using
the delta function to perform the y1 integral results in

Q =

∫
V

ρ dV =

∫
V

σf2δ(y
1 − a1)h1h2h3dy

1dy2dy3 =

∫
y1=a1

σf2h1h2h3dy
2dy3, (3.258)

where the surface integral over y1 = a1 is taken over the part of the surface contained in
V . This charge is also given by

Q =

∫
y1=a1

σ dS =

∫
y1=a1

σ

∣∣∣∣ ∂~x∂y2
× ∂~x

∂y3

∣∣∣∣ dy2dy3, (3.259)
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where we also know that ∣∣∣∣ ∂~x∂y2
× ∂~x

∂y3

∣∣∣∣ = h2h3 |~e2 × ~e3| = h2h3. (3.260)

We therefore conclude that∫
y1=a1

σf2h1h2h3dy
2dy3 =

∫
y1=a1

σh2h3dy
2dy3 (3.261)

and therefore

f2 =
1

h1
=⇒ ρ(~x) = σ

δ(y1 − a1)

h1
. (3.262)

This is also in agreement with the dimensionality of the charge density. In particular, we
find that the dimension of h1 is given by

[h1] =

[
∂~x

∂y1

]
=

L

[y1]
. (3.263)

This implies that

[ρ] =
[σ][δ(y1 − a1)]

[h1]
=

Q

L2

[y1]

[y1]L
=

Q

L3
(3.264)

as expected. Similar argumentation may be applied to a line charge located at a coordinate
line, see Problem 3.44.

3.14 PROBLEMS
Problem 3.1. Identify which of the following quantities are extensive and which are in-
tensive properties:

a) Entropy

b) Tension

c) Chemical potential

d) Melting point

e) Angular momentum

f) Kinetic energy

Problem 3.2. Consider a substance that is produced with a source density

κ(~x, t) = κ0 exp

(
−ρ

2

r2
0

)
exp

(
− t
τ

)
(3.265)

within a two-dimensional space, where ρ is the radial polar coordinate and r0, τ , and κ0 are
constants with the appropriate physical dimensions. Find an expression for the production
per unit time within the sub-region ρ ≤ R and the total amount produced in the entire
space from t = 0 to t→∞.
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Problem 3.3. The concentration u of a substance at a given time t0 is described by

u(~x, t0) = u0 cos

(
πx1

L

)
sin2

(
πx2

L

)
cos2

(
πx3

L

)
, (3.266)

where u0 is a constant. Assume that the current is given by Fick’s law with a known
diffusivity D and compute the total flux of the substance out of the cube 0 < xi < L at
t = t0.

Problem 3.4. Just as for the string in Section 3.5.1, the wave equation for transversal
motion of the membrane derived in Section 3.5.2 may also be derived from the continuity
equation for the momentum in the x3 direction. The corresponding momentum current is

~ = −σ∇u. (3.267)

Verify that the wave equation follows from the continuity equation with this current.

Problem 3.5. In the diffusion of a substance that has a different density than the medium
in which it is diffusing, the total current will be the sum of the usual diffusive current in
Fick’s law and a current due to gravitation

~g = k(ρ− ρ0)u~g, (3.268)

where k is a constant, ρ and ρ0 are the densities of the substance and the medium, respec-
tively, u is the concentration and ~g the gravitational field. Use the continuity equation for
the substance to derive a partial differential equation for how the concentration u depends
on time and space. Also find the boundary conditions that must be fulfilled in order for no
substance to leave or enter the volume V .

Problem 3.6. Consider the homogeneous Robin boundary condition

α~n · ∇u+ βu = 0 (3.269)

on the boundary surface of some region. Verify that the Dirichlet and Neumann type bound-
ary conditions are special cases and discuss the limits in which Newton’s law of cooling, see
Example 3.15, turns into a Dirichlet and Neumann boundary condition, respectively. What
is the physical interpretation?

Problem 3.7. In Section 3.5.3, it was shown that the magnetic field ~B fulfils the sourced
wave equation with the wave speed c = 1/

√
ε0µ0. Starting from Maxwell’s equations (see

Eqs. (2.198)), show that this is also true for the electric field ~E.

Problem 3.8. When studying electric fields in matter, it is often convenient to work in
terms of the electric displacement field ~D = ε0

~E + ~P , where ~P is the polarisation density.
For weak external fields, the polarisation density can be assumed to depend linearly on the
electric field and therefore

P i = ε0χ
i
jE

j , (3.270)

where χ is the rank two electric susceptibility tensor, see also Problem 2.4. From Maxwell’s
equations, find the divergence of ~D. In particular, simplify your result for the case χij = δij .

Note: The divergence ∇· ~D is often written on the form ∇· ~D = ρf , where ρf is the so-called
free charge.
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Problem 3.9. A substance is dissolved in a fluid and well mixed in such a way that its
concentration u is constant throughout the fluid. Verify that concentration will not change
due to convective currents if the fluid flow is incompressible.

Problem 3.10. Write down the diffusion equation in terms of a Cartesian coordinate
system for an anisotropic medium where the diffusivity tensor is given by

Dij = D0δij +D1ninj , (3.271)

~n is a constant unit vector, and D0 and D1 are constants. Hint: You can choose the coor-
dinate system in such a way that ~n is one of the basis vectors.

Problem 3.11. A one-dimensional string with tension S is constructed from two parts
with different densities ρ− and ρ+, respectively. The point where the two parts meet may
be assigned the position x = 0 and at this position a point mass m has been attached. Find
a partial differential equation for the transversal displacement of the string and specify
the conditions the solution must fulfil at x = 0. The string may be considered infinitely
extended in both directions.

Problem 3.12. Show that the one-dimensional wave equation

(PDE) : utt(x, t)− c2uxx(x, t) = 0 (3.272a)

is solved by the ansatz u(x, t) = f(x − ct) + g(x + ct), where f and g are functions of one
variable. Use this ansatz to solve the wave equation on the real line −∞ < x <∞ with the
initial conditions

(IC) : u(x, 0) = u0(x), ut(x, 0) = 0. (3.272b)

Problem 3.13. A radioactive material with a mean lifetime of τ is diffusing in a medium.
There is a sink density due to the decay given by κ(~x, t) = −u(~x, t)/τ , where u(~x, t) is the
concentration of the material. This results in the partial differential equation

(PDE) : ut −D∇2u = −u
τ
. (3.273)

Show that this can be rewritten as a source free diffusion equation by the substitution
u(~x, t) = v(~x, t)e−t/τ .

Problem 3.14. The temperature T (x, t) in an isolated rod of length ` that conducts heat
with heat conductivity λ can be described by the one-dimensional heat equation

(PDE) : Tt − aTxx = κ(x), (3.274a)

(BC) : T (0, t) = T (`, t) = T0, (3.274b)

where a is a material constant related to heat capacity, heat conductivity, and density, κ(x)
is a constant source term, and we have assumed that the rod’s ends are being held at a
constant temperature T0. Express the stationary solution to the problem as an integral and
compute it for the case of κ(x) = κ0δ(x− x0).

Problem 3.15. Consider a volatile substance dissolved in a medium where it diffuses
with diffusivity D. The medium is being kept in a cylindrical glass that is impenetrable
to the volatile substance, but has an exposed top surface, where the evaporation rate is
proportional to the concentration of the substance. Write down a model, including boundary
and initial conditions, that describes the concentration of the substance in the medium as
a function of time. The substance may be assumed to be evenly distributed in the medium
at the initial time.
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F

E

A

Figure 3.17 The force across a section of a long metal rod depends on the cross sectional area A,
the elasticity module E of the metal, and the strain of the rod at the position of the section.

Problem 3.16. A substance is produced within a volume V with a source density that is
proportional to the square of its concentration. Furthermore, the substance is assumed to
diffuse with a constant diffusivity throughout V and to evaporate quickly on the surface ∂V .
Construct a partial differential equation with appropriate boundary conditions that describe
how the concentration u(~x, t) of the substance depends on time and space. Furthermore,
assume that there exists a stationary solution u0(~x) to the problem and linearise the time-
dependent partial differential equation around this solution.

Problem 3.17. Consider the situation where heat is conducted away from a sphere of radius
R, i.e., look at the heat conduction in the region r > R. Assuming that the sphere uniformly
produces a total power of P and that the medium conducting the heat is isotropic and
homogeneous, find a differential equation describing the spherically symmetric stationary
state of the temperature in the surrounding medium. How does the stationary solution
depend on the distance r from the center of the sphere?

Problem 3.18. When the wave speed c and the damping factor k are large in the damped
wave equation, show that it can be regarded as a diffusion equation. Also discuss what it
means for c and k to be large and express the corresponding diffusivity.

Problem 3.19. In a long metal rod with Young’s modulus E, the force across a section
perpendicular to the rod is given by

F = σA = εEA (3.275)

in the direction of the surface element, where σ is the stress in the longitudinal direction,
ε is the strain, and A the cross-sectional area, see Fig. 3.17. Find a model describing the
longitudinal displacement of the rod as a function of the position on the rod and time.

Problem 3.20. Consider the derivation of the wave equation for a pressure wave in a
cylinder. Using an external pressure of p0, find the boundary condition for the pressure at
one of the cylinder ends if the end is open. When the end is closed by a rigid surface, use
the fact that the velocity of the medium at the end must be zero in the normal direction
and derive the corresponding boundary condition on the pressure field, see Fig. 3.18.

Problem 3.21. A string’s end at coordinate x = x0 is attached to two springs, each
with spring constant k, see Fig. 3.19, such that they extend whenever the string deviates
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p

p v = 0v = 0

p0 p0

Figure 3.18 The boundary conditions on the pressure p at the ends of a cylinder depend on whether
the cylinder is open or closed. If it is open the pressure will adapt to the external pressure p0 and
if it is closed the velocity v of the contained fluid at the boundary must be equal to zero.

k

k

x0

S

θ(x0)

Figure 3.19 The end of a string at x = x0 is attached to two springs with spring constant k that act
against transversal deviations from the equilibrium position. The tension in the string is assumed
to be S.
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Figure 3.20 A string with length density ρ` and tension S subjected to a restoring force due to a
large number of small springs, each with spring constant k and with s springs per unit length.

transversally from its equilibrium position. Find the boundary condition that the transversal
displacement of the string must satisfy at this end if the tension in the string is S.

Problem 3.22. In a quadratic area described by the coordinates 0 < x, y < `, heat is being
introduced evenly through the boundary at y = 0 at a rate Q while the boundary at y = `
is heat isolated. At the boundaries in the x direction heat is being removed with a constant
current density component in the normal direction. The stationary state for this situation
may be described by the partial differential equation

(PDE) : ∇2T (x, y) = −κ(x, y)

λ
, (3.276a)

(BC) : Ty(x, 0) = −Q
`λ
, Ty(x, `) = 0, Tx(0, y) = −Tx(`, y) =

j0
λ
, (3.276b)

where κ(x, y) is a term describing the time-independent production of heat and λ is the
heat conductivity. Find a consistency condition for the constant j0 in the following cases:

a) There is no heat produced inside the area, κ(x, y) = 0.

b) The heat production is given by κ(x, y) = κ0 sin(πx/`) sin(πy/`).

Problem 3.23. A two-dimensional membrane with surface tension σ is being suspended
in a rigid frame that is described by the curve

ρ = R, z = z0 cos(3φ) (3.277)

in cylinder coordinates with z0 � R. Find a partial differential equation along with appro-
priate boundary conditions that describes the stationary shape of the membrane.

Problem 3.24. A string with linear density ρ` is suspended between two walls a distance `
apart with tension S. Along the string, a number of small springs with spring constant k are
attached to the string in such a way that they are stretched when the string has a transversal
displacement, see Fig. 3.20. Assuming that there are s springs per unit length and that s
is large enough for the resulting force density to be considered as a continuum, determine
the partial differential equation which describes small transversal oscillations of the string
and specify the boundary conditions. You do not need to specify the initial conditions.
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Problem 3.25. The Klein–Gordon equation for a scalar field φ(~x, t) is given by

φtt − c2∇2φ+m2c4φ = 0, (3.278)

where m > 0 is a constant of appropriate dimensions.

a) Show that the energy density

E =
1

2
[φ2
t + c2(∇φ)2 +m2c4φ2] (3.279)

satisfies the continuity equation and find the corresponding energy current ~.

b) Find the necessary conditions on ω, k > 0 such that the oscillating spherically sym-
metric function

φ(~x, t) = A cos(ωt)
e−kr

r
(3.280)

is a solution to the Klein–Gordon equation with r > 0 being the radial spherical
coordinate. Can you use this solution to find a stationary state as ω → 0?

c) Instead of the exponentially decaying solution in (b), consider the spherical wave
solution

φ(~x, t) = A cos(ωt)
cos(kr)

r
(3.281)

and find the corresponding relation between ω and k. In particular, find the frequency
ω corresponding to k → 0.

Problem 3.26. Verify that the differential operator

L̂ =
∑
|α|≤m

aα∂α, (3.282)

where α is a multi-index is a linear differential operator, i.e., show that L̂(k1f1 + k2f2) =
k1L̂f1 + k2L̂f2, where the ki are constants and the fi are functions.

Problem 3.27. Identify the non-zero coefficients aα in Eq. (3.282) when L̂ is the Laplace
operator in Cartesian coordinates. Repeat the same exercise for the diffusion operator in
Cartesian coordinates.

Problem 3.28. Imagine a one-dimensional situation where the velocity of a convective
flow is given by

v = k(u0 − u), (3.283)

k and u0 are constants, and u = u(x, t) is the concentration, i.e., the velocity of the flow is
decreasing as the concentration increases.

a) Find the resulting partial differential equation and show that any constant concentra-
tion u(x, t) = ũ0 gives a particular solution.

b) Linearise the differential equation around the constant concentration solution found
in (a) by making the ansatz u(x, t) = ũ(x, t) + ũ0 and ignoring terms of order two or
higher in ũ.

c) Show that the resulting linearised equation can be solved by the ansatz ũ(x, t) =
f(x− ct), as long as c is chosen appropriately. Find an expression for c and interpret
your result physically.
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Problem 3.29. The temperature T (x, t) in an isolated rod of length ` follows the one-
dimensional heat equation

(PDE) : Tt − aTxx = κ(x, t), (3.284a)

where κ(x, t) represents a source term. If the end at x = 0 is kept at temperature T0 and
a constant flow of heat is introduced into the rod through the boundary at x = `, the
boundary conditions will be of the form

(BC) : T (0, t) = T0, Tx(`, t) = q0. (3.284b)

We also assume that the entire rod takes the temperature T0 at time t = 0, leading to the
initial condition

(IC) : T (x, 0) = T0. (3.284c)

Rewrite this problem as two separate problems in the same region where one of the prob-
lems only has an inhomogeneity in the differential equation and the other only has an
inhomogeneity in one of the boundary conditions.

Problem 3.30. A circular membrane with surface tension σ is attached to a ring of ra-
dius R. A sinusoidal motion is imposed on the ring, leading to the transversal displacement
u(ρ, φ, t) of the membrane satisfying the wave equation with inhomogeneous boundary con-
ditions

(PDE) : utt − c2∇2u = 0, (3.285a)

(BC) : u(R,φ, t) = A sin(ωt), (3.285b)

where ρ and φ are the polar coordinates on the membrane, A is the amplitude of the
sinusoidal motion, and ω the angular frequency. Transfer the inhomogeneity in the boundary
condition to the differential equation for a new function v(ρ, φ, t) by making the ansatz
u(ρ, φ, t) = v(ρ, φ, t) + u0(ρ, φ, t) with an appropriate choice of u0(ρ, φ, t). What is the
resulting inhomogeneity in the differential equation for v?

Problem 3.31. Consider the functional

F [u] =
1

2

∫
V

u2dV. (3.286)

Show that the diffusion problem with Neumann boundary conditions

(PDE) : ut −D∇2u = κ(~x, t), (~x ∈ V ) (3.287a)

(BC) : ~n · ∇u = φ(~x, t), (~x ∈ S) (3.287b)

(IC) : u(~x, t0) = u0(~x), (~x ∈ V ) (3.287c)

where S is the boundary of the volume of interest V , has a unique solution by assuming
that there exist two solutions u and v and constraining dF [u− v]/dt.

Problem 3.32. In Example 3.31 we considered a flow in the direction of the symmetry
axis of a cylinder of radius R.

a) Compute the total flow of the fluid through the cylinder by integrating the flux over
the cylinder cross section.

b) Compute the strain rate tensor εij and use it to deduce the viscous force acting on a
small volume. Show that it exactly balances the force due to the pressure gradient.
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Problem 3.33. For an inviscid flow that satisfies the Euler equations, show that the total
momentum within a volume V

~P =

∫
V

ρ~v dV (3.288)

is conserved if ~v ·~n = 0 and p = p0 is constant on the boundary of V and there is no external
force per unit mass acting on the fluid, i.e., ~g = 0 in Eq. (3.139).

Problem 3.34. Consider a situation where the viscous forces dominate the Navier–Stokes
momentum equations, i.e., when the terms proportional to ρ may be neglected. Write down
the Navier–Stokes momentum equation in this situation and simplify it as far as possible if
the fluid is also incompressible.

Problem 3.35. Assuming that the flow of water out of a garden hose may be considered
inviscid. Apply Bernoulli’s principle to find an expression for the velocity at which the water
exits the nozzle. You can assume that the hose has an inner diameter d, that the flow rate of
water (volume per second) is Γ, the water has a density ρ, and that the pressure difference
between the hose and the atmosphere is δp. Estimate the numerical value for the velocity
given reasonable assumptions on the given parameters. You may assume that there is no
change in the gravitational potential along the flow.

Problem 3.36. Consider the three-dimensional heat equation in a thin region 0 < x3 < h
with inhomogeneous Neumann boundary conditions

(BC) : ∂3T (x1, x2, 0, t) = −f(x1, x2), ∂3T (x1, x2, h, t) = g(x1, x2). (3.289)

Use the fact that the region can be considered thin to find a partial differential equation in
two spatial dimensions describing the averaged temperature

T̃ (x1, x2, t) =
1

h

∫ h

0

T (x1, x2, x3, t)dx3. (3.290)

Problem 3.37. For a thin homogeneous spherical shell of radius R and thickness r0 � R,
construct a two-dimensional partial differential equation describing how the temperature in
the shell depends on position and time. Assume that Newton’s law of cooling is satisfied at
the shell’s surfaces and that temperature outside the shell is T0 and the temperature inside
it is T1.

Problem 3.38. A small ball of radius R is made from a material with a large heat diffusion
coefficient a. The ball is placed in a medium with temperature T0 and Newton’s law of
cooling

~n · ∇T + α(T − T0) = 0, (3.291)

where ~n is the surface normal, is assumed to hold at the boundary. Show that if a is large
enough for the temperature to be effectively constant within the ball, then the average
temperature T̃ (t) of the ball will follow the ordinary differential equation

dT̃

dt
= β(T0 − T̃ ), (3.292)

where β is a constant. Express β in terms of the constant α in Newton’s law of cooling.

Problem 3.39. The rear window of a car often comes equipped with a defrosting system
consisting of a number of horizontal heating wires in the glass. Assuming that the window
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has a rectangular shape and that the outside temperature is T0, construct a two-dimensional
model in terms of a partial differential equation for how the temperature in the window
depends on the position and time. You may assume that Newton’s law of cooling is satis-
fied at the window’s surfaces and that the window is heat-isolated at the edges. The heat
production of the wires is q per length and time and the wires otherwise do not affect the
heat diffusion inside the window.

Problem 3.40. In a long cylinder of radius R, a physical quantity is assumed to satisfy
the wave equation with homogeneous Dirichlet boundary conditions

(PDE) : utt − c2∇2u = 0, (ρ < R) (3.293a)

(BC) : u(~x, t) = 0, (ρ = R) (3.293b)

where ρ is the radial cylinder coordinate. For particular solutions on the form u(~x, t) =
f(~x) cos(ωt), find a partial differential equation, including boundary conditions, that f(~x)
must satisfy.

Problem 3.41. Consider an isotropic material such that the stiffness tensor is given by

cijk` = λδijδk` + µ(δikδj` + δi`δjk) (3.294)

as discussed in relation to Eq. (2.193).

a) Using Hooke’s law σij = cijk`εk`, where εk` = (∂ku` + ∂`uk)/2 is the linear strain and

~u(~x, t) is the displacement field, find an expression for the force d~F on a small volume
dV in terms of λ, µ, and ~u due to external forces on its surface.

b) Newton’s second law for the small volume takes the form

d~F = ρ∂2
t ~u dV. (3.295)

Apply your result from (a) to show that the volumetric strain δ = εkk satisfies a wave
equation of the form

∂2
t δ − c2∇2δ = 0 (3.296)

and find an expression for the wave velocity c.

Problem 3.42. Consider the flow of a fluid between two parallel plates separated by a
distance `. The fluid may be considered to have dynamic viscosity µ and no slip conditions
are applied at the interfaces with the plates. The fluid has a pressure gradient parallel to
the plates. Find the stationary flow of the fluid.

Problem 3.43. For a test particle of negligible mass, the orbital period T in a circular
orbit in the usual gravitational potential outside of a spherical mass distribution depends
on the mass of the central body M , the radius of the orbit R, and Newton’s gravitational
constant G. Use dimensional analysis to derive Kepler’s third law

T 2 ∝ R3 (3.297)

for this type of orbit, where the proportionality constant is fixed by M and G. Hint: New-
ton’s gravitational law was not yet discovered when Kepler formulated his laws. Thus,
Kepler did not have the luxury of being able to use dimensional analysis, but you do!
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Problem 3.44. For a line charge ρ`(y
1) localised to a coordinate line with fixed y2 = a2 and

y3 = a3 in orthogonal coordinates, verify that the charge density is given by the expression

ρ(~x) = ρ`(y
1)
δ(y2 − a2)δ(y3 − a3)

h2h3
. (3.298)

Problem 3.45. A surface charge σ(x1, x2) = σ0e
−k2[(x1)2+(x2)2] is located in the plane

x3 = 0. In Cartesian coordinates, the charge density is given by

ρ(~x) = σ(x1, x2)δ(x3). (3.299)

Express this charge density in spherical and cylinder coordinates, respectively.

Problem 3.46. An object is thrown horizontally from a height h with velocity v in a
constant gravitational field g. Without performing any actual kinematic computations, de-
termine how the following quantities scale with h and g:

a) The time t0 at which the object hits the ground. You may assume that this does not
depend on v.

b) The horizontal distance d at which the object lands. You may assume that this only
depends on v and t0.

Now assume that the object is thrown at an angle θ from the horizontal. Use the Buckingham
π theorem to determine the general structure of the relationships between:

c) h, v, g, t0, and θ.

d) h, v, g, d, and θ.

Solve the kinematic problem exactly and identify the form of the functions of dimensionless
parameters you have introduced in (c) and (d).

Problem 3.47. A homogeneous metal sphere of radius R containing a radioactive isotope
is constantly heated due to the radioactive decays inside of it, which may be considered
as a constant source term κ0 in the heat equation as long as we are only interested in
time scales much shorter than the lifetime of the isotope. Construct a partial differential
equation, including boundary conditions, for the temperature inside the sphere. You may
assume that the sphere’s surface is held at the constant temperature T0. Find how the
stationary temperature in the middle of the sphere scales with the radius R, the source
term κ0, and the heat diffusion coefficient a without performing any explicit computations.

Problem 3.48. Consider the damped one-dimensional wave equation with a periodic source
term, homogeneous Dirichlet boundary conditions, and homogeneous initial conditions

(PDE) : utt + kut − c2uxx = f0 sin(ωt), (3.300a)

(BC) : u(0, t) = u(`, t) = 0, (3.300b)

(IC) : u(x, 0) = 0, ut(x, 0) = 0. (3.300c)

Introduce dimensionless parameters and rewrite the differential equation as a differential
equation for a dimensionless function with dimensionless parameters. Does the solution of
the dimensionless problem depend on any dimensionless parameters apart from the dimen-
sionless time and the dimensionless distance you have introduced?
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Symmetries and Group Theory

Symmetries play a central role in modern physics and the mathematical language for describ-
ing them is found in group theory. Invoking symmetry arguments can aid us in analysing
and making simplifying statements regarding many physical systems. As we move on, sym-
metries are also going to be central in deriving conservation laws in classical mechanics and
even further on they are at the very foundation of quantum physics and the Standard Model
of particle physics, topics that will not be covered in this book.

In this chapter, we will briefly discuss the very basic foundations of symmetry arguments,
how transformations of time, space, and other properties may be described within the group
theory language, and how it may help us confront different physical situations. The examples
considered will be basic and classical in order to keep the prerequisite physics knowledge at
a more fundamental level. The aim is to introduce a rudimentary symmetry thinking and
provide the main ideas, while a deeper treatment is left out of our discussion for brevity.

4.1 WHAT IS A SYMMETRY?
A symmetry of a physical system is a transformation that leaves the system, or a particular
property of the system, invariant . In effect, this means that the property is the same
before and after the transformation is applied. In this respect, transformations are ways
of mathematically rewriting or reparametrising a system with a new set of parameters
describing the same physical situation. Although this may sound quite abstract, there are
many transformations that should be familiar.

Example 4.1 Let us consider a homogeneous sphere of mass density ρ0, see Fig. 4.1.
Placing the origin of a Cartesian coordinate system in the center of the sphere, the density
function ρ(~x) is given by

ρ(~x) =

{
ρ0, (r ≤ R)

0, (r > R)
, (4.1a)

where r =
√
~x 2 and R is the radius of the sphere. If we introduce new Cartesian coordinates

x′i
′

= ai
′

i x
i, which are related to the old coordinates by a rotation about the origin, we find

that

ρ(~x ′) =

{
ρ0, (r′ ≤ R)

0, (r′ > R)
, (4.1b)

where now r′ =
√
~x ′2. The form of the function ρ is therefore the same in both of the systems

195
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ρ0

Figure 4.1 A sphere of homogeneous mass density ρ0 is symmetric under any rotation around an
axis passing through its center. Regardless of how many of these rotations are performed, the mass
density will be the same after the rotation as it was before.

RT

I

Figure 4.2 An infinite straight conductor carrying a current I displays a translational symmetry
along its axis T and a rotational symmetry around its axis R. Any such transformation, or a com-
bination of such transformations, results in the same current density as before the transformation.

and is invariant under rotations. All rotations about the origin are therefore symmetries of
the mass distribution.

An important aspect of symmetries is that if two different transformations are both
symmetries of a physical system, then also their composition is a symmetry. In the above
example, we could consider rotations around a given axis ~n1 as a symmetry and rotations
around a different axis ~n2 as another. Performing any rotation around ~n1 followed by a
rotation around ~n2, or vice versa, will then also leave the system invariant. As we shall see,
this is a fundamental aspect of why group theory is useful in describing transformations
and symmetries.

Example 4.2 An infinite straight conductor carries a current I as shown in Fig. 4.2. The
resulting current density is symmetric under translations along the conductor direction as
well as under rotations around the conductor axis. Any combination of such translations
and rotations are also symmetries of the current density.

Symmetries do not need to be continuous as in the case of rotations and they also do not
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σ

c

R

HH

A

Figure 4.3 The symmetries of the hydrogen molecule H2. The molecule is symmetric under any ro-
tation around the axis A connecting the two atoms R, rotations by π around any axis perpendicular
to it c, and reflections in the plane orthogonal to the connecting axis σ.

need to be spatial transformations of a system. They may also be discrete, for example if a
rotation needs to be performed by a finite angle in order to be a symmetry or transformations
of other physical variables.

Example 4.3 As an example of discrete symmetries, we may consider the symmetries of
a hydrogen molecule as depicted in Fig. 4.3. Apart from exhibiting a rotational symmetry
R around the axis A going through both hydrogen atoms, the molecule is symmetric under
rotations c by an angle π around any axis through its center point which is orthogonal
to A, as well as under spatial reflections σ in the plane orthogonal to A. Any of these
transformations will bring us back to a situation with a hydrogen atom in the same position
where a hydrogen atom was originally situated. Apart from the rotations R around A, all
of these transformations are discrete. For example, rotating by an angle π/3 around an axis
perpendicular to A is not a symmetry of the hydrogen molecule.

Example 4.4 Maxwell’s equations in vacuum, i.e., without charge or current densities, are
of the form

∇ · ~E = ∇ · ~B = 0, ∇× ~E + ∂t ~B = ∇× ~B − 1

c2
∂t ~E = 0. (4.2)

These equations are symmetric under the transformation

~E → ~E′ = cos(α) ~E + sin(α)c ~B, (4.3a)

~B → ~B′ = − sin(α)
1

c
~E + cos(α) ~B, (4.3b)

where α is a fixed angle. Note that this transformation only involves a transformation of
the fields ~E and ~B and does not involve spatial transformations.
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4.2 GROUPS
As just mentioned, symmetries and transformations are most eloquently described by the
mathematics of group theory and it is time for us to look at what exactly is meant by a
group and why it provides a natural tool for the job. In mathematical language, a group G
is a set of objects along with a binary group operation, which is a function of two elements
in G. Depending on the group, the group operation may be denoted differently, but for our
purposes, we will denote the group operation as a product of the elements, i.e., if a and b
are elements of G, then ab represents the result of the group operation between a and b.
Other common notations include a · b, a+ b, a • b and a× b. In order for G to be a group,
the following axioms must be satisfied:

1. Closure: The group must be closed under the group operation. This means that if a
and b are elements of G, then so is ab, i.e.,

a, b ∈ G =⇒ ab ∈ G. (4.4a)

2. Identity : The group must contain an identity element e that satisfies

ea = ae = a (4.4b)

for all a in the group.

3. Inverse: For every element a in the group, there must exist an inverse element a−1

that is also in the group and satisfies

aa−1 = a−1a = e, (4.4c)

where e is the identity element.

4. Associativity : For any three elements a, b, c in the group, the group operation must
satisfy the relation

(ab)c = a(bc) ≡ abc. (4.4d)

In words, this means that first applying the group operation between a and b and
then applying the group operation between the result and c must give the same result
as first applying the group operation between b and c and then applying it to a and
the result.

Example 4.5 Considering the group axioms, it is straightforward to check that the set of
rotations in three dimensions form a group:

1. As we have already discussed, performing two consecutive rotations results in a new
rotation. If a and b are rotations, then we define ab as the transformation obtained by
first performing b and then performing a. The order here is chosen by pure convention,
but will be the natural choice later on.

2. The identity element is the identity transformation, which may be regarded as a
rotation by an angle zero. It is clear that, for any rotation a, doing nothing and then
doing a will give the same rotation as first doing a and then doing nothing.
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x2x1

x3

Figure 4.4 An example of consecutive rotations in three dimensions. The axes in the figure should be
interpreted as indicated in the upper left, with the xi denoting the positive xi-axis. The gray arrows
symbolise rotations by π/2 performed to get to the next image in the sequence, indicated by the
straight black arrows. The upper sequence, terminating in the lower right, is the rotation R2R3R1,
where Ri is the rotation by π/2 around the xi-axis. We see that the end result is the same as that
produced by starting from the same situation and only applying R3. Since the transformation of a
complete set of basis vectors uniquely determines a rotation, we therefore find that R2R3R1 = R3.

3. If we have a rotation a that is a rotation by an angle θ about the axis ~n, then the
inverse of a is the rotation by an angle −θ about the same axis ~n. This corresponds
to reversing the transformation and ending up where we started.

4. With any three rotations a, b, and c, the triple product abc will describe first perform-
ing c, then b, and finally a.

An example of a group relation from the rotation group is illustrated in Fig. 4.4.

Example 4.6 Given a vector space V , the set of linear operators on V consists of maps A
from V to itself such that

A(a1~v1 + a2~v2) = a1A(~v1) + a2A(~v2) (4.5)

for all vectors ~v1 and ~v2 and constants a1 and a2. The set of all invertible linear operators
on V form a group. The group axioms can be checked explicitly:

1. For any linear operators A and B, we find that

A(B(a1~v1 + a2~v2)) = A(a1B(~v1) + a2B(~v2)) = a1A(B(~v1)) + a2A(B(~v2)). (4.6)
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The operator obtained by applying B first and then A is therefore also a linear oper-
ator. We take the group operation to be this composition of operators. If both A and
B are invertible with inverses A−1 and B−1, respectively, it also follows that

B−1(A−1(A(B(~v)))) = B−1(B(~v)) = ~v (4.7)

and therefore the composition AB is also invertible.

2. The identity element is the identity operator E for which E(~v) = ~v for all vectors ~v
in V . For any other linear operator A, it follows that

AE(~v) = A(E(~v)) = A(~v) = E(A(~v)) = EA(~v) (4.8)

and therefore AE = EA = A.

3. By definition, any element A of the set is invertible. Denoting the inverse of A by A−1,
we find that

~v = A−1(A(~v)) = E(~v). (4.9a)

Acting on this relation with A and letting ~w = A(~v), it also follows that

~w = A(~v) = A(A−1(A(~v))) = A(A−1(~w)). (4.9b)

Consequently, we find that AA−1 = A−1A = E. Furthermore, A−1 must also be a
linear operator as

A−1(a1A(~v1) + a2A(~v2)) = A−1A(a1~v1 + a2~v2) = a1~v1 + a2~v2

= a1A
−1(A(~v1)) + a2A

−1(A(~v2)). (4.10)

4. For any two linear operators A and B on V , the composition is defined according to

AB(~v) = A(B(~v)). (4.11)

Using this definition for the composition (AB)C, we find that

(AB)C(~v) = A(B(C~v)) = A(BC)(~v) (4.12)

and the composition is therefore associative.

The set of invertible linear operators on V therefore form a group with the composition of
transformations as the group operation.

An important property that is not necessarily satisfied for a group is commutativity of
the group operation. A commutative operation is one where the order of the arguments is
irrelevant, i.e.,

ab = ba (4.13)

for all a and b. A group for which the group operation is commutative is called a com-
mutative group or Abelian group. Conversely, if the group is not commutative, it is called
non-commutative or non-Abelian.

Even if a group is non-Abelian, there are going to be elements in every group that do
satisfy Eq. (4.13). Such elements are said to commute with each other and, in particular,
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Figure 4.5 Example of non-commutative rotations. In the upper row, we first perform the rotation
R1 by an angle π/2 arond the x1-axis followed by the rotation R2 by π/2 around the x2-axis. In the
lower row, the order is reversed, which produces a different end result. Therefore, R2R1 6= R1R2.

every element commutes with its inverse and the identity element commutes with all other
elements by definition.

Example 4.7 Rotations in three dimensions are an example of a non-Abelian group as
rotations about two different different axes generally do not commute. This is illustrated in
Fig. 4.5, where we can see that rotating by an angle π/2 around ~e1 and then around ~e2 is
not equivalent to performing the same rotations in the opposite order.

Example 4.8 An example of a group that is Abelian is the set of translations in any
dimension. A translation T~v transforms a position vector ~x to T~v~x = ~x + ~v, where ~v is a
constant vector. It follows that

T~vT~w~x = ~x+ ~v + ~w = T~wT~v~x (4.14)

since vector addition is commutative.

4.2.1 Conjugacy classes
The concept of conjugacy classes is based on a classification of the elements of a group into
a number of distinct subsets of the group. We start by defining that for two elements a and
b of a group, b is conjugate to a if the group contains an element g such that

b = gag−1. (4.15)
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Figure 4.6 An illustration of the conjugacy between a rotation around the x2-axis to one around
the x1-axis, both by an angle π/2. Starting from the upper left configuration, we can either perform
the rotation around the x2-axis (light arrows), or first rotate by −π/2 around the x3-axis, perform
the rotation around x1, and finally rotate back around the x3-axis (dark arrows), ending up with
the same final configuration.

We write this relation as b ∼ a and it is easy to check (see Problem 4.6) that conjugacy
is an equivalence relation, meaning that b ∼ a implies a ∼ b and that a ∼ b together with
b ∼ c implies a ∼ c. From the perspective of transformations, conjugacy has a very intuitive
interpretation. If we can find a transformation g such that a is equivalent to first performing
g, then b, and finally applying the inverse transformation of g, then a and b are conjugate
to each other. The conjugacy class of a can now be defined as the set of all elements of the
group that are conjugate to a.

Example 4.9 For the rotation group that we have looked at in the previous examples,
two rotations are conjugate to each other if they rotate by the same angle θ, regardless
of the axis of rotation. Considering rotations by an angle θ around the axes ~n1 and ~n2,
respectively, the rotation g in the conjugacy relation between them is any rotation that
rotates ~n1 into ~n2. As an illustration, the conjugacy between a rotation by π/2 around ~e1

and one around ~e2 is shown in Fig. 4.6.

Because of the defining properties of the identity element e, there can be no other
elements in the conjugacy class of e. Assuming that a ∼ e would imply that

a = geg−1 = gg−1 = e. (4.16)

It directly follows that there are at least two conjugacy classes for all groups except the
trivial group containing only the identity element. Similarly, in all Abelian groups, every
element forms its own conjugacy class, which follows by using the commutative property
on the conjugacy relation between a and b

a = gbg−1 = bgg−1 = be = b. (4.17)
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Thus, if a ∼ b in an Abelian group, then also a = b.

Example 4.10 In two dimensions, there is only one possible rotation around a fixed origin.
Consequently, all rotations commute, with the composition of (counter clock-wise) rotations
by angles θ1 and θ2 being a rotation by θ = θ1 + θ2. It follows that the group of rotations
in two dimensions is Abelian and that each element of the group is its own conjugacy class.
As for three-dimensional rotations, each conjugacy class consists of all rotations by a given
angle around an arbitrary axis. In order to include rotations in both directions in the same
conjugacy class in the two-dimensional case, we would have to include a mirror operation σ
given by x1 → x1, x2 → −x2, which would map counter clock-wise rotations to clock-wise
rotations. The resulting group will not be Abelian and all conjugacy classes except that
of the unit element e and the rotation by and angle π will contain more than one group
element.

4.2.2 Subgroups
In physics, it is very common that a system is not completely symmetric under the full set
of possible transformations, but only under a subset. For example, we may have a situation
where a system is not invariant under all rotations, but is invariant under rotations by an
angle 2π/m (with m being an integer) around some axis ~n. This leads us to the concept of a
subgroup, which is a subset H of a group G which is also a group under the group operation
in G. For any subset of G, we can check whether it is a subgroup by going through the group
axioms:

1. Closure: For any a and b in H, the product ab must also be in H. This is usually not
true for all subsets of G and must be checked explicitly.

2. Identity : Since the unit element e of G is the only element which can have the required
properties, it must be an element of any subgroup of G.

3. Inverse: The subgroup must contain the inverse of all its elements, i.e., if a is an
element in the subgroup, then so is a−1.

4. Associativity : This one is easy and not necessary to check. It follows directly from the
associativity of the original group G.

Example 4.11 For many groups, there are several possible subgroups. Taking three-
dimensional translations as an example, some possible subgroups are the set of translations
in a given direction and the set of free translations in two given directions together with
translations by multiples of ` in the third direction. It is worth noting that the set of
translations by multiples of ` in an arbitrary direction is not a subgroup as it is not closed
under the group operation. By performing two consecutive translations by ` in different
directions, we may end up with a translation by a distance anywhere between 0 and 2`, see
Fig. 4.7.
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Figure 4.7 The net translation after consecutive translations by ~̀1 and ~̀2 is the translation by the

sum of the two displacement vectors. Even if ~̀1 and ~̀
2 both have length `, the length of the final

translation is `
√

2− 2 cos(θ). The set of translations by a distance which is an integer multiple of
` is therefore not a subgroup as it is not closed under the group operation.

A common occurrence when the concept of subgroups will be of importance is when
a system is almost symmetric with respect to a set of transformations G, but in reality is
only symmetric under a subgroup H of those. To a first approximation, the system may
then be treated as symmetric under the full group and the behaviour of the corrections to
this approximation will be well described by the mathematics relating the group and the
subgroup. This process is usually referred to as symmetry breaking of G to H.

Example 4.12 The carbon monoxide molecule consists of one carbon atom and one oxygen
atom with masses of 12 and 16 atomic mass units, respectively. If the atoms would have the
same mass, then the mass distribution of the molecule would have the same symmetries as
the hydrogen molecule discussed in Example 4.3. The mass difference between the carbon
and oxygen atoms breaks the symmetry to the set of rotations around the axis connecting
the molecules only. Rotations by π around an axis perpendicular to this as well as the
spatial reflections are no longer part of the symmetry group.

4.2.3 Homomorphisms
The final general concept that we will discuss before having a look at different useful groups
is that of group homomorphisms. A homomorphism is a mapping h from a group G to a
group H that preserves the structure of the group operation, i.e.,

h(ab) = h(a)h(b), (4.18)

where a and b are elements of G. In words, this tells us that taking the product ab in G
and then applying the homomorphism to the result should be the same as first acting with
the homomorphism individually on a and b and applying the group operation in H to the
results.

Example 4.13 For all groups, there exists a homomorphism to any other group. If we
map all elements of G to the identity of H, i.e., h(a) = e for all a, then the homomorphism
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relation is fulfilled as
h(ab) = e = e2 = h(a)h(b). (4.19)

This is the trivial homomorphism between G and H.

From this example, it should be clear that homomorphisms in general are not invertible.
However, if a homomorphism is a bijection, then it is called an isomorphism and all of the
relations valid for the elements of G are also valid for the corresponding mapped elements
in H. If two groups allow an isomorphism, then they are said to be isomorphic. It is fairly
straightforward to show, see Problem 4.12, that being isomorphic is an equivalence relation
on groups and physicists will commonly refer to isomorphic groups as being the same group.

Example 4.14 Naturally, every group G is isomorphic to itself as the identity mapping
h(a) = a is an isomorphism. In general, it is also possible for other mappings from the group
to itself to be isomorphisms. Such isomorphisms are referred to as automorphisms, while
a general homomorphism from a group to itself that is not necessarily an isomorphism is
called an endomorphism.

4.3 DISCRETE GROUPS
Now that the most important pieces of the framework of group theory are in place, let us
go on to discuss some important examples and aspects of different groups. Although many
of our examples so far have been in terms of continuous groups, we will start by consid-
ering discrete groups, which are groups with a countable (but possibly infinite) number of
elements. Discrete symmetries will often occur in physical systems and they provide a good
place to start getting used to the group framework. In the next section, we shall return to
discussing continuous groups.

Any discrete group can be constructed using a set of group generators gi along with a
set of relations that they satisfy. In order to have a complete set of generators, it must be
possible to write any group element as a product of generators (and their inverses). The
relations among the generators will define any additional structure the group may have,
thereby allowing the possibility of a single group element to be written in several different
ways. In addition, if there exists a finite set of generators with which any element of a group
can be written, then the group is finitely generated.

Example 4.15 The infinite chain of points of separation `, see Fig. 4.8, has a symmetry
group containing translations by a multiple of ` and reflections. The group is generated by
the translation T`, for which T`x = x+ `, and the reflection σ, for which σx = −x. It also
holds that σ2 = e and that σT`σT` = e. Any group that is isomorphic to this group may
be defined by two generators obeying these relations. We also note that the last relation is
equivalent to T−1

` = σT`σ and it follows that T` and T−1
` are in the same conjugacy class.

Since two generators are enough to write any element in this group, it is finitely generated.

The above example shows us a finitely generated group that has an infinite number of
elements. However, some groups contain only a finite number of elements and are therefore
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σ

T`

Figure 4.8 An infinite chain of points with fixed separation ` has a symmetry group that includes
translations by multiples of ` along the chain direction and reflections in a plane orthogonal to the
chain. These transformations are generated by the translation T` and the reflection σ at one of the
points in the chain.

called finite groups. An advantage of finite groups is the possibility of constructing a group
table (or Cayley table) of the form:

e a1 a2 · · · aN−1

a1 a1a1 a1a2 · · · a1aN−1

a2 a2a1 a2a2 · · · a2aN−1

...
...

...
. . .

...

aN−1 aN−1a1 aN−1a2 · · · aN−1aN−1

The table is here constructed for a group with N elements, called the order of the group.
This nomenclature may be slightly confusing, as a group element a is also said to have order
k if ak = e. It is therefore important to specify if the order of the group or the order of
an element is intended. Since the products in the table are group elements, specifying each
entry aiaj in the table in terms of which element it is, the group is completely defined. In
order for the group axioms to be fulfilled, this table must be a magic square, where each row
and each column contains every group element exactly once. For any finite Abelian group
the relation aiaj = ajai implies that the group table is symmetric under the exchange of
rows and columns.

Example 4.16 The most basic example of a finite group is the trivial group containing
only one element, the identity. Going slightly beyond this, there is only one group (up to
isomorphisms) that contains two elements. This group contains the identity element e as
well as a second element σ, which has to be its own inverse, i.e., σ2 = e. The group table
for this group is

e σ

σ e
.

From the table, it is apparent that the group is Abelian, due to the symmetry when exchang-
ing rows and columns. The group consisting of the real numbers 1 and −1 is isomorphic to
this group with e = 1 and σ = −1 and with the group operation being regular multiplication.
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Figure 4.9 Three figures that display the cyclic symmetries C3, C5, and C2, respectively (in two
dimensions). The upper two are regular polygons with directed edges, while the lower figure is a
bit more intricate, but still displays a cyclic symmetry, in this case a rotation by π.

While the group table in the example above is quite manageable, it starts getting cum-
bersome for groups with a large number of elements. It is therefore often preferable to just
specify the group in terms of its generators and relations among them.

4.3.1 The cyclic group
A common symmetry in physical systems, which we have already alluded to in some ex-
amples, is invariance under rotations by a finite angle 2π/m, where m is an integer. A few
examples of systems exhibiting such symmetries are shown in Fig. 4.9. Performing a 2π/m
rotation m times results in a rotation by an angle 2π, a full turn, that brings the system
back to its original configuration. Based on this, the cyclic group of order m can be defined
using a single generator c that satisfies the relation

cm = e. (4.20)

The cyclic group of order m is generally represented by the symbol Cm.
The elements of the cyclic group are all of the form ck, where k < m. Since the cyclic

group only has one generator and every group element commutes with itself, it generally
holds that

ckc` = ck+` = c`ck. (4.21)

The cyclic group of any order is therefore Abelian. The cyclic group is also the only group,
up to isomorphisms, of order m as long as m is a prime, implying that the lowest order of
a group that is not cyclic is four.

Example 4.17 The group of integers modulo m is isomorphic to the cyclic group Cm when
the group operation is taken to be addition of integers. The identity element of this group
is e = 0 and the generator is c = 1. Alternatively, the generator can be chosen to be cm−1,
or c to the power of any integer smaller than m that is coprime with m.
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Trivial
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Figure 4.10 Examples of road signs with different symmetries. From top to bottom, the road signs
have the symmetry groups: the trivial group, D3, and C3, respectively. The bottom two signs are
both invariant under rotations by 2π/3 and, unlike the bottom sign, the middle sign is in also
invariant under reflection in a vertical line through its center.

4.3.2 The dihedral group
Many physical systems are invariant not only under rotations by a given angle, but also
under some spatial reflection. An example of a road sign with such a symmetry is shown
in Fig. 4.10 along with a road sign without symmetry and one with cyclic symmetry. It is
a special case of the more general symmetry of a regular polygon with m sides that, apart
from the rotation by 2π/m, may be reflected in any line passing through its center and of
one of its vertices or midpoints of its edges (for odd m, these lines will pass through one
vertex and the midpoint of one edge, while for even m they will pass through two vertices or
the midpoints of two edges). Although there are m different possible reflections, they may
all be written in terms of a single reflection σ and the rotations, which again are generated
by a cyclic element c. This group is called the dihedral group Dm and is of order 2m. It is
generated by the elements c and σ, which satisfy the relations

cm = e, σ2 = e, and σcσc = e. (4.22)

Example 4.18 The simplest dihedral group that is not isomorphic to the trivial group
or C2 is D2, which is a group of order four generated by two generators, c and σ, each of
which is of order two. The group table is given by

e c σ σc
c e σc σ

σ σc e c
σc σ c e

.

From this table, it becomes clear that the group is Abelian. This is a consequence of both
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c2

σh

σ

Figure 4.11 The different ways of realising the two-dimensional dihedral reflection in three di-
mensions, here for the equilateral triangle with the symmetry group D3. The options are either a
three-dimensional rotation c2 by an angle π or a reflection σ. If both of these are symmetries, the
resulting group is the dihedral group D3h and their composition is a reflection σh in the plane of
the triangle.

generators being their own inverses and the relation σcσc = e. Multiplying the latter relation
by cσ from the right, we find that

cσ = σcσccσ = σcσ2 = σc, (4.23)

stating that the generators, and thus all group elements, commute. It should be noted that
this is not true for the general dihedral group Dm.

4.3.2.1 Dihedral groups and three dimensions

The discussion above regarding the dihedral group has focused on the group structure and
the example given in terms of the D3 symmetry of a road sign was implicitly assuming that
the symmetry of the sign was considered in two dimensions only. If we wish to realise a
symmetry of this type in terms of rotations and reflections in three dimensions, there are
two different choices. Starting from the line that defined the two-dimensional reflection, the
reflection may be realised either by a rotation c2 by an angle π around this line, or by a
reflection σ in a plane that contains the line and is perpendicular to the two-dimensional
plane containing the figure, see Fig. 4.11. These transformations of the three-dimensional
space are distinct. Given any vector, they will treat the component of the vector that is
perpendicular to the plane differently. Together with the cyclic rotations, including any
of these operations will result in a group that is isomorphic to Dn. By convention, when
talking about the action of these groups on three-dimensional space, the group including
the rotation is usually referred to as Dn, while the one including the reflection is referred
to Cnv. This distinction is particularly important when considering the symmetry groups
of different molecules, which will often be of the type Cnv where n = 2 or 3 as for water or
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N
O

HH

Figure 4.12 The water (H2O) and ammonia (NH3) molecules with symmetry groups C2v and C3v,
respectively.

N

C

H

O

D3h

D6h

Figure 4.13 The structure of the planar molecules nitrate (NO3, left) and benzene (C6H6, right)
which display symmetry under the dihedral groups D3h and D6h, respectively.

ammonia, see Fig. 4.12. The Cnv symmetries are often referred to as pyramidal , since it is
the symmetry group of a pyramid with an n-sided regular polygon as its base.

In addition, some molecules are symmetric under both the rotation by π and the re-
flection described above. This is particularly true for planar molecules such as benzene or
nitrate, see Fig. 4.13. Although they map the same atoms to the same sites, the rotation
and reflection are different transformations and the resulting symmetry group, called Dnh,
contains both of them as separate group elements. The extension of the two-dimensional
symmetry Dn to Dnh can be made by including both c2 and σ as group generators. How-
ever, there is an option of using the product σh = c2σ to replace one of these generators,
see Fig. 4.11. This is a reflection in the two-dimensional plane containing the original Dn

symmetry and commutes with all group elements.
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4.3.3 The symmetric group and permutations
From our discussion on the symmetries of tensors in Section 2.2.1, we are already somewhat
familiar with the set Sn of all possible permutations of n elements. In fact, this set is a
group with the group operation ab given by first performing the permutation b and then
performing the permutation a, where a and b are members of Sn. This group is called the
symmetric group and its subgroups are permutation groups.

Since n distinct elements may be ordered in n! different ways, the group Sn is of order n!.
An element σ of Sn is a rearrangement of the n objects, which we may number from 1 to n.
Denoting the new position of the element originally at position k by σ(k), we may represent
a permutation as

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
, (4.24)

where the lower element in a row is the new position of the upper element in the same
row after the permutation. However, a more common and short hand notation is given by
splitting a permutation into cycles. Since σ(k) is a bijection from the numbers 1 to n to
themselves, starting with 1, we know that σ maps it to σ(1). Furthermore, the element
that used to be in position σ(1) is now mapped to σ(σ(1)) and so on. We can write this as
1 → σ(1) → σ(σ(1)) → . . ., but this cycle must eventually return to 1 before it has more
than n links. For example, in S5, we may have the cycle 1 → 2 → 5 → 1, telling us that
under this permutation, 1 maps to 2, which maps to 5, which maps to 1. This cycle can be
represented as (125), but does not a priori tell us anything about how the elements 3 and 4
are treated by the permutation. We can specify this by also writing down the cycle or cycles
containing the remaining elements. In this case, starting with 3, there are two options: either
σ(3) = 3 or σ(3) = 4. The first case would be represented as two separate cycles of length
one (3)(4), while the latter would be a single cycle of length two (34). Cycles of length one
are often omitted when writing down a permutation and so the first case would be written
only as (125), while the latter would be written (125)(34).

The cycle notation also makes it easy to perform consecutive permutations. In order to
write down the result of consecutively applied cycles, we follow the following algorithm:

1. Select the position of one element that is not yet part of any cycle in the result. If
this is the first time this step is taken, position 1 will do nicely. Commit this position
to memory and write it down.

2. Considering the cycles in the product from right to left, if the position in memory is
part of a cycle, then memorise the next position in the cycle.

3. When arriving at the far left, write down the memorised position if this is not the
position written down in step 1, then repeat step 2. Otherwise, write parentheses
around the discovered cycle. If there are still positions whose mapping is not known,
go back to step 1 and if not, the permutation is now known. You may cancel out any
cycles of length one at this stage.

Since they deal with different positions, cycles that do not affect at least one common
position always commute.

Example 4.19 Consider the permutations (123) and (143), which are elements of S4. By
application of the algorithm given above, we find that (123)(143) = (14)(23) (see Table 4.1).
Since (14) and (23) are cycles containing no common positions, they commute and we find
(14)(23) = (23)(14).
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Step In Step action Out Result

1 - Select from 1234 1 1
2 1 (123)(143) 4

2 4 (123)(143) 4

3 4 Write down 4 4 14
2 4 (123)(143) 3

2 3 (123)(143) 1

3 1 End of cycle - (14)
1 - Select from 23 2 (14)2
2 2 (123)(143) 2

2 2 (123)(143) 3

3 3 Write down 3 3 (14)23
2 3 (123)(143) 1

2 1 (123)(143) 2

3 2 End of cycle - (14)(23)

Table 4.1 An example of how to apply the group action in the symmetric group S4 using the cycle
representation. We take the action between the cycles (123) and (143) and perform the action step
by step as described in the text. The column labelled “Step” refers to the step of the algorithm in
the text. The “In” and “Out” columns refer to the position committed to memory coming into the
given step and going out of the given step, respectively. The “Step action” describes the measure
taken in the step. For step 2 in the algorithm, the cycle under consideration has been underlined
and the incoming and outgoing positions are shown in bold face. Finally, the “Result” column is
updated whenever a step dictates that we write something down.

The order of any element of Sn is equal to the least common multiple of the lengths of
its cycles. We can also use n−1 cycles of length two to generate the full group. Example sets
of such generating cycles are the cycles of the form (1k) or the cycles of the form ((k−1)k),
both for k 6= 1. An important homomorphism from Sn to C2 maps all such generators to −1
(taking the elements of C2 to be 1 and −1 and the group operation to be multiplication).
Elements that contain an even number of generators consequently map to 1, while elements
containing an odd number of generators map to −1. These elements are called even and
odd permutations, respectively. Denoting this homomorphism for an element σ by the sign
function sgn(σ), we find that the permutation symbol may be written as

εσ(1)...σ(N) = sgn(σ). (4.25)

Permutations groups are often of relevance when discussing the symmetries and anti-
symmetries of different tensors.

4.4 LIE GROUPS
In the case of discrete groups, we found that they could be written in terms of a set of
generators and integer powers of these generators. For many physical transformations, such
as general translations and rotations, this is not the case. Instead, for any finite translation,
there is always the possibility of performing a translation which translates half the distance.
Yet, we can try to implement a similar concept for such continuous groups by looking at
small transformations, i.e., transformations that are not too far away from the identity
transformation. Naturally, the definition of “small” may be in question here, but for now
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we will stick to a more conceptual approach rather than discussing this in more detail.
Groups of this type are known as Lie groups.

Suppose we have a group element g that is close to the identity element e = 1 (calling
the identity 1 is very common and will decrease the possibility for confusion in this section).
As for the case of discrete groups, we may obtain different group elements by taking powers
of g, i.e., gn where n is an integer. However, unlike the discrete scenario, there will always
be a group element h such that

h2 = g, (4.26a)

or, formally,
h = g1/2. (4.26b)

This is not restricted to 1/2, or even to rational numbers as the transformation is continuous.
Instead, there will generally be elements of the form gθ, where θ is any real number, that
belong to the group.

Example 4.20 The most straightforward Lie group may be the set of translations in one
dimension. For any translation T` given by x → T`x = x + `, we may write T θ` x = x + θ`,
giving a translation by a new distance θ`, which in general may be any distance, depending
on the value of θ.

We shall now introduce a bit of formalism that will be of great use and is central to
many group theory considerations in physics. If it seems too abstract or ad hoc, this will
hopefully be resolved to some extent when we discuss matrix groups later in this section.
We start by formally writing the element g as

g(θ) = eθJ , (4.27)

where θ parametrises the size of the transformation and J is a generator of the Lie group. In
some cases, in particular in quantum mechanics, it is preferable to introduce the generator
on the form g(θ) = e−iθJ instead. Of course, this is purely conventional, but for our purposes
in this book the definition above will be preferable. As long as we are dealing with group
transformations generated by J only, this definition satisfies the rule

g(θ)g(φ) = eθJeφJ = e(θ+φ)J = g(θ + φ). (4.28)

If a group has several generators Ji and is Abelian, we also have

gi(θ)gj(φ) = eθJieθJj = gj(φ)gi(θ) = eφJjeθJi , (4.29)

indicating that we may as well write this as eθJi+φJj , or more generally eθiJi applying the
summation convention to the exponent. Even in the case of a non-Abelian group, we can
formally expand the exponents for small values of θi, leading to

eθ1J1eθ2J2 ' (1 + θ1J1)(1 + θ2J2) ' 1 + θ1J1 + θ2J2 ' eθ1J1+θ2J2 , (4.30)

in the case of two generators and with a straightforward generalisation to the case of an
arbitrary number of generators. Here, the meaning of the addition is not yet clear, but
for now we keep it as a formal tool and assume that the normal rules of addition apply.
Close to the identity element, the group therefore behaves as a linear vector space with the
generators Ji as a basis. This vector space is called the Lie algebra of the group.
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The occurrence of the word algebra in the name seemingly indicates that there should
be some algebraic structure related to the Lie algebra. Indeed, this becomes clearer when
we consider the second order terms in the exponential expansion and find that

eθ1J1eθ2J2 '
(

1 + θ1J1 +
θ2

1

2
J2

1

)(
1 + θ2J2 +

θ2
2

2
J2

2

)
' 1 + θ1J1 + θ2J2 +

1

2
(θ2

1J
2
1 + θ2

2J
2
2 ) + θ1θ2J1J2. (4.31)

It is necessary to here note that, since the group may be non-Abelian, the different generators
Ji do not necessarily commute. By exchanging θi → −θi in the expression, we also find that

e−θ1J1e−θ2J2 ' 1− θ1J1 − θ2J2 +
1

2
(θ2

1J
2
1 + θ2

2J
2
2 ) + θ1θ2J1J2, (4.32)

which differs only in the signs of the linear terms. Multiplying the two together, again
keeping terms only to second order in θi, we find that

eθ1J1eθ2J2e−θ1J1e−θ2J2 ' 1 + θ1θ2(J1J2 − J2J1︸ ︷︷ ︸
≡[J1,J2]

), (4.33)

where [J1, J2] is the Lie bracket between the generators J1 and J2. As all of the elements
on the left-hand side are part of the group, the right-hand side must also be and it should
still be a small deviation from the identity. To leading order, we obtain

eθ1J1eθ2J2e−θ1J1e−θ2J2 = eθ1θ2[J1,J2] (4.34)

and thus θ1θ2[J1, J2] must belong to the Lie algebra. This expression is of the form
g1g2g

−1
1 g−1

2 = δ and therefore the group element δ describes the mismatch when con-
secutively performing two transformations after applying their inverses in the same order.
We note that, if g1 and g2 commute, then

δ = g1g2g
−1
1 g−1

2 = g1g
−1
1 g2g

−1
2 = 12 = 1 (4.35)

and it follows that [J1, J2] = 0. The Lie bracket is the algebraic structure in the Lie algebra
and specifying how it acts on the different generators uniquely defines the local behaviour of
the group. Furthermore, since the Lie bracket of two elements results in a new element close
to the identity, the meaning of the summation should be clearer as we are adding elements
of the Lie algebra, which is a vector space, together. For group elements that are further
away from the identity, we would need to include higher orders of the expansion, but they
will all include Lie brackets and result in adding elements of the Lie algebra together.

In addition to the local group structure, given by the Lie algebra, there may be additional
relations that will be satisfied for the group elements, much like the relations we encountered
for the discrete groups.

Example 4.21 Locally, the rotations by an angle θ in two dimensions and translations by
a distance θ` in one dimension are exactly the same. Their Lie algebras are one-dimensional
vector spaces with only one generator J . As the Lie bracket is anti-symmetric, the only
possibility is that [J, J ] = 0 for both groups. However, the groups are different due to the
relation

e2πJ = 1 (4.36)

that applies to the case of the rotations, while all group elements with different θ are distinct
for the translations.
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~n

Rθ
~n~v

~v

Figure 4.14 The rotation around any vector ~n preserves the projection of the rotated vector ~v on
~n and rotates the perpendicular component of ~v in a circle around it.

Before looking into a the very concrete application found in matrix groups, let us see
how this formalism applies to rotations in three dimensions and translations in a general
number of dimensions.

4.4.1 Rotations
In order to have a look at the abstract group of rotations in three dimensions, we start by
considering how a general rotation about an axis defined by the unit vector ~n transforms
a vector. We shall later see that the resulting group is isomorphic to a particular group of
3× 3 matrices, but for now we keep the treatment more formal.

When rotating a vector ~v by an angle θ about an axis defined by ~n, the resulting vector
Rθ~n~v should have the same projection onto ~n as the original one, see Fig. 4.14. At the same
time, the component orthogonal to ~n is rotated by an angle θ. Using the bac-cab rule, the
vector ~v may be rewritten as

~v = ~n(~n · ~v)− ~n× (~n× ~v), (4.37)

where the first term on the right-hand side is parallel to and the second is orthogonal to ~n.
Therefore, the rotation does not change the first term, but the second term is rotated into
the vector ~n× ~v, which is orthogonal to both terms. We find that

Rθ~n~v = ~n(~n · ~v)− cos(θ)~n× (~n× ~v) + sin(θ)~n× ~v

= ~v

(
1− θ2

2

)
+
θ2

2
~n(~n · ~v) + θ ~n× ~v +O(θ3), (4.38)

where we have expanded the expression to order θ2 for small θ in the second step. Using this
expression, we can compute Rθ11 R

θ2
2 R

−θ1
1 R−θ22 ~v, where Rθi = Rθ~ei , by repeatedly inserting

the expression obtained from one rotation into the next one and keeping terms only to
second order in the angles. After some algebra, we find that

Rθ11 R
θ2
2 R

−θ1
1 R−θ22 ~v ' ~v + θ1θ2 ~e3 × ~v ' Rθ1θ23 ~v. (4.39)

The resulting rotation is therefore a rotation by an angle θ1θ2 around the x3-axis, which is
illustrated in Fig. 4.15. Written in terms of the generators of rotation, we therefore have

eθ1θ2[J1,J2] = eθ1θ2J3 (4.40a)
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R−θ1R−θ2

Rθ
1

Rθ
2

Figure 4.15 The effect of the rotation Rθ1R
θ
2R
−θ
1 R−θ2 on the three-dimensional basis vectors. The

shaded curves trace out the path taken by the tips of the vectors during the rotations. In the end,
we have obtained an overall rotation by an angle θ2 around the x3-axis.

and may identify the Lie bracket relation

[J1, J2] = J3. (4.40b)

This is one of the defining relations for the Lie algebra of rotations in three dimensions.
Cyclic permutation of the basis vectors in the argument above more generally results in the
Lie bracket

[Ji, Jj ] = εijkJk. (4.41)

This is one of the most common Lie bracket relations in physics and it is central in the
classical and quantum mechanical treatments of angular momentum. We shall soon see how
this relation is realised in a matrix group that is isomorphic to the group of rotations. In
addition to the Lie bracket relation, the rotations satisfy the relation

R2π
~n = 1, (4.42)

i.e., rotations by an angle 2π bring back the identity element.

4.4.2 Translations
The abstract group of translations in N dimensions is an Abelian Lie group with N gener-
ators. The general translation T~̀ by a vector ~̀ transforms the position vector ~x according
to

T~̀~x = ~x+ ~̀ (4.43)

and the generators Pi may be chosen according to e`Pi = T`~ei . For two consecutive transla-
tions, we find that

T~̀
1
T~̀

2
~x = ~x+ ~̀

1 + ~̀
2 = T~̀

2
T~̀

1
~x = T~̀

1+~̀2
~x, (4.44)
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from which the Abelian property immediately follows. From the relation

e`1`2[Pi,Pj ] = T`1~eiT`2~ejT−`1~eiT−`2~ej = 1 = e0 (4.45)

for small translations, we also deduce that [Pi, Pj ] = 0 as expected for an Abelian group.
It is relatively straightforward to also consider the more general group of rotations

and translations. Deducing the resulting Lie bracket relations among the generators of
translation Pi and the generators of rotations Jj is left as an exercise, see Problem 4.28.

4.4.3 Matrix groups
Some examples of groups that are more hands on than the abstract translations and ro-
tations we just discussed are provided by matrix groups. Matrices provide us with some
very good group candidates due to the fact that matrix multiplication is associative, giving
us one condition less to check. The remaining group axioms provide some rather general
constraints that must be fulfilled by a matrix group:

1. Closure: To start with, matrix multiplication requires that the group operation exists
for any two elements of the group. This constrains the matrices in a matrix group to
all be square matrices of a given dimension n× n. Just any set of n× n matrices will
not do; it must be checked explicitly to determine whether or not it is closed under
matrix multiplication. However, knowing that we must restrict ourselves to square
matrices is a good start.

2. Identity : The unit matrix I with ones on the diagonal and zeroes everywhere else
is the only matrix that can satisfy the requirement of being an identity element. A
possible exception to this would be a projection operator, which projects any matrix
on a lower dimensional subspace. While such constructions are possible, they would
just correspond to a matrix group of smaller square matrices.

3. Inverse: For a the inverse of a matrix A to exist, it is necessary that the determinant
det(A) 6= 0. This excludes any set containing matrices with determinant zero from
being a group. In addition, we must also check that the inverse A−1 belongs to the
group, which must be done on a case by case basis.

Example 4.22 The most general group of n × n matrices is that which includes all
of the matrices not explicitly excluded by the considerations above. Working backwards,
the existence of an inverse excludes matrices with zero determinants and we are left with
matrices A with non-zero determinants. Since the unit matrix has a determinant of one, it
is part of this set and for any two matrices A and B with non-zero determinants, we find
that

det(AB) = det(A) det(B) 6= 0, (4.46)

implying that the product AB is a matrix with a non-zero determinant as well, thus verifying
the closure of the set under multiplication.

This group of n × n matrices with non-zero determinants is called the general linear
group of degree n and is denoted as GL(n). A general n × n matrix has n2 independent
entries and, considering small deviations from the unit matrix I, we can vary any of these
entries independently. The Lie algebra of GL(n) is therefore the n2-dimensional vector space
containing all n× n matrices.
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When we are considering a matrix Lie group, such as GL(n), its Lie algebra will be a
different set of n × n matrices and the exponentiation eθJ is given meaning in terms of a
matrix exponent, given by the standard series definition of the exponential function

eθJ =

∞∑
k=0

θkJk

k!
. (4.47)

Considering only terms up to linear order in θ, we can find the properties of the elements
of the Lie algebra, while if we include terms up to second order in θ, we can express the Lie
bracket as

[Ji, Jj ] = JiJj − JjJi, (4.48)

where the terms on the right-hand side are matrix multiplications and the difference is a
regular matrix difference. The Lie bracket for any matrix group is therefore given by this
matrix commutator.

Example 4.23 We argued that the Lie algebra of GL(n) is the space of all matrices in
the previous example. We may also see this by considering a general small deviation from
the unit matrix

eθJ ' 1 + θJ. (4.49)

Taking the determinant of this matrix, we find that

det(eθJ) = eθ tr(J) 6= 0, (4.50)

where tr(J) is the trace of J , regardless of J . It follows that J is an arbitrary matrix and
the Lie algebra therefore has n2 independent generators.

4.4.3.1 The orthogonal group

In the examples above using the general linear group GL(n) we essentially considered the
largest possible group of n × n matrices. As many other groups, GL(n) contains a large
number of possible subgroups and we will now consider a few of these that are of particular
importance in physics, starting with the orthogonal group of degree n, denoted by O(n). It
is defined as the set of n× n matrices A that satisfy the orthogonality relation

ATA = AAT = I, (4.51)

where AT is the transpose of A. In other words, the orthogonal group is the set of matrices
whose transpose is their inverse. Considering the group axioms, we find that:

1. Closure: If A and B are elements of O(n), then

AB(AB)T = ABBT︸ ︷︷ ︸
=I

AT = AAT = I (4.52a)

and it follows that AB is also an element of O(n).

2. Identity : The unit matrix I is an element of O(n) as

IIT = I2 = I. (4.52b)
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3. Inverse: If A is an element of O(n), its inverse is AT . We find that

AT (AT )T = ATA = I (4.52c)

as (AT )T = A by definition of the transpose. Therefore, AT is also an element of O(n).

An important property of all elements of O(n) is found by taking the determinant of
the defining relation AAT = I. Doing so results in

det(AAT ) = det(A)2 = det(I) = 1 =⇒ det(A) = ±1 (4.53)

and tells us that all elements in O(n) have a determinant that is either one or minus one.
In fact, based on the relation

det(AB) = det(A) det(B), (4.54)

we find that the determinant det(A) is a homomorphism from O(n) to C2, where C2 is here
represented by the set {1,−1} with multiplication as the group operation. This homomor-
phism also splits O(n) into two subsets, the orthogonal matrices with determinant one and
the orthogonal matrices with determinant minus one. The first of these subsets is also a
subgroup of O(n), known as the special orthogonal group SO(n) of matrices A satisfying

AAT = ATA = I and det(A) = 1. (4.55)

Example 4.24 The orthogonal group O(1) is the set of numbers a satisfying a2 = 1, i.e.,
the set containing 1 and −1. The group operation is regular multiplication and the group
is isomorphic to C2. The special orthogonal group SO(1) additionally requires that a = 1,
leaving it as the trivial group containing only the identity element.

Example 4.25 The orthogonal group O(2) is the set of 2×2 matrices satisfying AAT = I.
We may write a general 2× 2 matrix A as

A =

(
A11 A12

A21 A22

)
. (4.56)

Inserting this into the orthogonality relation, we find that

AAT =

(
A2

11 +A2
12 A11A21 +A12A22

A21A11 +A22A12 A2
22 +A2

21

)
=

(
1 0
0 1

)
. (4.57)

These are three independent equations, one for each diagonal element and one for the off-
diagonal relations that are the same. The first element on the diagonal

A2
11 +A2

12 = 1 (4.58)

is the equation for a circle of radius one and may be parametrised as

A11 = cos(θ), A12 = sin(θ). (4.59)
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In the same fashion, we also conclude that

A21 = sin(ϕ), A22 = cos(ϕ) (4.60)

from the second diagonal element. Insertion into the off-diagonal relation results in

sin(ϕ) cos(θ) + cos(ϕ) sin(θ) = sin(ϕ+ θ) = 0. (4.61)

The solutions to this equation are θ = −ϕ+πk, where k is an integer. However, all solutions
differing by an integer multiple of 2π are equivalent in terms of the matrix elements Aij .
It follows that the two possible solutions are θ = −ϕ and θ = −ϕ + π, corresponding to
matrices of the form

A±(ϕ) =

(
± cos(ϕ) ∓ sin(ϕ)
sin(ϕ) cos(ϕ)

)
. (4.62)

Thus, any matrix in O(n) can be written in one of these forms with a single continuous
parameter ϕ and a choice of sign ±. Taking the determinant, we find that

det(A±(ϕ)) = ±[cos2(ϕ) + sin2(ϕ)] = ±1, (4.63)

telling us that the group SO(2) are the matrices on the form A+.
The product of two matrices in SO(2) is given by

A+(ϕ1)A+(ϕ2) = A+(ϕ1 + ϕ2) (4.64)

and evidently A(2π) = A(0) = I. This looks strangely similar to the relations Rϕ1Rϕ2 =
Rϕ1+ϕ2 and R2π = e satisfied by the group of two dimensional rotations and consequently
the mapping f(Rϕ) = A+(ϕ) is an isomorphism between such rotations and SO(2). Due to
this isomorphism, SO(2) is often also referred to as the group of (proper) rotations in two
dimensions.

The fact that SO(2) is isomorphic to rotations in two dimensions is neither a coincidence
nor a special case. If we consider an n-dimensional vector space with two orthonormal sets
of basis vectors ~ei and ~e ′i′ , they are related by a rotation if both sets are right-handed. The
corresponding transformation coefficients

ai
′

i = ~e ′i′ · ~ei = aii′ , (4.65)

which uniquely define the rotation, were found to obey the relation

aii′a
i′

j = δij (4.66a)

in Section 1.2 (see also Eq. (1.23)). With the matrix notation A = (aii′), this equation takes
the form

AAT = I. (4.66b)

Thus, the matrix containing all of the transformation coefficients is indeed an orthogonal
matrix. Furthermore, if both sets of basis vectors are right-handed, then det(A) = 1 and
the matrix belongs to SO(n). If we also include the possibility of having left-handed sets
of basis vectors, then the full set of transformations between different sets of basis vectors
is described by O(n), with transformations between right- and left-handed bases having
determinant minus one. In addition to rotations, such transformations include reflections.
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The full group O(n) has the same infinitesimal generators as SO(n), but also includes a
finite generator that changes direction of one of the basis vectors as other reflection operators
may be constructed from this one by rotations.

The Lie algebra of SO(n) may be found by considering small rotations

eθJ ' 1 + θJ. (4.67)

From the orthogonality relation, it follows that

eθJeθJ
T

' (1 + θJ)(1 + θJT ) ' 1 + θ(J + JT ) = 1 (4.68)

to first order in θ. This immediately implies that

JT = −J. (4.69)

Therefore, the Lie algebra of SO(n) consists of all real anti-symmetric n× n matrices.

Example 4.26 Let us check the cases n = 1, 2, and 3. For the case of n = 1, we have seen
that the group SO(1) is isomorphic to the trivial group and thus has no generators. This is
perfectly in order as there are no anti-symmetric 1× 1 matrices. In the case of n = 2, there
is only one linearly independent anti-symmetric matrix, namely

J =

(
0 −1
1 0

)
. (4.70)

This matrix satisfies the relation J2 = −I and it follows that the series expansion of the
exponent in Eq. (4.47) may be split into terms with even and odd k according to

eθJ = I
∑
k=0

(−1)kθ2k

(2k)!
+ J

∑
k=0

(−1)kθ2k+1

(2k + 1)!
. (4.71a)

The first sum in this expression is the series expansion of cos(θ), while the second sum is
the series expansion of sin(θ). It immediately follows that

eθJ = I cos(θ) + J sin(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(4.71b)

as expected. Finally, for SO(3), there are three linearly independent real anti-symmetric
3× 3 matrices

J1 =

0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , and J3 =

0 −1 0
1 0 0
0 0 0

 , (4.72)

where Ji is the generator of rotations about the xi-axis.

4.4.3.2 The unitary group

While the orthogonal group describes general basis changes in a real vector space, the
physics of quantum mechanics will require the use of complex vector spaces. While the
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majority of this book is written using examples from classical physics only, it would be a
sin not to include a short discussion on the unitary group, which describes basis changes in
complex vector spaces.

Much like the orthogonal group is defined by relating the inverse of a matrix to its
transpose, an n× n matrix V belongs to the unitary group U(n) if its Hermitian conjugate
V †, i.e., the matrix obtained by transposing the matrix and taking the complex conjugate
of each element, is its inverse

V V † = V †V = I. (4.73)

For real matrices, this unitarity relation is equivalent to the defining relation of orthogonal
matrices and therefore O(n) is a subgroup of U(n). Unlike O(n), where we were forced
to include a reflection to generate the full group, U(n) is completely generated by its Lie
algebra. The fact that the elements of the orthogonal group necessarily have determinant
±1 originated as a result of taking the determinant of the orthogonality relation. Doing this
with an element V in the unitary group results in

det(V V †) = det(V ) det(V †) = det(V ) det(V )∗ = |det(V )|2 = 1, (4.74)

which only states that det(V ) is a complex number of modulus one.

Example 4.27 For n = 1, the unitary group U(1) is not a finite group as O(1) (in fact,
it is one of the most important Lie groups in physics). Any complex 1× 1 matrix is just a
complex number z, which may be parametrised as z = reiθ, where r and θ are both real
and r > 0. The unitarity condition implies that

zz∗ = r2ei(θ−θ) = r2 = 1 (4.75)

resulting in r = 1 but leaving θ arbitrary. The group U(1) is therefore the set of complex
numbers of modulus one, written on the form z(θ) = eiθ, and its single generator is J = i.
Furthermore, it holds that z(2π+θ) = z(θ), which is a very familiar relation and shows that
U(1) is isomorphic to SO(2). This should not be surprising as SO(2) is the symmetry group
of a circle while complex numbers of the form eiθ describe the unit circle in the complex
plane.

In the case of O(n), we defined the subgroup SO(n) as the matrices in O(n) that have
determinant one. In complete analogy, the special unitary group SU(n) is defined as the
subgroup of U(n) that consists of unitary matrices of determinant one.

The Lie algebra of U(n) can be found by considering the infinitesimal version of the
unitarity relation, i.e.,

eθJeθJ
†
' I + θ(J + J†) = I =⇒ J = −J†. (4.76)

The generators of U(n) are therefore the set of anti-Hermitian matrices, i.e., matrices that
are equal to the negative of their own Hermitian conjugates. If we restrict ourselves to
SU(n), we also have the additional requirement

det(eθJ) = eθ tr(J) = 1, (4.77)

implying that tr(J) = 0. The generators of SU(n) are therefore the set of traceless anti-
Hermitian matrices.
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Example 4.28 Just as SO(1), the requirements of the group SU(1) are so restrictive that
the group is trivial and the lowest n for which SU(n) is non-trivial is n = 2. For the unitary
group U(2) the generators are given by

−iσ0 = −iI, −iσ1 = −i
(

0 1
1 0

)
,

−iσ2 = −i
(

0 −i
i 0

)
, −iσ3 = −i

(
1 0
0 −1

)
, (4.78)

where we recognise −iσ2 as the generator of the SO(2) subgroup we saw previously. The
matrices σ1, σ2, and σ3 are called the Pauli matrices. In fact, all of the generators could be
taken as the generator of a subgroup isomorphic to SO(2). For the special unitary group
SU(2), the generators are the same apart from −iσ0, which is not traceless and must be
removed. The Lie bracket for SU(2) is given by

[−iσi,−iσj ] = 2εijk(−iσk). (4.79)

This looks similar to the Lie bracket of SO(3) given in Eq. (4.41) and differs only by a factor
of two. However, we may equally well generate SU(2) with Si = −iσi/2 as generators.
This makes the Lie bracket exactly the same as that of SO(3) and there is therefore a
homomorphism from SU(2) to SO(3) given by

f(eθiSi) = eθiJi . (4.80a)

It should be stressed that this homomorphism is not an isomorphism. In particular, we find
that with θ2 = 2π and θ1 = θ3 = 0,

e2πS2 = e−iπσ2 = −I and e2πJ2 = I, (4.80b)

where the identity matrix in these relations is 2× 2 in the first and 3× 3 in the second. It
follows that f(−I) = I, implying that the homomorphism is not one-to-one as also f(I) = I.
Indeed, the homomorphism is actually two-to-one and we say that SU(2) is a double cover
of SO(3). The group SU(2) is central in the quantum mechanical treatment of angular
momentum, just as SO(3) is central to the classical treatment.

4.5 REPRESENTATION THEORY
A fundamental tool in examining how different systems behave under certain transforma-
tions is found in representation theory. A representation ρ of a group on a vector space V
is a homomorphism from the group to the set of linear operators on V . Note that these op-
erators form a group and it therefore makes sense to talk about such a homomorphism, see
Example 4.6. The dimension of V is also referred to as the dimension of the representation.
If the vector space V is finite dimensional with N dimensions, then the representation can
be written down as N ×N matrices. The action of a group element a on a vector x in V is
given by applying the homomorphism to the vector and obtaining a new vector

x′ = ρ(a)x. (4.81)
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Example 4.29 We have already seen how the abstract group of rotations in three dimen-
sions can be isomorphically mapped to SO(3). The rotation may be written as

x′i
′

= ai
′

i x
i or x′ = (ai

′

i )x = ρ(a)x, (4.82)

where x and x′ are interpreted as column vectors containing the components of ~x in the
last expression, and this is the action of the rotation on the vector ~x. The representation
ρ(a) = (ai

′

i ) is the fundamental representation of rotations. It represents each rotation by a
matrix containing the transformation coefficients.

Example 4.30 The matrix group SU(2) may be represented by a three-dimensional rep-
resentation using the homomorphism between SU(2) and SO(3).

Any representation of a group also naturally gives rise to representations of all its sub-
groups by restricting the homomorphism ρ to the subgroup. Any element a of the subgroup
maps to a subgroup of the representation, since the structure of the group operation is
preserved. More precisely, if a and b are in a subgroup of the represented group, then ab is
also in the subgroup. This means that

ρ(a)ρ(b) = ρ(ab) (4.83)

and the group operation between ρ(a) and ρ(b) therefore gives a new element that is the
representation of an element in the subgroup. The representation of the subgroup therefore
forms a subgroup of the representation of the full group.

Example 4.31 Starting from the two-dimensional representation

ρ(Rα) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
(4.84)

of rotations in two dimensions, we can also find a two-dimensional representation of any
cyclic group Cm, since we know that Cm is isomorphic to rotations by an angle 2π/m.
Calling the representation ρ̃, it is given by ρ̃(ck) = ρ(R2πk/m), where c is the generator of
Cm. Taking C3 with the elements e, c and c2 as an example, the representation becomes

ρ̃(e) = I, ρ̃(c) =
1

2

(
−1 −

√
3√

3 −1

)
, and ρ̃(c2) =

1

2

(
−1

√
3

−
√

3 −1

)
. (4.85)

4.5.1 Tensor products and direct sums
If we have a representation of a group G on a vector space V , the action of a group element
a on a vector ~v can generally be written as

v′i
′

= ρ(a)i
′

i v
i, (4.86)
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where the components ρ(a)i
′

i may be seen as the components of a matrix. In the case of

rotations, we found that these components were the transformation coefficients ai
′

i and
putting them into a matrix gave us the matrix group SO(3). Similarly, for any group, we
may define the action on a scalar quantity φ through

φ′ = ρ(a)φ = φ, (4.87)

i.e., the representation maps all a to the trivial group. According to their definition as linear
combinations of products such as

T = ~v ⊗ ~w, (4.88)

where ~v and ~w are elements of V , the set of rank two tensors forms a vector space. We may
define a representation ρ̃ of G on this vector space by the action

ρ̃(a)T = (ρ(a)~v)⊗ (ρ(a)~w) ≡ (ρ(a)⊗ ρ(a))(~v ⊗ ~w). (4.89)

This is a representation of G on the tensor product space V ⊗ V and we call it the tensor
product representation (or just product representation).

Example 4.32 In three dimensions, consider any of the rank two tensors mentioned in
Chapter 2 and call it Tij . This tensor transforms as

Ti′j′ = ai
′

i a
j′

j Tij (4.90)

under rotations. This can be written on the form

TI′ = AI
′

I TI , (4.91)

where I = (ij) and I ′ = (i′j′) are sets of two indices, which each may take 32 = 9 different

values, and AI
′

I = ai
′

i a
j′

j . Writing down the matrix (AI
′

I ) by labelling each row with the
two indices I ′ and each column with the two indices I, we end up with a 9 × 9 matrix
representation of SO(3). This is a rank two tensor product representation.

In general, a tensor product need not be taken between a vector space and itself. We
may also have a situation where we have a representation ρV of the group G on the vector
space V and a different representation ρW of the same group on the vector space W . We
can still construct the tensor product space V ⊗ W as the set of linear combinations of
objects of the form ~v ⊗ ~w, where ~v is an element of V and ~w an element of W . The tensor
product representation ρV⊗W of G on V ⊗W is then defined by the action

ρV⊗W (a)(~v ⊗ ~w) = (ρV (a)~v)⊗ (ρW (a)~w), (4.92)

in analogy with Eq. (4.89). If V is n-dimensional and W is m-dimensional, the dimension
of the tensor product representation is nm.

A different way of constructing a new representation from known ones is the direct sum.
Assuming that ρV and ρW are representations of the group G on the vector spaces V and
W , respectively, we can create a new representation on the vector space V ⊕W . Rather
than having a basis created by the outer product of the basis vectors in each of the spaces
as the tensor product space, this vector space is the space of pairs of vectors

~u = (~v, ~w) ≡ ~v ⊕ ~w, (4.93)



226 � Mathematical Methods for Physics and Engineering

where ~v is a vector in V and ~w is a vector in W . The addition of vectors and the multipli-
cation of vectors by scalars are given by

~u1 + ~u2 = (~v1, ~w1) + (~v2, ~w2) = (~v1 + ~v2, ~w1 + ~w2), (4.94a)

k~u = k(~v, ~w) = (k~v, k ~w), (4.94b)

respectively. If the dimensions of V and W are nV and nW , respectively, then this vector
space has dimension nV + nW with a basis on the form

~eV⊕Wk =

{
~eVk ⊕ 0, (k ≤ nV )

0⊕ ~eWk−nV , (k > nV )
. (4.95)

A new representation ρV⊕W of G is then given by letting the representations ρV and ρW
act on their respective sub-spaces, i.e.,

ρV⊕W (a)(~v ⊕ ~w) = (ρV (a)~v)⊕ (ρW (a)~w) (4.96)

for any element a in the group G. It is important to note the difference between this rep-
resentation and the tensor product representation. Although very similar to Eq. (4.92), the
representation here is acting on a very different vector space. Creating new representations
in this way may not be terribly exciting, since it is really nothing more than studying two
separate representations acting on their respective vector spaces. Instead, the process of
more relevance is going the other way by rewriting more complicated representations as a
direct sum of simpler representations.

Example 4.33 As an illustration of the difference between the tensor product representa-
tion and the direct sum representation, let us consider the representation of two-dimensional
rotations by SO(2) matrices

ρm(Rθ) =

(
cos(mθ) − sin(mθ)
sin(mθ) cos(mθ)

)
, (4.97)

where m is an integer. Since these representations are two-dimensional, both the tensor
product ρm ⊗ ρn ≡ ρm⊗n and the direct sum ρm ⊕ ρn ≡ ρm⊕n will be four-dimensional
representations. The tensor product representation is given by

ρm⊗n(Rθ) =

(
cmθρn(Rθ) −smθρn(Rθ)
smθρn(Rθ) cmθρn(Rθ)

)

=


cmθcnθ −cmθsnθ −smθcnθ smθsnθ
cmθsnθ cmθcnθ −smθsnθ −smθcnθ
smθcnθ −smθsnθ cmθcnθ −cmθsnθ
smθsnθ smθcnθ cmθsnθ cmθcnθ

 , (4.98)

where in the middle step each entry represents a 2 × 2 block of the 4 × 4 matrix, given
by the matrix ρn(Rθ), and we have introduced the short-hand notations sα = sin(α) and
cα = cos(α). On the other hand, the direct sum representation is given by

ρm⊕n =

(
ρm(Rθ) 0

0 ρn(Rθ)

)
=


cmθ −smθ 0 0
smθ cmθ 0 0

0 0 cnθ −snθ
0 0 snθ cnθ

 , (4.99)

i.e., a block-diagonal matrix where each block is independent of the other under the group
operation.
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4.5.2 Reducible representations
Two representations ρ and ρ′ of a group on the same vector space V are said to be equivalent
if there is an invertible linear operator U on the vector space such that

ρ′(a) = Uρ(a)U−1 (4.100)

for all elements a in the group (it is also easy to show that for any given ρ and U , this
defines a representation ρ′, see Problem 4.39). A representation ρ is said to be reducible if
it is equivalent to a representation ρD of the form

Uρ(a)U−1 = ρD(a) =

(
ρ1(a) σ(a)

0 ρ2(a)

)
, (4.101)

where ρi(a) are ni×ni blocks containing an ni-dimensional representation and σ is an n1×n2

block satisfying σ(ab) = ρ1(a)σ(b) + σ(a)ρ2(b). For finite groups, it is always possible to
select a basis of the vector space such that σ(a) = 0 for all a. In this case, Eq. (4.101)
becomes

ρD(a) =

(
ρ1(a) 0

0 ρ2(a)

)
, (4.102)

which tells us that the representation may be written as a direct sum of the representations
ρ1 and ρ2, each acting on a subspace of V . In other terms, ρ1 and ρ2 are representations on
V1 and V2, respectively, V = V1 ⊕ V2, and ρD = ρ1 ⊕ ρ2. Since the original representation ρ
is equivalent to ρD, we will also say that ρ = ρ1 ⊕ ρ2.

Example 4.34 Consider the group of rotations around the x3-axis. As a subgroup of
SO(3), this group may be represented by

ρ(Rθ~e3) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , (4.103)

which is block-diagonal and therefore reducible. It is a direct sum of the trivial representation
acting on the subspace spanned by ~e3 and the SO(2) representation acting on the subspace
spanned by ~e1 and ~e2.

Given an n-dimensional representation ρ on a vector space V , let us consider a reduction
of the tensor representation ρ⊗ ρ that is always possible. Introducing a basis ~ei of V , any
tensor in V ⊗ V may be written as

T = Tij~ei ⊗ ~ej = (T{ij} + T[ij])~ei ⊗ ~ej , (4.104)

where T{ij} and T[ij] are the symmetric and anti-symmetric components of the tensor,
respectively. For any symmetric tensor S, it holds that

(ρV⊗V S)ij = ρikρj`Sk` = ρikρj`S`k = (ρV⊗V S)ji (4.105)

and so the action of the group preserves the subspace of symmetric tensors. Similar ar-
guments applied to the anti-symmetric tensors will tell us that also the subspace of anti-
symmetric tensors is preserved under the group action. We can always select a basis of
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symmetric tensors spanning the symmetric subspace V ⊗+ V and a basis of anti-symmetric
tensors spanning the anti-symmetric subspace V ⊗− V such that

(V ⊗+ V )⊕ (V ⊗− V ) = V ⊗ V. (4.106)

In this basis, the representation ρV⊗V is now of the form

ρV⊗V =

(
ρV⊗+V 0

0 ρV⊗−V

)
, (4.107)

where ρV⊗±V are the n(n±1)/2-dimensional representations on the V ⊗±V subspaces. This
is a reduction of the tensor product representation into the symmetric and anti-symmetric
tensor product representations.

Example 4.35 Let us get back to the tensor product representation ρ1⊗ρ1 in Example 4.33.
The matrix representation in Eq. (4.98) is written in the basis eij = ~ei⊗~ej , which is neither
symmetric nor anti-symmetric. According to the discussion now at hand, we should be able
to block diagonalise it by instead using the basis

E1 = e11 + e22, E2 = e11 − e22, E3 = e12 + e21, E4 = e12 − e21, (4.108)

where the first three basis tensors are explicitly symmetric and E4 is explicitly anti-
symmetric. Checking the action on each of these basis tensors, we find that

ρ1⊗1E1 = E1, (4.109a)

ρ1⊗1E2 = cos(2θ)E2 − sin(2θ)E3, (4.109b)

ρ1⊗1E3 = sin(2θ)E2 + cos(2θ)E3, (4.109c)

ρ1⊗1E4 = E4. (4.109d)

Writing this in matrix form, we have

ρ1⊗1 =

1 0 0
0 ρ2 0
0 0 1

 = 1⊕ ρ2 ⊕ 1, (4.110)

where ρ2 is the two-dimensional representation on the subspace spanned by E2 and E3 and
the ones on the right-hand side denote the trivial representations on E1 and E4.

In the example above, we were able to split the tensor product representation ρ1⊗1 into
not only symmetric and anti-symmetric parts, but we also managed to split the symmetric
part into two representations ρ1⊗+1 = 1 ⊕ ρ2. As with many things, this is no mere co-
incidence, but rather a consequence of the representation ρ1 being in terms of orthogonal
matrices. For any such representation in terms of SO(n) matrices, we will always have the
relation

ρV⊗V ekk = ekk (4.111a)

or, in terms of components
ρikρj`δk` = ρikρjk = δij , (4.111b)

since ekk = δijeij . The interpretation of this is that the Kronecker delta tensor transforms
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according to the trivial representation under rotations. The remaining part of the symmetric
tensor product space is traceless and tensors in it are of the form T = Tijeij such that

Tii = 0. (4.112)

This does not generalise directly to unitary representations on complex vector spaces, but
a similar construction is possible using a tensor product representation of the vector space
with its dual space, i.e., the space of linear maps from the vector space to complex numbers.

4.6 PHYSICAL IMPLICATIONS AND EXAMPLES
We have now seen several examples of groups and symmetries, but our treatment has been
largely abstract and mathematical. It is therefore about time that we discuss the relevance
of symmetries and group theory in physics. When we discussed the rotation group, we con-
sidered how it transformed a general vector ~v. For a physical vector quantity, such a vector
will be an element of an N -dimensional vector space and a rotation will transform it into
a different vector in a linear fashion. This provides us with a natural representation of the
rotation group on this vector space and writing it in terms of a matrix, this representation
will be in terms of SO(N). Correspondingly, tensors will transform under representations
built up from this representation by tensor products.

4.6.1 Reduction of possible form of solutions
Symmetries can often help in reducing the complexity of a given problem and help us argue
why a solution must have a particular form. Consider a situation where a tensor property
(of arbitrary rank) of a material depends only on the material, and the material itself
displays a symmetry that is a subgroup of rotations, i.e., if we perform a rotation in this
subgroup, then the material again looks the same, meaning that the property must have
the same components after the rotation. Let us take a step back and consider what this
implies. We know that the property should transform under the appropriate tensor product
representation, which may be reduced into a direct sum of different representations. These
different representations constitute subspaces of the full representation space, but unless the
representation on a subspace is trivial, the components in that subspace are generally going
to change. The conclusion from this is that the only components that are allowed to be
non-zero all correspond to subspaces that transform according to the trivial representation
of the symmetry group.

Example 4.36 In Example 1.34 we considered a spherically symmetric charge distribution
and deduced that the corresponding electric field necessarily must be directed in the ~er
direction. Let us reexamine this statement in the language of group theory. Considering
the field ~E(x3~e3) along the x3-axis, the position as well as the charge distribution are
invariant under rotations about the x3-axis. At the same time, the electric field is a vector
and transforms according to the SO(3) representation under any rotations. In particular,
when restricting ourselves to rotations about the x3-axis, we saw in Example 4.34 that this
representation decomposes into the direct sum of an SO(2) representation and a trivial
representation. The trivial representation corresponds to the subspace spanned by ~e3 and
so only vectors of the form

~E = E3~e3 (4.113)

are allowed, since the SO(2) representation is not trivial and thus forbids any non-zero
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components in the subspace spanned by ~e1 and ~e2. Similar arguments may be applied for
any point ~x = r~er. Taking rotations around ~er into account, the resulting field must be of
the form ~E = E~er.

The above argument is true for any type of representation and in order for a symmetry
to allow a non-zero element, the representation must contain at least one subspace for which
the representation is trivial. We shall return to these issues in the next section, where we
will deduce a general method of finding out whether a given representation contains a trivial
subspace. However, since the road to this result is relatively long, let us first consider some
options that are more tedious on the computational side, but less theoretically demanding.

The big question we need to answer is whether or not a given representation contains
a subspace that transforms under the trivial representation. Let us therefore assume that
we have a representation ρ acting on a vector space V . For any vector ~v belonging to a
subspace transforming under the trivial representation, we find that for all a in the group

ρ(a)~v = ~v (4.114a)

or, writing this in component form

ρ(a)ijv
j = vi = δijv

j . (4.114b)

This is nothing but an eigenvector equation for ρij with the eigenvalue one. In order for it
to be possible to satisfy this equation, a necessary and sufficient condition is that

det(ρ− I) = 0, (4.115)

where I is the identity matrix. If this is satisfied, then Eqs. (4.114) allow non-trivial solutions
and solving for the corresponding eigenvector will result in a vector transforming under the
trivial representation.

Example 4.37 Looking back to the rank two tensor representation of SO(2) in Exam-
ple 4.35, we might not have made the choice of basis for the symmetric tensor product
representation in such a way that the reduction of the symmetric representation into 1⊕ ρ2

was obvious. Instead, a perhaps more natural choice would have been

E1 = e11, E2 = e22, and E3 =
1√
2

(e12 + e21). (4.116)

In this basis, the representation ρ1⊗+1 is given by

ρ1⊗+1 =

 c2 s2 −sc
√

2

s2 c2 sc
√

2

−sc
√

2 sc
√

2 2c2 − 1

 =⇒ det(ρ1⊗+1 − 1) = 0, (4.117)

indicating that the representation has a subspace transforming under the trivial representa-
tion. Solving the corresponding eigenvector equation, we find that this subspace is spanned
by

E′1 = E1 + E2 = e11 + e22, (4.118)

which was found to span the subspace transforming under the trivial representation in
Example 4.35.
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We have here used the representation of an arbitrary element of the group for our
argumentation. In general, this might be cumbersome and it should be noted that it is
always sufficient to consider only the generators of the involved symmetry.

It is also possible to argue for a particular functional dependence of a physical quantity
based on symmetry arguments. If a physical situation is symmetric under a subgroup of
rotations and translations ~x → ~x ′ = Rθ~n~x + ~a we may consider representations of this
group in terms of linear operators on the vector space of functions in the region of interest
Ω. Note that, in order to be a symmetry of the system, a necessary condition is that the
transformation maps Ω to Ω. That the set of functions on Ω forms a vector space is easy
to check (see Chapter 5) with the addition and multiplication by a constant being defined
pointwise, i.e., for two functions f and g, we define

(f + g)(~x) = f(~x) + g(~x) and (kg)(~x) = kg(~x), (4.119)

where k is a constant. It should be noted that this vector space is generally of infinite
dimension.

If a system is symmetric with respect to a rotation Rθ~n followed by a translation by ~a,
then any physical quantity Q(~x) resulting from solving the system must satisfy

Q(Rθ~n~x+ ~a) = ρ(Rθ~n,~a)Q(~x), (4.120)

where ρ is a representation of rotations and translations on the space that Q belongs to,
i.e., the value of Q at any points that are mapped into each other by the symmetry must
be related by this representation. Note that if Q is a scalar, this representation will be
the trivial representation. It is here important to note that the system must be completely
determined with a unique solution in order to apply this argument. If we consider a partial
differential equation in a region that displays a certain symmetry, it is also necessary that
the boundary conditions also display this symmetry in order for this argument to apply. If
the boundary conditions do not display the symmetry, or are unknown, the argument does
not apply.

Example 4.38 Let us again return to Example 1.34 for which we considered the electric
field ~E(~x) for a spherically symmetric charge distribution. In Example 4.36, we argued by

rotational symmetry that ~E(~x) = E(~x)~er. In order to do so, we considered rotations around
an axis connecting the origin with ~x. If we now consider general rotations ~x ′ = Rθ~n~x, we

find that the electric field ~E′ after rotation will be given by

~E′(~x ′) = Rθ~n
~E(~x) = E(~x)Rθ~n~er(~x), (4.121)

where we have explicitly written out the fact that ~er depends on the position ~x. We now
apply the relation

Rθ~n~er(~x) =
1

r
Rθ~n~x =

1

r
~x ′ = ~er(~x

′), (4.122)

which leads to
~E′(~x ′) = E(~x)~er(~x

′). (4.123)

If the system is symmetric under rotations, this must be equal to the field at ~x ′ before the
rotation, i.e.,

~E′(~x ′) = ~E(~x ′) = E(Rθ~n~x)~er(~x
′) =⇒ E(~x) = E(Rθ~n~x). (4.124)
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~E(~x)

ρ(~x)

~E(~x ′)

Rθ
~n

~x

~x ′

Figure 4.16 The electrical field ~E at positions ~x and ~x ′ = Rθ~n~x around a spherically symmetric
charge distribution can be related by symmetry arguments. The symmetry requires that the field
is on the form ~E = E(r)~er.

Consequently, the function E(~x) must be equal for all points that can be mapped into each
other by rotations, which are all the points with the same radial coordinate r. The function
can therefore only be a function of this coordinate, since points with different θ and ϕ but
the same r may be mapped to each other by rotations. We can therefore write E(~x) = E(r).
This situation is illustrated in Fig. 4.16.

4.6.2 Important transformations in physics
Symmetries of physical systems play a central role in modern physics. We have already seen
examples of important transformations in the form of rotations and translations. There are
some other transformations that are of great importance and we will briefly discuss them
here before we go on to dig a bit deeper into representation theory.

4.6.2.1 Time translations and reversal

A common and important question is to consider what happens to a physical system under
time translations and reversal . Just as spatial translations and rotations are defined by how
they act on spatial coordinates, the time translations and reflections T s± can be defined
based on how they act on the time coordinate t

T s±t = ±t+ s, (4.125)

where the positive sign corresponds to a pure time translation while the negative sign gives
a time translation and reversal. It should be clear that these transformations constitute a
group with the identity element T 0

+ for the very same reasons as translations and reversal
of any spatial coordinate is. The group has one continuous generator E, which generates
translations, and one discrete generator σ, which generates reversal. As we go deeper into
the more mathematical formulation of classical mechanics we shall find that invariance
under time translations is intimately related to the conservation of energy.
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v1 < v0

Figure 4.17 The left part of the figure shows a throw parabola (dark) which is the path taken by
an object in a homogeneous gravitational field in the absence of air resistance, as well as the path
taken by an object subject to air resistance proportional to the velocity (light). The time reversal
of the parabola would also be a viable solution to the equations of motion, while the path taken
when air resistance is present is not. When including air resistance, the time reversed path would
seem to gain energy and speed up.

In order to examine how physical relations transform under time transformations, we
should first note that most relations depend only on differences in time and not on the
actual value of the time coordinate t. This is in direct analogy to spatial transformations,
where it does not matter where we place our origin. As a result, physical relations generally
contain derivatives with respect to time and the interesting question becomes how these
transform under time transformations. Answering this is a matter of applying the chain
rule for derivatives. Taking t′ = T s±t, we find that

d

dt
=
dt′

dt

d

dt′
= ± d

dt′
. (4.126)

It directly follows that any differential equation in t is invariant under time translations,
while invariance under time reversal occurs when the differential equation contains only
even powers of d/dt.

The question is now what invariance under time translations and reversals implies for
physics. Starting by looking at time translations, let us assume that we have a system of
differential equations in t that displays time translational invariance. If we have a solution to
the system, applying a time translation to that solution will give a new solution. Naturally,
the solution will generally not fulfil the same initial conditions, but it will be a solution to the
differential equations for the time translated initial conditions. This is important in physics
as it is related to the repeatability of experiments, i.e., if we repeat an experiment with
the same initial conditions, then we expect to obtain the same results. On the other hand,
invariance under time reversal means that, given a solution, it would still be a solution to the
same differential equations if time was going backwards. If we could make a video recording
of a physical process invariant under time reversal, we would not be able to tell whether
the tape was being played forward or backward as both options would be physically viable.
Systems that are not invariant under time reversal are generally dissipative and playing the
tape backwards would show unphysical behaviour such as diffusion systems gathering all
substance in one specific location or objects accelerating due to friction.

Example 4.39 Let us consider the motion of a particle under the influence of a homoge-
neous gravitational field ~g. In the absence of air resistance, the equations of motion for this
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particle are given by
~̈x = ~g. (4.127)

Since this equation contains only a second derivative with respect to time, it is invariant
under time translations as well as time reversal. The solutions to this problem are parabolae
of the form

~x(t) = ~x0 + ~v0t+
1

2
~gt2 (4.128a)

and the transformation T s± would map this solution to

T s±~x(t) =

(
~x0 + ~v0s+

1

2
~gs2

)
︸ ︷︷ ︸

=~x ′0

± (~v0 + ~gs)︸ ︷︷ ︸
=±~v ′0

t+
1

2
~gt2, (4.128b)

which is of the same form with ~x0 → ~x ′0 and ~v0 → ~v ′0 and therefore a different solution, see
Fig. 4.17.

If we introduce air resistance proportional to the speed of the object, the equation of
motion will instead read

~̈x = ~g − k~̇x, (4.129)

where k is a constant. The appearance of the single time derivative in ~̇x breaks the symmetry
of the system under time reversal. The most blatant example of this would be a particle
falling at the terminal velocity ~̇x = ~g/k. Time reversal of this solution would lead to T 0

−~̇x =
−~g/k, a particle rising with constant velocity against the gravitational field.

4.6.2.2 Spatial reflections (parity)

Until now, when looking at different coordinate systems, we have mainly considered co-
ordinate systems where the basis vectors are ordered into a right-handed basis. We have
seen that different Cartesian bases are related to each other by rotations isomorphic to the
special orthogonal group SO(N). If we take any right-handed Cartesian basis ~ei and do
the transformation ~e1 → −~e1, but keep the rest of the basis vectors fixed, our right-handed
basis transforms into a left-handed one by a spatial reflection (or parity transformation).
Naturally, it does not really matter which basis vector is reflected in this fashion, the choice
of ~e1 is just one of convenience as it exists for any dimensionality of the space. Using a
rotation, this may be transformed in such a way that it corresponds to flipping any of the
other basis vectors instead. Additionally, if the number of dimensions is odd, we can per-
form a rotation resulting in all basis vectors being flipped, i.e., ~ei → −~ei, see Fig. 4.18. In
an even number of dimensions, flipping all basis vectors is instead equivalent to a rotation.
The group of rotations and spatial reflections is isomorphic to the orthogonal group O(N)
with proper rotations forming the SO(N) subgroup.

We have seen and considered how vectors and tensors transform under proper rotations.
When also considering spatial reflections, there is an additional classification to be made. Let
us start by considering how scalars transform. The set of scalars constitute a one-dimensional
representation and generally we have seen that they are in the trivial representation of any
group. The additional possibility for a one-dimensional representation in the case of O(N)
is the map

ρ(a) = det(a), (4.130)
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−~e2

~e2

~e1

−~e1

Figure 4.18 In two dimensions (upper figures) it is possible to perform a rotation that maps every
basis vector according to ~ei → −~ei. In three dimensions (lower figures) this is no longer possible.
Rotating two basis vectors into their negatives, the third will always end up pointing in the same
direction as it originally did. In order to do the mapping ~ei → −~ei, an additional spatial reflection
is necessary.

which is equal to ±1 for any element a. We therefore have two possible transformations in
a one-dimensional vector space,

ρ(a)φ = φ and ρ(a)φ = det(a)φ. (4.131)

Quantities transforming according to the first of these transformation properties are called
(proper) scalars while quantities transforming according to the second are pseudo-scalars.
While scalars take the same values regardless of the transformation, i.e., regardless of
whether we consider a right- or left-handed coordinate system, pseudo-scalars transform
as scalars under rotations but change sign under spatial reflections.

We can handle the possible representations of vectors and general tensors in a very
similar fashion. For vectors, the canonical representation of a general rotation and spatial
reflection would be

vi
′

= ρ(a)vi = ai
′

i v
i, (4.132)

where ai
′

i are the transformation coefficients defined in Chapter 1, now forming the com-
ponents of a general O(N) matrix. However, as for the scalars, this representation can be
multiplied by the determinant det(a) to obtain the representation

ρ(a) = det(a)a, (4.133)

where a is an element ofO(N). Verifying that this is a homomorphism is left as Problem 4.41.
It should be noted that

det(det(a)a) = det(a)N det(a) = det(a)N+1 = (±1)N+1. (4.134)

Thus, in vector spaces of odd dimension, the representation det(a)a is in terms of matrices
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of determinant one, i.e., SO(N), while for even dimensions the representation is an non-
trivial automorphism of O(N). Similarly, for rank two tensor product representations, we
can select either

ρ+(a) = a⊗ a or ρ−(a) = det(a) a⊗ a, (4.135)

with the natural generalisation to higher order tensor products. As for scalars, objects
transforming under the representation ρ+ are referred to as (proper) tensors, while objects
transforming under the representation ρ− are pseudo-tensors.

Example 4.40 The permutation symbol εijk restricted to a Cartesian coordinate system
is a pseudo-tensor of rank three. Using the same argumentation as that leading up to
Eq. (2.114), we find that

εi′j′k′ = det(a) ai
′

i a
j′

j a
k′

k εijk. (4.136)

As for any representations, we may construct tensor product representations also by
using the pseudo-tensor representations. In general, due to (−1)2 = 1, we find that the tensor
product of two pseudo-tensor representations is a tensor representation, while the tensor
product of a pseudo-tensor representation and a tensor representation is a new pseudo-tensor
representation.

Let us take a step back and consider the physical implications of a quantity transforming
as a tensor or pseudo-tensor. In particular, we will look at vectors and pseudo-vectors and
work in N = 3 dimensions, where a particular spatial reflection is given by transforming
all basis vectors ~ei to −~ei and thus all (proper) vectors ~v are transformed to −~v. From
this follows that any product involving two vectors is going to be invariant under this
transformation, in particular, the cross product

~v × ~w → (−~v)× (−~w) = ~v × ~w (4.137)

and the direct product
~v ⊗ ~w → (−~v)⊗ (−~w) = ~v ⊗ ~w. (4.138)

We learn two things from this consideration. First of all, the cross product ~v × ~w does not
transform as a proper vector as it does not change sign under the reflection. The difference
in sign tells us that it is a pseudo-vector. This is also consistent with the cross product
being the contraction between two vectors and the permutation symbol, which is a pseudo-
tensor. The second thing we learn is that tensors of rank two do not change sign under this
transformation and we are starting to see a pattern. Extending this argument to tensors of
arbitrary rank, we find that tensors of even rank, such as scalars and rank two tensors, are
invariant under ~ei → −~ei, while tensors of odd rank, such as vectors, acquire a change of
sign. This is summarised in Table 4.2.

Example 4.41 As we have seen, cross-products between vectors are generally pseudo-
vectors. This already gives us a large number of physical examples of pseudo-vectors. One
of the more important examples of this is the angular momentum of a particle, given by

~L = ~x× ~p, (4.139)

where ~x is the position vector and ~p the (linear) momentum. In the same fashion, the con-
tribution from a small volume dV to the angular momentum of a general mass distribution
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Tensor rank Proper tensor Pseudo-tensor
Zero (scalar) φ→ φ φ→ −φ
One (vector) ~v → −~v ~v → ~v
Two T → T T → −T
k T → (−1)kT T → (−1)k+1T

Table 4.2 The behaviour of tensors and pseudo-tensors under the spatial reflection ~ei → −~ei in
N = 3 dimensions. These properties also hold in any odd number of dimensions.

~x ~p

−~p
−~x

~L~L

m

m

Figure 4.19 The behaviour of the angular momentum ~L = ~x × ~p of a mass m under the trans-
formation ~ei → −~ei. While the vectors ~x and ~p transform as ~x → −~x and ~p → −~p, the angular
momentum pseudo-vector is left invariant under the reflection.

is given by
d~L = ~x× d~p = ρ ~x× ~v dV (4.140)

and is also a pseudo-vector. Under the spatial reflection ~ei → −~ei, the angular momentum
transforms according to

~L→ (−~x)× (−~p) = ~x× ~p = ~L. (4.141)

This is illustrated in Fig. 4.19.

4.6.2.3 Galilei transformations

Already Newtonian mechanics has the notion of inertial frames built into it. An inertial
frame is a frame of reference in which the laws of physics hold in their simplest form. For
example, Newton’s laws hold as stated in all inertial frames. All inertial frames are related
to each other by a fixed rotation and a linearly time dependent translation. As such, they
move with constant velocity with respect to each other. An event is specified by giving
a time and a point in space, i.e., it specifies when and where, and is described by four
coordinates (t, ~x) in space-time for any inertial frame.

The relation between two inertial frames with coordinates (t, ~x) and (t′, ~x ′), respectively,
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~vS:

S ′: −~v

Figure 4.20 Regardless of whether we use coordinates fixed in the ground rest frame S or in the
train rest frame S′, the laws of mechanics governing the parabolic motion of an object in free fall
will be the same. An object falling straight down in S′ will be seen as tracing out a parabola in S
and vice versa.

is given by the Galilei transformation

t→ t′ = t+ s, (4.142a)

~x→ ~x ′ = Rθ~n~x+ ~vt+ ~a, (4.142b)

where ~v is the relative velocity between the frames (in the primed frame). The translations
in time and space are specified by s and ~a, while the rotation is given by Rθ~n. It is often
common to restrict the Galilei transformations to inertial frames with a shared space-time
origin, i.e., t = 0 and ~x = 0 is the same event as t′ = 0 and ~x ′ = 0. A Galilei transformation
with a non-zero velocity ~v is called a boost .

Example 4.42 Consider a passenger performing physical experiments on board a train
moving at constant velocity ~v relative to the ground. For this passenger, it is convenient to
use a set of coordinates S′ fixed relative to the train in order to describe the surroundings. An
external observer standing on the ground might describe the same physics using a frame S
that is fixed relative to the ground and will be able to describe the same experiments using
the very same physical laws as the passenger but using the alternative coordinate system.
The two coordinate systems are related by a Galilei transformation, see Fig. 4.20. In this
case, the transformation has been chosen such that the velocity ~v = −v~e1 and such that
y = y′ and z = z′. The resulting transformation

t′ = t, (4.143a)

x′ = x− vt, (4.143b)

y′ = y, (4.143c)

z′ = z, (4.143d)

is the Galilei transformation in standard configuration.
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The set of Galilei transformations form the Galilean group and are perhaps not as iconic
as their relativistic counterpart, the Lorentz transformations, that describe the relativistic
relations between space-time coordinates in different inertial frames sharing the origin. The
relativistic counterpart of the more general Galilei transformation, without a common origin,
is called the Poincaré transformation.

4.7 IRREPS AND CHARACTERS
We shall now turn to a branch of group theory that will require a more theoretical treatment,
which will take us some time to work through. However, the rewards in terms of the insights
we will be able to draw from the symmetries in a physical system will be well worth the
effort in the end. We will mainly work with representations of finite groups in terms of
unitary matrices. The framework also readily extends to compact Lie groups, but that
discussion requires a notion of integration over the group, which we will not cover here. It
should be noted that the restriction to unitary representations is not constraining, since any
matrix representation (seen as a representation on a complex vector space) is equivalent to
a unitary representation.

4.7.1 Irreducible representations
We have already discussed how some representations are reducible. In particular, we have
seen how the tensor product representation ρ ⊗ ρ may be decomposed into the direct sum
of its symmetric and anti-symmetric parts

ρ⊗ ρ = (ρ⊗+ ρ)⊕ (ρ⊗− ρ). (4.144)

As we also saw, it is sometimes possible to further reduce these representations into direct
sums of representations of lower dimension. Naturally, this cannot go on forever. At the
very least, the process must stop when we reach one-dimensional representations, since one
dimensional vector spaces cannot be split into direct sums of lower dimensional ones. We
call representations that cannot be reduced irreducible representations or, the more common
short-hand, irreps. For every finite group, we will find that there are only a finite number
of (inequivalent) irreps and it will be possible to write any representation as a direct sum
of these.

Example 4.43 The finite symmetric group S3 of permutations of three elements can be
represented by the three-dimensional representation given by the mapping of the generators
(12) and (13)

ρ((12)) =

0 1 0
1 0 0
0 0 1

 and ρ((13)) =

0 0 1
0 1 0
1 0 0

 . (4.145)

It is straightforward to check that this representation is unitary and that the vector space
V1 spanned by

v1 =

1
1
1

 (4.146)

is invariant under this representation, since v1 is an eigenvector of both ρ((12)) and ρ((13))
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with eigenvalue one. We may therefore write this representation as a direct sum of represen-
tations on V1 and V2, where V2 is the set of vectors orthogonal to v1. In V2, it is impossible to
find any vector that is a simultaneous eigenvector of the representations of both generators
and the representation on V2 is therefore also irreducible.

By the definition of an irrep ρ on a vector space V , for any non-zero vector ~v ∈ V ,
the entire vector space V must be spanned by vectors of the form ρ(a)~v, where a are the
elements of the represented group. If this is not the case, then the subspace spanned by
those vectors is invariant under the representation, which therefore is reducible. We will use
this fact extensively in the upcoming discussion.

4.7.2 Schur’s lemmas and the orthogonality theorem
The classification of irreps of any finite group rests upon two mathematical facts, known as
Schur’s lemmas, which restrict the forms of linear operators on the vector spaces on which
irreducible representations act. Schur’s lemmas state that:

1. Given an irrep ρ on a vector space V , any linear operator A that commutes with ρ(a)
for all group elements a is proportional to the identity operator on V . In other words,
if for all vectors ~v in V and all group elements a

ρ(a)A~v = Aρ(a)~v, (4.147)

then A~v = λ~v, where λ is a constant.

2. Given two inequivalent irreps ρ1 and ρ2 acting on the vector spaces V1 and V2, re-
spectively, the only linear transformation B from V1 to V2 fulfilling

Bρ1(a) = ρ2(a)B (4.148)

for all group elements a is the transformation mapping all elements of V1 to zero.

The first of these lemmas follows from considering an eigenvector ~v of A, which always exists
due to the fundamental theorem of algebra guaranteeing the existence of an eigenvalue. By
definition, this vector satisfies A~v = λ~v for some λ. Acting with A on ρ(a)~v leads to

Aρ(a)~v = ρ(a)A~v = ρ(a)λ~v = λρ(a)~v (4.149)

and it follows that ρ(a)~v is also an eigenvector of A with the same eigenvalue λ. Since
vectors of the form ρ(a)~v spans the entire vector space V , it must hold that A~v = λ~v for
all vectors ~v in V and thus the operator A is proportional to the identity operator with
proportionality constant λ.

The argumentation behind the second lemma is slightly more involved and requires us
to split it into three different cases based on the dimensionality of the two irreps. If the
dimensions of the irreps are n1 and n2, respectively, then we can start by considering the
case when n2 < n1. The subspace K of V1 such that

B~v = 0 (4.150)

if ~v is in K, i.e., the kernel of B, then has a dimension of at least n1 − n2 ≥ 1. Taking any
vector ~v in K, we find that

Bρ1(a)~v = ρ2(a)B~v = ρ2(a)0 = 0, (4.151)
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implying that all of the vectors of the form ρ1(a)~v are in K, implying that the kernel K is
actually the full space V1, since ρ1 was assumed to be irreducible. Therefore, B~v = 0 for all
~v in V1, which proves the lemma for n2 < n1.

If we instead consider n2 ≥ n1, then we can study the set of vectors ~w in V2 for which

~w = B~v, (4.152)

where ~v is an element of V1, i.e., we are looking at the image I of the linear transformation
B. By acting on ~w with the representation ρ2, we find that

ρ2(a)~w = ρ2(a)B~v = Bρ1(a)~v. (4.153)

Since ρ1(a)~v is also an element of V1, ρ2(a)~w is an element of I. It follows that either I is
the full vector space V2 or ~w = 0. If the dimension of I is smaller than n2, the only option is
that ~w = 0, again implying that B = 0. This is always the case if n1 < n2, since the image
of B cannot have a dimension larger than n1. If n1 = n2, then it is possible for I to have
dimension n2. However, in this case B is a bijection and therefore invertible, which leads to

ρ1(a) = B−1ρ2(a)B. (4.154)

This would mean that ρ1 and ρ2 were equivalent representations, breaking the assumption
that they are inequivalent. The only remaining possibility is therefore that the dimension
of I is smaller than n2, completing the proof of the lemma by implying that B = 0 also in
this case.

Let us use Schur’s lemmas to derive an orthogonality relation among different irreps. For
any group G, we can number the possible inequivalent irreps ρµ by numbers µ = 1, 2, . . ..
We denote the vector spaces the irreps act on by Vµ and their dimensionalities by nµ. Given
any two irreps ρµ and ρν as well as a linear operator T from Vν to Vµ, we can construct the
linear operator

B =
∑
a

ρµ(a)Tρν(a−1), (4.155)

where the sum runs over all elements a in G. For any element b of the group, we now find
that

ρµ(b)B =
∑
a

ρµ(b)ρµ(a)Tρν(a−1) =
∑
a

ρµ(ba)Tρν(a−1). (4.156a)

Introducing c = ba, the sum may be rewritten as a sum over c, leading to

ρµ(b)B =
∑
c

ρµ(c)Tρν(c−1b) =
∑
c

ρµ(c)Tρν(c−1)ρν(b) = Bρν(b). (4.156b)

This is the very same type of relation that Schur’s lemmas deal with, the first lemma for
µ = ν and the second lemma for µ 6= ν. In the latter case, the irreps are not equivalent and
B = 0, while in the former case we find that B = λµT1, where 1 is the identity operator on
Vµ and λµT generally depends on the representation ρµ as well as on the operator T . This
may be summarised as

B =
∑
a

ρµ(a)Tρν(a−1) = λµT δµν1, (4.157a)

where there is no sum over the repeated index µ on the right-hand side (this will be true
for the rest of this section). Taking the ij component of this operator in any basis on Vµ
and Vν , we find that ∑

a

ρµik(a)Tk`ρ
ν
`j(a

−1) = λνT δµνδij . (4.157b)
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While the discussion so far has been valid for a general operator T , we now select the
operator T to be the operator where the component Tpq = 1 for fixed p and q is the only
non-zero component, leading to Tij = δipδjq. For this operator, we also define λµT = λµpq.
The previous equation now takes the form∑

a

ρµip(a)ρνqj(a
−1) = λµpqδµνδij . (4.158)

Setting µ = ν and i = j in this equation and summing over this index results in

λµpqnµ =
∑
a

ρµqi(a
−1)ρµip(a) =

∑
a

ρµqp(e) = δqp
∑
a

1 = δqpNG , (4.159)

where we have used that δii = nµ for the representation ρµ, that the representation ρµ(e) of
the unit element e is the identity matrix, and NG is the order of the group G. Reinserting this
into Eq. (4.158), we finally arrive at the fundamental orthogonality theorem of irreducible
representations ∑

a

ρµip(a)ρνqj(a
−1) =

NG
nµ

δµνδijδpq. (4.160)

4.7.3 Characters
As we have argued in Chapter 2, the physics of any situation should not depend on any
particular choice of basis. Extending this argument to group representations, equivalent
representations will correspond to different choices of basis in the vector space on which the
representations act. In order to classify the representations, we therefore look for properties
of representations that are the same for all equivalent representations. Since the trace has
the cyclic property

tr(AB) = tr(BA) (4.161)

for any two matrices A and B, we find that for any two equivalent representations ρ and
ρ′ = UρU−1, it holds that

tr(ρ′(a)) = tr(Uρ(a)U−1) = tr(U−1Uρ(a)) = tr(ρ(a)) (4.162)

and it directly follows that the character

χρ(a) = tr(ρ(a)) (4.163)

of the representation ρ is a function from the group to the complex numbers and is the
same for all equivalent representations.

Example 4.44 Consider the representation

ρ(Rθ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(4.164)

of rotations in two dimensions. The character of this representation is given by

χρ(Rθ) = tr(ρ(Rθ)) = 2 cos(θ). (4.165)

In particular, we can note that χρ(R0) = 2, χρ(Rπ/2) = 0, and χρ(Rπ) = −2.
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Example 4.45 The trivial representation ρ(a) = 1 also has a trivial character

χρ(a) = tr(ρ(a)) = tr(1) = 1 (4.166)

independent of the group element a. This will be of great value to us when we consider the
decomposition of general representations into irreps and in particular when we are looking
to reduce the possible forms of different tensors.

Since the identity element e is always represented by the unit matrix, we find that

χρ(e) = nρ, (4.167)

where nρ is the dimension of the representation ρ. Another important observation is that
if a and b belong to the same conjugacy class, then we find that

χρ(a) = χρ(cbc−1) = tr(ρ(c)ρ(b)ρ(c−1)) = tr(ρ(b)) = χρ(b). (4.168)

In other words, the characters of any elements of the same conjugacy class are equal and it
suffices to find the character’s value for one element of each conjugacy class to fully know
the character.

If a representation can be written as a direct sum of other representations

ρ =
⊕
µ

ρµ, (4.169)

it directly follows that

χρ(a) =
∑
µ

χρ
µ

(a), (4.170)

since the trace over the direct product vector reduces to the sum of the traces over each
subspace.

Example 4.46 In Example 4.35, we decomposed the tensor product representation of
SO(2) into the direct sum 1⊕ ρ2 ⊕ 1. Taking the trace of Eq. (4.110), we find

χρ1⊗1(Rθ) = 1 + tr(ρ2(Rθ)) + 1 = 2 + χρ2(Rθ) = 2[1 + cos(2θ)]. (4.171)

The ones in the middle step result from the trivial representation having the character one
for all elements.

It is useful to write down the characters for all irreps of a given group in terms of a
character table, where each row represents an irrep and the columns represent the conjugacy
classes of the group. The entries in the table contain the values of the character of the
representation for the given conjugacy class. It is customary to write down the conjugacy
classes together with the number of elements in them as the top row. We will also make sure
to remember which group the character table belongs to by writing it down in the upper
left entry of the table.
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S3 e 2C 3σ
ρ1 1 1 1
ρ2 2 −1 0
ρ3 1 1 −1

Table 4.3 The character table for the irreps of the group S3. The upper row shows the group
followed by its conjugacy classes along with the number of elements in each conjugacy class (when
different from one). Each subsequent row starts with a representation followed by the value of its
character for each conjugacy class.

Example 4.47 Let us again look at the group S3, for which we split a three-dimensional
representation into the trivial representation and a two-dimensional representation in Ex-
ample 4.43. The conjugacy classes of this group are

e = {e}, C = {(123), (132)}, and σ = {(12), (23), (13)}, (4.172)

see Problem 4.22, where e is the identity element, C is the set of cyclic permutations, and
σ the set of odd permutations. The representation given in Example 4.43 gives

χρ(e) = 3, χρ(C) = χρ((123)) = 0, and χρ(σ) = χρ((12)) = 1. (4.173)

Denoting the trivial representation by ρ1 and the two-dimensional representation in the
example by ρ2, we find that χ1(a) = 1 for all a and consequently that χ2 = χρ−χ1 is given
by

χ2(e) = 2, χ2(C) = −1, and χ2(σ) = 0. (4.174)

Both of these representations are irreducible, but there also exists one more one-dimensional
irreducible representation, which we will here call ρ3, given by

ρ3(e) = ρ3(C) = −ρ3(σ) = 1. (4.175)

Since the representation is one-dimensional, this directly gives the characters of the repre-
sentation. All irrep characters for S3 are summarised as a character table in Table 4.3.

A word of warning is necessary at this point. Since character tables are of great im-
portance to many different fields, the notation may vary across different sources and irreps
may have several different names as well. However, the basic structure of the character table
remains the same.

4.7.3.1 Orthogonality of characters

The characters of irreps have a peculiar and very useful property. Using the fundamental
orthogonality theorem, we can sum over i = p and over j = q in Eq. (4.160) and obtain

NGδµν =
∑
a

ρµii(a)ρνjj(a
−1) =

∑
a

χµ(a)χν(a−1), (4.176)
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where χµ(a) = χρ
µ

(a) is the character of the irrep ρµ. We now introduce the character
inner product

〈χ, χ′〉 =
1

NG

∑
a

χ(a)χ′(a−1) =
1

NG

∑
a

χ(a)χ′(a)∗, (4.177)

where the last equality holds assuming that the representations are unitary, i.e., ρ(a−1) =
ρ(a)−1 = ρ(a)†, and we obtain

〈χµ, χν〉 = δµν (4.178)

for all irreps. In other words, the irreps are orthonormal under the inner product. Since the
character of any elements in the same conjugacy class are equal, the inner product may also
be written as

〈χ, χ′〉 =
1

NG

m∑
i=1

kiχ(Ci)χ
′(Ci)

∗, (4.179)

where Ci is the ith conjugacy class, ki the number of elements in the class, and m is the
number of conjugacy classes.

Example 4.48 Consider the representations ρ2 and ρ3 from Example 4.47. The inner
product of the characters of these representations is given by

〈χ2, χ3〉 =
1

6
[χ2(e)χ3(e)∗ + 2χ2(C)χ3(C)∗ + 3χ2(σ)χ3(σ)∗]

=
1

6
[2 · 1 + 2 · (−1) · 1− 3 · 0 · (−1)] = 0, (4.180)

in accordance with the orthogonality of characters of inequivalent irreps.

4.7.3.2 Decomposition into irreps

We have arrived at the final aim of this section, the decomposition of any representation into
a direct sum of irreps. As mentioned earlier, any reducible representation may be written
as a direct sum of irreps

ρ =
⊕
k

ρk, (4.181a)

where ρk = ρµk is an irrep. In general, the direct sum may contain several copies of the
same irrep and we may instead write this as

ρ =
⊕
µ

kµρ
µ, (4.181b)

where the sum is now taken over all irreps and kµ is the number of times the irrep ρµ occurs
in ρ. We find that the character of this representation is given by

χ(a) =
∑
µ

kµχ
µ(a) (4.182)

and taking the inner product with the character χν we find that

〈χν , χ〉 =
∑
µ

kµ〈χν , χµ〉 =
∑
µ

δµνkµ = kν . (4.183)
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This is a wonderful result of deep significance that is worth all of the trouble we went
through to arrive at it. Given the character χ of any representation, it tells us that we can
find the number of times the representation contains an irrep ρν by taking the inner product
of χ with χν .

Example 4.49 Again returning to Example 4.43, we found the character of the represen-
tation mentioned in that example to be

χ(e) = 3, χ(C) = 0, and χ(σ) = 1 (4.184)

in Example 4.47. We could have found this result independent of any knowledge of the
decomposition of the representation into irreps by taking the traces of the corresponding
3 × 3 matrices. Using Table 4.3, we can compute the inner products with the irreducible
representations

〈χ1, χ〉 =
1

6
[3 + 0 + 3] = 1, (4.185a)

〈χ2, χ〉 =
1

6
[6 + 0 + 0] = 1, (4.185b)

〈χ3, χ〉 =
1

6
[3 + 0− 3] = 0, (4.185c)

and thereby find that ρ = ρ1 ⊕ ρ2.

Example 4.50 If we consider a tensor product representation ρ ⊗ ρ, we find that the
character is given by

χρ⊗ρ(a) = tr(ρ(a)⊗ ρ(a)) = ρii(a)ρjj(a) = χ(a)2. (4.186)

Therefore, the character of the tensor product may be easily computed as long as we know
the character of ρ. As an example, let us take the tensor representation ρ1 ⊗ ρ1 of SO(2)
from Example 4.35 and use it to represent the finite subgroup of rotations by an angle 2π/3.
As mentioned earlier, we could apply similar considerations also to compact Lie groups, but
we have here restricted ourselves to finite groups for simplicity. The group elements are e,
c, and c2, where the generator c is the counter-clockwise rotation by 2π/3 and each element
forms its own conjugacy class. The character of the two-dimensional representation

ρ1(c) =

(
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)
=

1

2

(
−1 −

√
3√

3 −1

)
(4.187)

is given by
χ(e) = 2, χ(c) = −1, and χ(c2) = −1. (4.188)

Consequently, the character of the tensor product representation ρ⊗ ρ is given by

χρ1⊗ρ1(e) = 4, χρ1⊗ρ1(c) = 1, and χρ1⊗ρ1(c2) = 1. (4.189)

Taking the inner product with the character of the trivial representation, we find that

〈χ1, χρ1⊗ρ1〉 =
1

3
(4 + 1 + 1) = 2. (4.190)
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m

m

m

~n

Figure 4.21 The symmetry of three equal masses m placed in the corners of an equilateral triangle
may be used to argue for the corresponding moment of inertia tensor being of the form I0δ+I1~n⊗~n.

The tensor product representation therefore contains two copies of the trivial representation.
This is exactly in accordance with the result we found in Example 4.35.

4.7.4 Physical insights
In the Section 4.6, we already discussed the physical implications of symmetries and group
theory to some extent. The new tool that we have at hand allows us to take these impli-
cations one step further. Let us start by considering the possible degrees of freedom in a
physical system with a given symmetry. We argued that if a physical system has a partic-
ular symmetry, then any property of the system should be invariant under the action of
the symmetry, i.e., the property must transform according to the trivial representation of
the symmetry group. As we have just seen, given any representation we can easily find out
how many times the representation contains the trivial representation and therefore reduce
the possible number of free parameters the property has in a system displaying the given
symmetry.

Example 4.51 Let us consider the moment of inertia for the configuration shown in
Fig. 4.21, consisting of three masses m at the vertices of an equilateral triangle. This system
has a subgroup of rotations in SO(3) as a symmetry and this subgroup is isomorphic to
S3, corresponding to a permutation of the masses. We know that the moment of inertia Iij
for any object is a rank two symmetric tensor and therefore transforms according to the
representation ρ⊗+ ρ under rotations, where ρ is the fundamental representation of SO(3).
Taking ~e3 as the axis perpendicular to the triangle, this representation is given by

ρ(R
2π/3
~e3

) = ρ(C) =

− 1
2 −

√
3

2 0√
3

2 − 1
2 0

0 0 1

 , (4.191a)
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and

ρ(Rπ~e1) = ρ(σ) =

1 0 0
0 −1 0
0 0 −1

 . (4.191b)

The character of the fundamental representation is therefore given by

χρ(e) = 3, χρ(C) = 0, and χρ(σ) = −1 (4.192)

and consequently the character of the tensor product representation ρ⊗ ρ is

χρ⊗ρ(e) = 9, χρ⊗ρ(C) = 0, and χρ⊗ρ(σ) = 1. (4.193)

However, the momentum of inertia transforms according to the symmetric ρ⊗+ ρ represen-
tation so we must figure out a way to find its characters. We could do this by introducing a
basis on the space of symmetric tensors, but this would involve constructing 6× 6 matrices
and taking their trace. Instead, we can use the fact that

ρ⊗ ρ = (ρ⊗+ ρ)⊕ (ρ⊗− ρ) (4.194a)

and consequently
χρ⊗+ρ = χρ⊗ρ − χρ⊗−ρ, (4.194b)

meaning that we may find the characters of ρ⊕+ ρ by constructing the characters of ρ⊗− ρ.
This task is slightly less daunting, as we will be working with 3 × 3 matrices rather than
6× 6 ones.

For the anti-symmetric product space, we take the basis

E1 = e23 − e32, E2 = e31 − e13, and E3 = e12 − e21. (4.195)

In this basis, the resulting 3× 3 matrix representation is given by

(ρ⊗− ρ)(C) =

 − 1
2

√
3

2 0

−
√

3
2 − 1

2 0
0 0 1

 , (ρ⊗− ρ)(σ) =

1 0 0
0 −1 0
0 0 −1

 , (4.196)

leading to the characters

χρ⊗−ρ(e) = 3, χρ⊗−ρ(C) = 0, and χρ⊗−ρ(σ) = −1 (4.197)

and therefore
χρ⊗+ρ(e) = 6, χρ⊗+ρ(C) = 0, and χρ⊗+ρ(σ) = 2. (4.198)

Taking the inner product with the trivial representation, we find that

〈χ1, χρ⊗+ρ〉 =
1

6
(6 + 0 + 3 · 2) = 2, (4.199)

indicating that the moment of inertia of an object with the given symmetry has two possible
degrees of freedom. What this symmetry argument does not tell us is the form or values of
these, but we can reduce the amount of computation necessary in order to find them and
be sure that we have found them all once we have done so.
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Another physics application of characters and representation theory is symmetry break-
ing . There are many situations in physics that have an approximate symmetry, meaning
that a property does not change significantly under a certain group transformation. As a
first approximation, such a system and its most important characteristics may be found
by treating the system as if it was symmetric. Any corrections to the results will then be
proportional to the level at which the symmetry is broken. If the symmetry is broken to a
subgroup of the approximate symmetry, the possible corrections due to the symmetry can
also be deduced from group theory.

Example 4.52 Let us again consider the moment of inertia for an object with the S3 sym-
metry we encountered in the previous example, but this time we attach the three masses on
a heavy spherical shell of mass M � m. Since the masses m are small in comparison, the
system is approximately symmetric under the full group of SO(3) rotations. Its moment
of inertia, being a rank two symmetric tensor, then transforms according to the symmetric
tensor product representation ρ ⊗+ ρ, which we have seen can be reduced to a one di-
mensional trivial representation ρ1 and a five-dimensional one ρ5 consisting of symmetric
traceless tensors of rank two, which also happens to be an irrep of SO(3), i.e.,

ρ⊗+ ρ = ρ1 ⊕ ρ5. (4.200)

Since the representation contains the trivial representation only once, only this invariant
subspace may have a non-zero contribution in the first approximation. We find that

Iij = k0MR2δij +mR2Tij , (4.201)

where k0 is a constant of order one, R is the radius of the sphere, and the traceless second
order correction Tij is still to be determined, but will generally have components of order
one at most. The first term, proportional to δij , represents the subspace that transforms
under the trivial representation, which may be seen by applying an arbitrary rotation.

In the second order correction, the system will still be symmetric under the S3 subgroup.
Since the ρ1 irrep is invariant under the action of SO(3), it will also be invariant under the
action of S3. However, the representation ρ5 may now contain subspaces that were not
invariant under the general SO(3) action, but are invariant when the action is restricted
to that of S3. As in the previous example, we find that the representation ρ⊗+ ρ contains
the trivial representation ρ1 two times. Naturally, the subspace invariant under the full
SO(3) rotations is one of these, but there is an additional trivial subspace that was earlier
part of the ρ5 irrep of SO(3). It is relatively straightforward to conclude that this subspace
corresponds to

(Tij) = k1

−1 0 0
0 −1 0
0 0 2

 . (4.202)

The full second order correction to the moment of inertia is therefore of the form

(Tij) = k1

−1 0 0
0 −1 0
0 0 2

+ k′1(δij). (4.203)

As for the example above, it is generally true that the action of any subgroup will leave
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any irrep of the full group invariant. A direct implication of this is that if we have already
split the original representation into irreps of the full group, we only need to consider how
the different irreps break into irreps of the subgroup.

Let us finally discuss the vibrational modes of molecules that exhibit certain symmetries.
Assume that we have a molecule with a number M different atoms. We can write down the
total energy of the molecule as

E =
M∑
k=1

mk

2
~̇x2
i + V, (4.204)

where ~xk is the displacement from the equilibrium position of the kth atom, mk is the mass
of the kth atom, and V is the potential energy of the system, which generally depends on
all relative displacements. In order to write this in a somewhat more manageable form, we
introduce the 3M -dimensional vector ~X, where

~X =
M∑
k=1

1
√
mk

(x1
k~e3k−2 + x2

k~e3k−1 + x3
k~e3k), (4.205)

and ~ei are the basis vectors of the 3M -dimensional space (not of the three-dimensional

one!). In other words, the first three components of ~X contain the displacements of the first
atom divided by the square root of its mass and so on. In this notation, the total energy
may be written as

E =
1

2
ẊµẊµ +

1

2
XµVµνXν (4.206)

for small oscillations. The form of the second term, where Vµν is symmetric and semi-positive

definite, follows from the assumption that ~X is the displacement from the equilibrium, where
the potential has a minimum.

Differentiating the energy with respect to time gives the differential equation

Ẍµ + VµνXν = 0 (4.207)

and since V is symmetric, it has an orthogonal set of eigenvectors ~Y q such that VµνY
q
ν =

ω2
qY

q
µ (no sum). The differential equations in the eigenvector directions decouple and we

find the general solution

~X =
3M∑
q=1

Aq~Y
qf(ωq, t, φq), (4.208)

where

f(ωq, t, φq) =

{
cos(ωqt+ φq), (ωq > 0)

t+ φq, (ωq = 0)
, (4.209)

Aq is the amplitude of the vibration in the ~Y q direction, and φq its phase when ωq > 0 and
a translation in time if ωq = 0.

Example 4.53 Since the above discussion has been rather abstract, let us discuss an
example in one dimension using only two atoms of mass m connected by a potential V =
k(d−d0)2/2, where k is a constant, d is the distance between the atoms, and d0 the distance
at the equilibrium, see Fig. 4.22. If xk is the displacement of particle k from the equilibrium
position, then the energy is given by

E =
m

2
(ẋ2

1 + ẋ2
2) +

k

2
(x1 − x2)2. (4.210)



Symmetries and Group Theory � 251

m m

d
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x1 x2

Figure 4.22 We consider two masses m with a potential such that a minimum is obtained whenever
the masses are a distance d0 apart. The mass displacements from one of the configurations where
this is satisfied are x1 and x2, respectively. The potential for any displacements may be written as
a function of the distance d = d0 + x2 − x1 between the masses.

The vector ~X is now two-dimensional with components Xk = xk/
√
m, leading to

E =
1

2
(Ẋ2

1 + Ẋ2
2 ) +

k

2m
(X2

1 − 2X1X2 +X2
2 ). (4.211)

From this relation, we find that

(Vµν) =
k

m

(
1 −1
−1 1

)
(4.212)

with ω1 = 0 and ω2 =
√

2m/k. The first eigenvalue corresponds to the eigenvector ~Y 1 =

(~e1 + ~e2)/
√

2, which gives overall translations of the molecule, while the second case with

the eigenvector ~Y 2 = (~e1 − ~e2)/
√

2 corresponds to the vibrational mode of the molecule
with angular frequency ω2 =

√
2m/k.

So what does all of this have to do with symmetries and group theory? While it cannot
help us deduce the actual angular frequencies ωq, group theory will help us in determining
the degeneracies in the spectrum of ωq. If we consider a molecule with some symmetry

group G, then the action of the symmetry group on the displacement vector ~X will define a
3M -dimensional representation ρ of G. Given a symmetry represented by ρ(a), then ρ(a) ~X(t)

is a solution to the equations of motion as long as ~X(t) is and it follows that

ρ(a) ~̈X(t) + V ρ(a) ~X(t) = 0. (4.213)

In addition, we can always act on the equation of motion for ~X(t) by ρ(a) in order to obtain

ρ(a) ~̈X(t) + ρ(a)V ~X(t) = 0, (4.214)

leading to the relation V ρ(a) = ρ(a)V for all ~X(t). By Schur’s first lemma, it follows that V
is proportional to the identity on all irreps into which the representation ρ decomposes.
In particular, this means that all states in the same irrep correspond to solutions with the
same angular frequency. By decomposing the 3M -dimensional representation into irreps,
we can therefore find out how many different vibrational frequencies the molecule allows as
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x3

x1

Figure 4.23 The ammonia molecule has a symmetry group generated by the rotation c by 2π/3
around the x3-axis and the reflection σ in the x1-x3-plane. Symmetry arguments may be used to
find the form of its vibrational spectrum.

well as the degeneracy of each frequency, i.e., the number of linearly independent vibrations
with the same frequency.

It should be noted that the above procedure will also include overall translational and
rotational modes. These must be removed from the vibrational spectrum, but this can be
performed by finding the corresponding representations, decomposing them into irreps, and
removing the irreps from the final direct sum.

Example 4.54 Consider the ammonia molecule consisting of one nitrogen atom and three
hydrogen atoms. The ammonia molecule has a symmetry group isomorphic to S3 gener-
ated by the 2π/3 rotation c around the x3-axis and the reflection σ in the x1-x3-plane,
see Fig. 4.23. The action of the symmetry on the resulting 12-dimensional representation is
a permutation of the displacements for the three hydrogen atoms together with the O(3)
matrix corresponding to the transformation acting on each of the three-dimensional dis-
placement vectors. The resulting representation is therefore a tensor product between the
two representations describing the permutations of vertices and the rotations of the dis-
placements at each vertex. The representation of S3 described in Example 4.43, which we
will here call ρS , describes the permutation of the hydrogen atoms, while the nitrogen atom
is always at the same vertex and therefore transforming under the trivial representation ρ1.
Furthermore, the displacements transform according to the fundamental representation ρV
of O(3) constrained to the S3 subgroup. The full representation is therefore given by

ρ = (ρS ⊕ ρ1)⊗ ρV ≡ ρp ⊗ ρV . (4.215)

In order to produce the characters of this representation, we could find the explicit 12× 12
matrix representation, but a much more straightforward way is to use our knowledge of how
the characters of direct sums and tensor products behave. We find that the character of the
direct sum ρp = ρS ⊕ ρ1 is given by

χρp = χρS + χ1, (4.216a)
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leading to
χρp(e) = 4, χρp(C) = 1, and χρp(σ) = 2. (4.216b)

Similarly, for the tensor product representation the character is the product of the characters
of the factors

χρ(a) = χρp⊗ρV (a) = χρp(a)χρV (a) (4.217a)

and we find that
χρ(e) = 12, χρ(C) = 0, and χρ(σ) = 2. (4.217b)

Taking the inner product with the irreps ρ1, ρ2, and ρ3, whose characters are given in
Table 4.3, we find that

〈χ1, χρ〉 =
1

6
(12 · 1 + 2 · 0 · 1 + 3 · 2 · 1) = 3, (4.218a)

〈χ2, χρ〉 =
1

6
(12 · 2 + 2 · 0 · (−1) + 3 · 2 · 0) = 4, (4.218b)

〈χ3, χρ〉 =
1

6
(12 · 1 + 2 · 0 · 1 + 3 · 2 · (−1)) = 1. (4.218c)

The decomposition of ρ into irreps is therefore given by

ρ = 3ρ1 ⊕ 4ρ2 ⊕ ρ3. (4.219)

As already mentioned, this representation also contains the translational and rotational
modes of the molecule, which must be removed if the representation should contain only
the vibrational modes. The translational modes are described by a single displacement
vector, which transforms under the fundamental representation ρV , while the rotational
displacements are described by vectors of the form θ~n×~x, which transform according to the
pseudo-vector representation ρA (we use the A to denote the pseudo-vector representation
as pseudo-vectors are also referred to as axial vectors). With our knowledge of characters
and decomposition into irreps, it is straightforward (see Problem 4.50) to show that these
representations reduce into ρV = ρ1 ⊕ ρ2 and ρA = ρ2 ⊕ ρ3, respectively. Consequently,
we find that the vibrational degrees of freedom transform according to the six-dimensional
representation

ρvib = 2ρ1 ⊕ 2ρ2. (4.220)

In other words, the vibrational spectrum will generally contain four different frequencies,
two of which have a twofold degeneracy.

4.8 OUTLOOK
We have barely just begun to scrape on the top of the use of symmetries and group theory in
physics, but we have laid a fairly solid foundation for things to come. Let us briefly discuss
the applications of group theory that will appear in more advanced physics examples.

The perhaps most iconic statement within classical physics is Noether’s theorem, which
relates the existence of continuous symmetries in physical systems to conserved quantities.
All of the conservation laws we are familiar with from elementary classical mechanics are
related to a corresponding symmetry. To give some examples, energy conservation relates to
a system being invariant under time translations, while conservation of momentum relates
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B 6= 0

` = 1

` = 0

E

B = 0

Figure 4.24 With zero external magnetic field, atomic states with the same angular momentum `
are degenerate in energy with degeneracy 2`+1. As such, there is only one possible energy difference
between states of different angular momentum. Once a magnetic field is applied, the states with
the same angular momentum separate in energy, allowing for different energy transitions between
angular momentum levels. Here, we illustrate this effect for the transitions between the ` = 1 states
to the ` = 0 state.

to spatial translations. We shall discuss this in greater detail in Section 10.2.4, when we
have developed the necessary framework to prove the theorem in one of its simpler forms.

In the study of quantum mechanics, we will also encounter our fair share of group
theory. Quantum mechanics is a theory built upon linear operators on vector spaces and
the properties of these operators and the states they act on will often be clearer when adding
a seasoning of group theory. In particular, the concept of symmetry breaking will appear
again and allow us to discuss how different degenerate energy eigenstates split into states
with different energies when a symmetry is broken. A good example of such a symmetry
breaking is the Zeeman effect, where the splitting of degenerate atomic energy levels due to
an external magnetic field is considered. Before the introduction of the external magnetic
field, the situation for the atom is symmetric under the full SO(3) rotation group, where
all states of the same total angular momentum form an irrep and consequently have the
same energy. With the introduction of an external magnetic field, the SO(3) symmetry is
broken, splitting the representations of equal angular momentum into irreps of the new
symmetry group, in this case one-dimensional irreps with a given component of the angular
momentum in the magnetic field direction, see Fig. 4.24 for an illustration.

But this is not all, one of the most successful theories in modern theoretical physics, the
Standard Model of particle physics, is based upon symmetries of the force carrying fields of
the electromagnetic, weak, and strong interactions.

4.9 PROBLEMS
Problem 4.1. Consider the following surfaces:

a) an infinite two-dimensional plane x3 = 0 and

b) an infinite cylinder (x1)2 + (x2)2 = R2 in three dimensions.

Find the symmetry groups of each surface (as a subgroup of translations and rotations).
Which is the largest group that is a subgroup of both of these symmetry groups?
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c)

a)
b)

Figure 4.25 Three infinitely repeated grids based on (a) a parallelogram, (b) a triangular grid, and
(c) a hexagonal honeycomb grid. In Problem 4.3, you are asked to find the corresponding symmetry
groups.

Problem 4.2. Consider the density functions

ρ1(~x) = ρ0e
−k~x2

and ρ2(~x) = ρ0e
−~k·~x (4.221)

in three dimensions, where k and ~k are a scalar and a constant vector, respectively. Deter-
mine if they are invariant under the following transformations:

a) Rotations about the origin ~x = 0.

b) Translations ~x→ ~x+ ~̀.

c) Reflections ~x→ −~x.

Problem 4.3. Find the symmetries that leave the infinite grids displayed in Fig. 4.25 in-
variant. How many generators are required for each of the symmetry groups? What relations
among the generators can you find?

Problem 4.4. Two of Maxwell’s equations are

∇ · ~B = 0, ∇× ~E +
∂ ~B

∂t
= 0 (4.222)

and imply that the electric and magnetic fields may be written in terms of the scalar
potential φ(~x, t) and the vector potential ~A(~x, t) as

~E = −∇φ− ∂ ~A

∂t
, ~B = ∇× ~A. (4.223)

Verify that the gauge transformations

φ→ φ− ∂α

∂t
, ~A→ ~A+∇α, (4.224)

where α = α(~x, t) is a scalar field, leave the electric and magnetic fields invariant.
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Problem 4.5. Show that the group axioms imply that the identity element e must be
unique, i.e., if e1g = ge1 = g and e2g = ge2 = g for all group elements g, then e1 = e2.

Problem 4.6. Show that conjugacy is an equivalence relation, i.e., show that:

1. a ∼ a for all group elements a.

2. If a ∼ b, then b ∼ a.

3. If a ∼ b and b ∼ c, then a ∼ c.

Remember that two group elements a and b are conjugate if there exists an element g such
that a = gbg−1.

Problem 4.7. Show that all non-Abelian groups must have more than four elements based
on the requirement that for any two elements x and y not to commute, it is necessary that
xy and yx are different elements and that a non-Abelian group must contain at least two
elements that do not commute.

Problem 4.8. Determine which of the following Cayley tables define a group:

1 a b c

a b c 1

b 1 a c
c b 1 a

1 a b c

a c 1 b

b 1 c a
c b a 1

1 a b c d
a b c d 1

b c d 1 a

c d 1 a b

d 1 a b c

1 a b c d
a 1 d b c

b c 1 d a

c d a 1 b

d b c a 1

If any of these Cayley tables does not define a group, state which group axiom is violated.
The identity element has been denoted 1 in this problem.

Problem 4.9. We have argued that every element of rotations in two dimensions forms
its own conjugacy class due to the group being Abelian. Expanding this group by including
reflections, the group is no longer Abelian. Find the conjugacy classes of the resulting group
of rotations and reflections.

Problem 4.10. Given two groups G1 and G2, the direct product G1 ×G2 can be defined as
the set of pairs a = (a1, a2), where a1 is an element of G1 and a2 an element of G2, with a
group operation defined by

ab = (a1, a2)(b1, b2) = (a1b1, a2b2). (4.225)

Verify that G1 × G2 is a group.

Problem 4.11. Assume that a homomorphism φ is invertible, i.e., that there exists an
inverse mapping φ−1 such that φ−1(φ(a)) = a for all a. Show that the inverse mapping φ−1

is also a homomorphism.

Problem 4.12. Show that being isomorphic is an equivalence relation, i.e., show that:

1. Any group G is isomorphic to itself.
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2. If G1 is isomorphic to G2, then G2 is isomorphic to G1.

3. If G1 is isomorphic to G2 and G2 is isomorphic to G3, then G1 is isomorphic to G3.

Remember that a group G is isomorphic to another group G′ if there exists a one-to-one
homomorphism from G to G′.

Problem 4.13. For a homomorphism h from G1 to G2, verify that the elements a of G1 for
which

h(a) = e, (4.226)

i.e., the set of elements that map to the identity of G2, is a subgroup of G1.

Problem 4.14. Verify that for a fixed group element g, the map fg(a) = gag−1 from the
group to itself is an automorphism.

Problem 4.15. Show that the direct product Cp×Cq (see Problem 4.10) is isomorphic to
Cpq if and only if p and q are coprime, i.e., if they do not have any common prime factors.

Problem 4.16. Determine which of the dihedral groups Dn are Abelian and find their
conjugacy classes.

Problem 4.17. For the symmetry group of a set of points along a line with equidistant
spacing ` discussed in Example 4.15, we found that translations T` by a distance ` and
reflections σ generated the group and that σT`σ = T−1

` . Verify that this implies σTn` σ =
T−n` .

Problem 4.18. Determine the conjugacy classes of the symmetry group discussed in Prob-
lem 4.17.

Problem 4.19. Perform the following group operations in the symmetric group S4:

a) (1234)(324)

b) (12)(23)(34)(14)

c) (123)(34)(123)

d) (24)(13)(12)(24)(13)

Express your answers in terms of commuting cycles.

Problem 4.20. Determine the order of the following elements of the symmetric group S6:

a) (145)(236)

b) (1356)(24)

c) (162)(34)

d) (12346)

Problem 4.21. In the symmetric group Sn, find an expression for the inverse of the element
(a1a2 . . . ak). Use your expression to explicitly write down the inverse of your results in
Problem 4.19.

Problem 4.22. The symmetric group S3, which is isomorphic to the dihedral group D3,
contains the six elements e, (12), (23), (13), (123), and (132). Find the conjugacy classes of
this group.
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σc2

c3

Figure 4.26 The different generators of the tetrahedral group Td consist of the cyclic generators c2
and c3 of order two and three, respectively, and the reflection σ.

Figure 4.27 Regular six-sided dice have their sides numbered 1 through 6. In Problem 4.24, this is
to be exploited in order to find the symmetry group of the cube as a subgroup of S6.

Problem 4.23. The tetrahedral group Td is the symmetry group of a regular tetrahedron,
see Fig. 4.26. It is generated by a rotation c3 through an angle 2π/3 around an axis passing
through one of its vertices and the center of the opposite face, a rotation c2 by an angle
π around an axis passing the center of two opposite edges, and a reflection σ in a plane
containing one of the edges and the center of the opposite edge. Show that Td is isomorphic to
the symmetric group S4 and find the conjugacy classes. Interpret the type of transformation
each conjugacy class corresponds to.

Problem 4.24. Construct the symmetry group of a cube by numbering its sides 1 through
6 (as normal six-sided dice, see Fig. 4.27) and writing down the resulting transformations
as a subgroup of S6. What is the order of the group? By labelling the diagonals 1 through
4 and considering how the transformations act on these diagonals, find the complete set of
symmetries of the cube.

Problem 4.25. Verify that the set of real numbers forms a group with the addition of
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numbers as the group operation. Also show that they do not form a group with multipli-
cation as the group operation. What is the largest subset of the real numbers that forms a
group with multiplication as the group operation?

Problem 4.26. Show that for the matrix group SO(2) of rotations in two dimensions,
where we can denote the rotation by an angle θ as Rθ, the map h1(Rθ) = R−θ is an
automorphism. Is the map h2(Rθ) = R−2θ an automorphism?

Problem 4.27. Consider the group of translations and rotations in two dimensions. Deter-
mine a complete set of generators for this group and derive the corresponding Lie bracket
relations.

Problem 4.28. We have shown the Lie bracket relations

[Ji, Jj ] = εijkJk, (4.227a)

[Pi, Pj ] = 0, (4.227b)

for rotations and translations, respectively. For the combined group of rotations and trans-
lations, deduce the form of the Lie bracket [Pi, Jj ].

Problem 4.29. The special linear group of complex 2× 2 matrices SL(2,C) is defined as
the subset of complex 2× 2 matrices that have determinant one. Verify that this set forms
a subgroup of GL(2,C) and determine the constraints on the matrices in its Lie algebra.

Problem 4.30. Starting from translations and rotations in three dimensions, show that
translations in a direction ~n commute with rotations about ~n and that the set of combina-
tions of those transformations form a subgroup. Also show that any two such subgroups,
defined by different vectors ~n1 and ~n2 are isomorphic to each other.

Problem 4.31. Determine whether the matrices

A1 =
1√
2

(
1 1
−1 −1

)
, A2 =

1

2

(√
3 1

1 −
√

3

)
, A3 =

1

5

(
3 4
−4 3

)
(4.228)

are elements of the group O(2) or not. For those that are, determine the corresponding
angle ϕ and sign in Eq. (4.62).

Problem 4.32. The generators Ji of the matrix group SO(3) are given in Eq. (4.72).

a) Verify that the generators satisfy the relations

J2
1 = −

0 0 0
0 1 0
0 0 1

 , J2
2 = −

1 0 0
0 0 0
0 0 1

 , J2
3 = −

1 0 0
0 1 0
0 0 0

 . (4.229)

b) The above relations may be written as J2
i = −Pi, where Pi is a projection matrix with

the special property that P ki = Pi, where k is a positive integer. Use this property
along with the series expansion of the exponential function to show that

eθJ1 =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 . (4.230)

c) Repeat the exercise in (b) to deduce the forms of eθJ2 and eθJ3 .
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Problem 4.33. We have seen that, for any matrix group, taking the determinant det(A)
of a matrix A in the group is a homomorphism to the set of real or complex numbers,
depending on the matrix group, with multiplication as the group operation. What are the
subgroups of the real or complex numbers corresponding to the determinant homomorphism
for the groups GL(N,C), O(N), SO(N), U(N), and SU(N), respectively?

Problem 4.34. Show that the set of continuously differentiable functions f(x) that satisfy
f ′(x) > 0 everywhere and for which f(x) → ±∞ as x → ±∞ forms a group with the
composition of functions

(fg)(x) = f(g(x)) (4.231)

as the group operation and the identity function e(x) = x as the identity element.

Problem 4.35. Verify that the matrix representations of the rotation generators Ji in
Eq. (4.72) satisfy the Lie bracket relation

[Ji, Jj ] = εijkJk, (4.232)

where the Lie bracket is taken to be the matrix commutator [A,B] = AB −BA.

Problem 4.36. Verify that the Pauli matrices in Eq. (4.78) satisfy the commutation rela-
tion

[σi, σj ] = 2iεijkσk. (4.233)

Problem 4.37. Check that the tensor product action defined in Eq. (4.92) constitutes a
representation, i.e., verify that the mapping from the group to these linear operators is a
homomorphism.

Problem 4.38. In Eq. (4.145), we introduced a three-dimensional representation of the
symmetric group S3. Check that the representation of the group generators (12) and (13)
satisfy the same product rules as the generators themselves. In particular, check that

ρ((12))2 = I, ρ((13))2 = I, (4.234a)

and that
ρ((123))3 = ρ((13)(12))3 = [ρ((13))ρ((12))]3 = I. (4.234b)

Problem 4.39. Given a representation ρ of a group G on some vector space V and an
invertible linear operator U acting on V , show that if we define

ρ′(a) = Uρ(a)U−1 (4.235)

for all elements a of G, then ρ′ is also a representation of G.

Problem 4.40. We have earlier seen that the moment of inertia for a disc of mass M and
radius R has two distinct eigenvalues. Show that any object (in three dimensions) whose
symmetry group is the group of rotations around a single axis has at most two distinct
eigenvalues by applying symmetry arguments.

Problem 4.41. While the fundamental representation of an O(3) matrix is the identity
automorphism mapping any matrix a to a, the pseudo-vector representation is given by

ρA(a) = det(a)a. (4.236)

Verify that this mapping is a homomorphism.
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Problem 4.42. The fundamental representation of the matrix group SU(2) is in terms
of its action on a two-dimensional complex vector space, which we can call V . We can
construct a new representation by taking the tensor product of two such representations,
which is a representation of dimension four. Verify that this new representation is reducible
and can be split into a one-dimensional and a three-dimensional representation. Show that
the three-dimensional representation resulting from this reduction is irreducible.

Problem 4.43. Construct an isomorphism between the dihedral group Dn and a subgroup
of O(2).

Problem 4.44. The Galilei transformations are defined in Eq. (4.142). For Galilei trans-
formations with fixed origin, i.e., s = 0 and ~a = 0, derive the composition law for the
transformation given by first applying the transform (Rθ1~n1

, ~v1) followed by an application of

the transform (Rθ2~n2
, ~v2). Verify that the block matrix

ρ(Rθ~n, ~v) =

(
A v
0 1

)
, (4.237)

where A is the SO(3) representation of Rθ~n and v is a column matrix containing the com-
ponents of ~v, is a representation of the Galilei group.

Problem 4.45. The heat equation and wave equation are given by

ut(~x, t)− a∇2u(~x, t) = 0 and utt(~x, t)− c2∇2u(~x, t) = 0, (4.238)

respectively. Find out whether these equations are invariant under time reversal and parity
transformations.

Problem 4.46. The Lie algebra of the restricted Galilei transformations in the Prob-
lem 4.44 contains the usual generators of rotation Ji and the generators of boosts Ci such
that eviCi is a boost by a velocity ~v. Derive the Lie bracket relations for these transforma-
tions.

Problem 4.47. For a set of point masses mi subjected only to internal forces, Newton’s
laws of motion may be summarised as

~̈xi = − 1

mi
∇iV, (no sum) (4.239)

where ~xi is the position of particle i, V is the potential energy of the system, which may be
assumed to depend only on the distances between the particles, and ∇i is the gradient with
respect to ~xi. Verify that this set of equations is invariant under Galilei transformations.

Problem 4.48. In Eq. (4.145), a representation of the symmetric group S3 is given. Verify
that the vector v1 given in the corresponding example is the only vector that is an eigenvector
to the action of all elements of S3.

Problem 4.49. Consider the representations of D3h with characters given by the character
table in Table 4.4. Determine the irreps that are contained in these representations.

Problem 4.50. In Example 4.54, we restricted theO(3) group of rotations and reflections to
the S3 symmetry group of the ammonia molecule. Compute the characters of the different
group elements in S3 for the vector and pseudo-vector representations of O(3). Use the
resulting characters to split the representations into irreps of S3.
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D3h e 2C3 3C2 σh 2S3 3σv

R1 3 0 1 3 0 1
R2 3 0 −1 −1 2 −1
R3 4 1 0 0 −3 0
R4 3 3 1 −1 −1 −3

Table 4.4 The character table for some representations of D3h, to be used in Problem 4.49.

N

H

C
C3N3H3

H

H2O

C

H

CH4

O

Figure 4.28 The structures of the planar water (H2O) and 1,3,5-triazine (C3N3H3) molecules and
the tetrahedral methane (CH4) molecule.

Problem 4.51. In Example 3.31 we stated without further argumentation that the rota-
tional symmetry of the problem ensured that the solution could not depend on the angle φ.
Use symmetry arguments to verify this statement.

Problem 4.52. Find the number of distinct vibrational frequencies allowed by the sym-
metries of the following molecules and state their degeneracies:

a) Water (H2O)

b) Methane (CH4)

c) 1,3,5-triazine (C3N3H3)

See Fig. 4.28 for the molecular structures.

Problem 4.53. The vibrational spectrum of a molecule is changed if one of the atoms is
replaced by a different isotope. Qualitatively describe what would happen to the vibrational
spectrum of the methane molecule in Problem 4.52 if one of the hydrogen nuclei was replaced
by a deuterium nucleus, i.e., instead of a proton there would now be a proton and a neutron,
resulting in a particle with a larger mass. What would happen to the vibrational spectrum
of the triazine molecule if one of the carbon nuclei was replaced by a different isotope?
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Function Spaces

A function space is the general name for essentially any set of functions satisfying some
particular criteria, which may differ between different function spaces. In physics, we will
often be dealing with very particular function spaces as classes of functions to which we
expect that the solutions to our physical problems belong. The main rationale for referring
to these sets of functions as spaces rather than just calling them function sets is the fact
that they will often turn out to be abstract vector spaces, which are generally of infinite
dimension, and we will therefore start this chapter by examining some properties of these.

In Chapter 6, we will use the theory discussed in this chapter to approach a large number
of physics problems, in particular the partial differential equations discussed in Chapter 3.
The methods in this chapter will also be highly relevant to studies of quantum mechanics,
as different quantum states will be represented by functions that are eigenfunctions to a
particular linear operator, the Hamiltonian.

Example 5.1 The concentration u(~x, t) of a substance is a function of both space and
time. If we wish to describe this concentration within a finite volume V for a fixed time
t = t0, we know that the total amount U in the volume will be given by

U(t0) =

∫
V

u(~x, t0) dV. (5.1)

A reasonable assumption on the possible functions u is that, in order to describe a phys-
ical process, the total amount should be finite. This requires that the integral satisfies
|U(t0)| < ∞, i.e., the function u(~x, t) must be integrable on the domain V . Regardless of
what differential equation the concentration will need to satisfy, we should therefore look
for solutions that fulfil this condition and the function space of integrable functions on V
is the space describing the possible concentrations.

For the case of a concentration, it is often unphysical to consider negative concentrations.
In such cases, the function space of interest would be the set of non-negative integrable
functions on V .

5.1 ABSTRACT VECTOR SPACES
When discussing vectors in Chapter 1, we essentially restricted ourselves to vectors in finite-
dimensional vector spaces where each basis vector could be interpreted as defining a physical

263
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direction. Holding on to a number of properties of these vector spaces, we can construct a
more abstract notion of a general vector space. In order for a set V to form a vector space,
we require that there are two operations defined involving elements of V , addition of two
elements and multiplication by scalars. The requirement on the addition of elements in V
is that V should be an Abelian group with the addition as the group operation. As such,
the addition of elements in V must satisfy the relations

v1 + v2 = v2 + v1, (commutativity) (5.2a)

v1 + (v2 + v3) = (v1 + v2) + v3, (associativity) (5.2b)

where the vi can be any elements of V . Furthermore, it is necessary that the additive identity
0, for which v + 0 = v, belongs to V and that for each element v in V , its additive inverse
−v, for which v + (−v) = 0 is also an element of V . For brevity of notation, when addition
of the additive inverse is intended, it is common to denote this with a minus sign, as for the
real numbers, i.e.,

v1 − v2 ≡ v1 + (−v2). (5.3)

The second operation we demand from a vector space is the multiplication of an element
of the vector space and a scalar, which may be a real or a complex number and which we
will denote av, where a is the scalar and v the element of the vector space. Depending on
whether this operation is defined only for real numbers or also for general complex numbers,
the vector space is referred to as a real or complex vector space, respectively. We require
that the multiplication fulfils the following conditions:

1. Compatibility : Performing several multiplications with two different scalars a and b
should be equivalent to multiplying by the product of the scalars:

a(bv) = (ab)v. (5.4a)

2. Identity : Multiplication with one should give back the original vector:

1v = v. (5.4b)

3. Distributivity : The multiplication must be distributive under addition and vice versa:

a(v1 + v2) = av1 + av2 and (a1 + a2)v = a1v + a2v. (5.4c)

In general, real and complex vector spaces have many things in common and can be treated
in essentially the same fashion. The big difference is that when we talk about scalars in
the context of a vector space, we will generally mean a complex number when the vector
space is complex and a real number when the vector space is real. Since the treatment is
similar, future definitions made will generally be written down for complex vector spaces
and particularly commented on when special situations occur for real vector spaces.

Example 5.2 We recognise all of the above properties from the usual addition and mul-
tiplication of numbers as well as from finite-dimensional vector spaces, where any vector ~v
can be written in terms of the basis vectors ~ei as ~v = vi~ei. As the vector components add
individually under vector addition in such a vector space, the required properties of the
vector addition follow directly from the corresponding properties of the usual addition of
real or complex numbers. Likewise, multiplication by a scalar can be done component by
component and the required properties again follow in a straightforward fashion from those
relating to the multiplication of numbers.
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Example 5.3 The subject of this chapter is function spaces and let us therefore consider
the space of all real polynomials of order N − 1. Any such polynomial f(x) may be written
as

f(x) =
N−1∑
k=0

akx
k, (5.5)

which is a linear combination of the N monomials xk for 0 ≤ k < N . Identifying ~ek =
xk−1 as a basis, the situation for these polynomials is exactly equivalent to that in the
previous example and this function space is a vector space of dimension N . Addition of two
polynomials is done by adding the coefficients ak pair-wise and multiplication by a scalar
is equivalent to multiplying all of the coefficients by this scalar.

5.1.1 Inner products and completeness
The vector spaces considered in Chapter 1 were all equipped with a Cartesian inner product,
which in turn could be used to define the length of a vector by taking the square root of
its inner product with itself. As such, we seek to find a similar construction for an abstract
vector space and define an inner product on a vector space V to be a mapping taking two
elements v1 and v2 in V to a number 〈v1, v2〉, which has the following properties:

1. Conjugate symmetry : When exchanging the arguments, the inner product is complex
conjugated

〈v1, v2〉 = 〈v2, v1〉∗ . (5.6a)

2. Linearity : The inner product must be linear in the second argument

〈w, a1v1 + a2v2〉 = a1 〈w, v1〉+ a2 〈w, v2〉 . (5.6b)

3. Positive definite: The inner product must be positive definite, i.e.,

〈v, v〉 ≥ 0, (5.6c)

with equality implying that v = 0.

Note that the inner product is not linear in the first argument. Instead, using the first two
properties, we find

〈a1v1 + a2v2, w〉 = 〈w, a1v1 + a2v2〉∗ = a∗1 〈v1, w〉+ a∗2 〈v2, w〉 , (5.7)

a property known as anti-linearity . A word of warning is appropriate in connection to
this: The notation presented here is that most commonly used in physics. On the contrary,
in mathematics it is more common to define the inner product to be linear in the first
argument, resulting in it being anti-linear in the second argument. Naturally, this is a pure
notational issue and either may be used without problems as long as it is done consistently
and the reader is aware of which is intended. In this book, we will keep to the physics
convention with the inner product being linear in the second argument but the issue should
be kept in mind, in particular when reading mathematics oriented texts. Naturally, this is
not an issue for real vector spaces for which there is no difference between linearity and
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anti-linearity. Furthermore, the formulation of the positive definiteness is relying on the fact
that 〈v, v〉 is a real number due to the conjugate symmetry

〈v, v〉 = 〈v, v〉∗ . (5.8)

A vector space with an associated inner product is generally called an inner product space.

Example 5.4 Let us again look at the finite vector spaces of dimension N spanned by the
basis vectors ~ei with ~v = vi~ei. The scalar product

~v · ~w = viwi (5.9)

is symmetric, linear, and positive definite as long as we consider only real linear combinations
of the ~ei, which we restricted ourselves to in Chapter 1. In order to generalise this definition
to complex vector spaces, we must require that

~v · ~w = (vi)∗wi, (5.10)

which has all of the required properties of an inner product.

Example 5.5 The choice of inner product on a vector space is not unique. Just as we
can use the Cartesian scalar product, given a real base space, any rank two tensor gab will
define an inner product 〈

~Ea, ~Eb

〉
= gab (5.11)

as long as it is symmetric and positive definite. This should be familiar as the very same
properties we discussed in connection to the metric tensor. Thus, rather than defining the
metric tensor using the scalar product in a Euclidean base space, we can define the inner
product by first defining a metric tensor.

5.1.1.1 Geometry in inner product spaces

It is hardly surprising that a general inner product shares a lot of properties with the scalar
product that we are already familiar with, as the scalar product on a finite dimensional
real vector space is a special case of an inner product. Many of the properties of the scalar
product have a geometrical interpretation, which may therefore also be extended to a general
inner product. The first of these properties is related to the length of a vector, which we have
seen expressed as the square root of the inner product of a vector with itself (cf. Eq. (1.4)).
As a generalisation of this concept, we define the norm of a vector v in an inner product
space as

‖v‖ =
√
〈v, v〉. (5.12)

The inner product also defines a concept of orthogonality in an abstract vector space. In
analogy to having two vectors orthogonal whenever their scalar product is zero, two vectors
v and w in an abstract vector space are said to be orthogonal if

〈v, w〉 = 0. (5.13)
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This concept of orthogonality also extends Pythagoras’ theorem to abstract vector spaces.
If v and w are orthogonal and z = v + w, then

‖z‖2 = 〈z, z〉 = 〈v, v〉+ 〈w,w〉+ 〈v, w〉+ 〈w, v〉︸ ︷︷ ︸
=0

= ‖v‖2 + ‖w‖2 . (5.14)

In addition, the Cauchy–Schwarz and triangle inequalities

|〈v, w〉|2 ≤ ‖v‖2 ‖w‖2 and ‖v + w‖ ≤ ‖v‖+ ‖w‖ (5.15)

follow directly from the requirements on an inner product, see Problem 5.3.
It should be stressed that these properties depend not only on the vector space, but also

on the chosen inner product. It is perfectly possible that two vectors that are orthogonal
under one inner product are not orthogonal under a different inner product on the same
vector space.

5.1.1.2 Convergence of series

The notion of a distance in a vector space implied by the vector norm directly provides us
with a tool for defining the convergence of any infinite series {vn} = {v1, v2, . . .} of vectors in
the vector space. We start by reminding ourselves that a Cauchy sequence {vn} of elements
in any space with a well defined distance function d(x, y) is a sequence such that for every
ε > 0, there exists an integer N such that

d(vn, vm) < ε (5.16a)

for all n,m > N . In our case, the distance function is d(x, y) = ‖x− y‖ and the requirement
is therefore given by

‖vn − vm‖ < ε. (5.16b)

In addition, we also say that a sequence converges to v if for all ε > 0, there exists an N
such that

d(v, vn) = ‖v − vn‖ < ε (5.17)

for all n > N . Although these definitions are similar, a Cauchy sequence is not necessarily
converging to an element within the space itself.

Example 5.6 The set of rational numbers Q of the form n/m, where n and m are integers,
has a well defined distance function d(x, y) = |x− y|. However, not all Cauchy sequences in
this set converge to a rational number. If we consider the sequence

{xn} = {3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . .}, (5.18)

we find that taking any ε > 0, the assignment N = − log10(ε) results in |xn − xm| < ε for
all n,m > N and the sequence is therefore a Cauchy sequence. However, there is no rational
number x to which the sequence converges. The sequence does converge if instead considered
as a sequence of real numbers with the limit x = π, which is an irrational number.

Unlike the rational numbers in the example above, the real numbers R do have the
property that all Cauchy sequences converge to an element in R. Sets with this property
are called complete spaces and we define a Hilbert space to be an inner product space



268 � Mathematical Methods for Physics and Engineering

that is complete. Although they may be of finite dimension, Hilbert spaces are generally
infinite dimensional vector spaces and are fundamental to many physics applications. The
entire foundation of quantum mechanics is ultimately based upon Hilbert spaces and linear
operators acting on them.

As just mentioned, the dimension of a Hilbert space need not be finite. On the contrary,
it is not even necessary that a countable set of basis vectors {~e1, ~e2, ~e3, . . .} exists. However,
in the cases where such a basis does exist, the Hilbert space is referred to as separable.

5.1.2 Function spaces as vector spaces
As advertised in the title, the subject of this chapter is function spaces and all of our
discussion on abstract vector spaces would therefore be moot unless it was applicable to
those. Luckily, function spaces are often vector spaces and we have already seen an example
of this in the form of real polynomials of a given degree in Example 5.3. The natural way
of turning a space of functions on some domain D into a vector space is through pointwise
addition and multiplication of functions, i.e., we define addition of functions f1 and f2 as

(f1 + f2)(x) = f1(x) + f2(x) (5.19a)

and multiplication of a function f with a scalar a as

(af)(x) = af(x) (5.19b)

for all x in D. It is easy to check that all of the requirements on the operations in an abstract
vector space are satisfied by these definitions as long as the vector space is closed under
them, i.e., the sum of two functions and the product of a scalar and a function should also
be in the function space.

Example 5.7 The set of all differentiable functions on the real numbers C1(R) forms a
vector space under the addition and multiplication just defined. For any functions f1 and f2

in this set, we find that f1 + f2 as well as afi are also differentiable functions, in particular

(f1 + f2)′ = f ′1 + f ′2 and (afi)
′ = af ′i . (5.20)

Example 5.8 The domain D does not need to be a continuous set. In fact, we could select
a finite set {xn} of N points in R as the domain and the set of all functions on this set will
also be a vector space. In particular, we can write down the the functions

em(xn) = δmn (5.21)

for all m ≤ N and consequently describe any function f on this domain by specifying the N
numbers fm in the sum

f =

N∑
m=1

fmem. (5.22)

It follows that the functions em constitute a finite basis of the vector space and the value
of the function f for any point xn is given by

f(xn) =

N∑
m=1

fmem(xn) =

N∑
m=1

fmδnm = fn. (5.23)
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As a result, the vector space is of finite dimension. We can also do the same thing for a
countably infinite set of points, in which case the resulting vector space is separable.

Example 5.9 It is also important to note that we cannot just take any set of functions
and expect it to be a vector space. An example of this is the set of functions that take the
value f(x0) = a 6= 0 at some point x0 in the domain. For the sum of two functions in this
set, we would obtain

(f1 + f2)(x0) = f1(x0) + f2(x0) = 2a 6= a (5.24)

and as a result the set is not closed under addition, which is one of the requirements for
the set to form a vector space. However, if a = 0, the set does form a vector space (unless
other conditions are violated).

5.1.2.1 Inner products on function spaces

Let us consider what types of inner products we can construct for functions on a continuous
domain D, which generally may be all of an N -dimensional space or a subset of it. We will
restrict our discussion to the vector space of functions that are square integrable on D, i.e.,
functions f that satisfy ∫

D

|f(x)|2 dV <∞, (5.25)

where dV is the volume element in the N -dimensional space. We can easily check that this
set of functions forms a vector space since∫

D

|f1 + f2|2 dV ≤
∫
D

(|f1|+ |f2|)2
dV ≤

∫
D

(
|f1|2 + |f2|2 + 2 max(|f1|2 , |f2|2)

)
dV

≤ 3

∫
D

(
|f1|2 + |f2|2

)
dV <∞, (5.26)

where we have used that |f1| |f2| ≤ max(|f1|2 , |f2|2) and that max(|f1|2 , |f2|2) ≤ |f1|2+|f2|2
for all values of the arguments. In order to construct an inner product on this vector space,
we need to find a mapping that takes functions f1 and f2 to scalars and satisfies the inner
product requirements. Among these requirements is the requirement of being linear in the
second argument. Noting that any integral of the form

I2[f2] =

∫
D

W (x)f2(x)dV, (5.27a)

where W is an arbitrary function that does not spoil the convergence of the integral, is
linear in f2, a strong candidate would be a mapping that behaves in this fashion. Similarly,
the inner product should be anti-linear in the first argument, which is a property of the
integral

I1[f1] =

∫
D

f∗1 (x)W (x)dV. (5.27b)
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Taking W = f1 in the first of these relations and W = f2 in the second results in the same
expression and we therefore have a candidate inner product on the form

〈f1, f2〉 =

∫
D

f∗1 (x)f2(x)dV. (5.28)

This definition indeed satisfies all of the requirements on an inner product and is commonly
encountered in physics. It should be noted that, as for other vector spaces, there are several
other possibilities of defining the inner product. A very general form of an inner product
would be of the form

〈f1, f2〉 =

∫
D

∫
D

f∗1 (x)f2(x′)w̃(x, x′) dV dV ′, (5.29)

where the function w̃ must satisfy a number of constraints to keep the inner product positive
definite and well defined on the function space. This form of an inner product does not
appear very often, but the special case of w̃(x, x′) = w(x)δ(x− x′) does, leading to

〈f1, f2〉 =

∫
D

w(x)f∗1 (x)f2(x) dV. (5.30)

The function w(x) must here satisfy w(x) > 0 and is called a weight function. In the rest of
this chapter, this is the only type of inner product on function spaces that we will encounter.

5.2 OPERATORS AND EIGENVALUES
Linear operators on different vector spaces in general, and on function spaces in particular,
will appear in a large variety of different physical situations. We have already discussed linear
differential operators in connection to the modelling of physical systems in Chapter 3, but
let us now discuss the theory of linear operators on abstract vector spaces in a little bit
more detail. Our discussion will start with linear operators on finite vector spaces and we
shall gradually work our way towards the limit of separable Hilbert spaces, and finally see
how the theory generalises to Hilbert spaces in general.

5.2.1 Application of operators in finite spaces
Linear operators appear already in basic mechanics, although usually introduced as matri-
ces. Looking at a mechanical system with a N degrees of freedom ~X around an equilibrium,
which may be taken to be ~X = 0, its equations of motion can be written on the form

~̈X = −V̂ ~X, (5.31)

where V̂ is a linear operator taking a vector in the N dimensional configuration space to a
different vector in the configuration space. This operator will generally depend on the inertia
and potential energy of the system. Taking the usual scalar product on the configuration
space, we find that

1

2

d ~̇X2

dt
= ~̇X · ~̈X = − ~̇X · (V̂ ~X). (5.32)

If V̂ has the property
~Y1 · (V̂ ~Y2) = (V̂ ~Y1) · ~Y2 (5.33)
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for all ~Yi, it is said to be symmetric, which for this finite vector space reduces to the relation
Vij = Vji in any basis on the vector space, where Vij = ~ei · V̂ ~ej . We then find that

1

2

d ~̇X2

dt
= −1

2
[ ~̇X · (V̂ ~X) + ~X · (V̂ ~̇X)] = −1

2

d( ~X · V̂ ~X)

dt
(5.34)

and therefore
dE

dt
= 0, where E =

1

2

(
~̇X2 + ~X · V̂ ~X

)
(5.35)

is related to the total energy of the system. Note that the symmetry of V̂ will generally be
a consequence of it being related to the second derivative of the potential energy V ( ~X) of
the system, which in any coordinate basis satisfies

∂i∂jV = ∂j∂iV. (5.36)

In order to solve Eq. (5.31), we look for eigenvectors of V̂ , which are vectors ~Xk such
that

V̂ ~Xk = λk ~Xk, (no sum) (5.37)

where the eigenvalue λk is a scalar. In general, symmetric operators will have a set of
eigenvectors that are orthogonal with real eigenvalues, see Problem 5.14. As the eigenvectors
may be normalised, we take such a set of orthonormal eigenvectors ~Xk as a basis and, since
any vector may be expanded in terms of this basis, expand the solution in terms of them

~X =

N∑
k=1

fk(t) ~Xk, (5.38)

where the fk(t) are functions of t to be determined. Inserting this into Eq. (5.31) and taking

the inner product of the entire equation with ~X`, we find that

~X` · ~̈X =

N∑
k=1

f ′′k (t) ~X` · ~Xk =

N∑
k=1

f ′′k (t)δ`k = f ′′` (t) (5.39a)

for the left-hand side and

− ~X` · V̂ ~X = −
N∑
k=1

fk(t) ~X` · V̂ Xk = −
N∑
k=1

fk(t) ~X` · λk ~Xk

= −
N∑
k=1

fk(t)λkδ`k = −λ`f`(t), (5.39b)

for the right-hand side. In other words, we find that

f ′′` (t) = −λ`f`(t), (5.39c)

which is a linear ordinary differential equation for every value of `. We will later apply pre-
cisely the same argumentation for linear operators on infinite dimensional function spaces,
but we shall first discuss these operators in some detail. For now, let us give an example in
a finite dimensional setting in order to substantiate the theory.
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u2

L/3 L/3 L/3

mm
k kk

u1

Figure 5.1 Two masses m moving between two fixed points separated by L under the influence of
three springs of spring constant k. The displacement of the masses from their equilibrium positions
are u1 and u2, respectively.

Example 5.10 Consider two masses m moving in one dimension and subjected to the
forces of three springs of rest length L/3 with spring constant k, see Fig. 5.1. We denote
the displacement of the masses by uk (k = 1, 2) and the configuration space of the system
is two-dimensional and we take a basis ~e1, which corresponds to u1 = 1, u2 = 0, and ~e2,
which corresponds to u1 = 0, u2 = 1. A general displacement is therefore

~u = u1~e1 + u2~e2, (5.40a)

which may also be represented as a column vector

u =

(
u1

u2

)
= u1

(
1
0

)
︸︷︷︸
=~e1

+u2

(
0
1

)
︸︷︷︸
=~e2

. (5.40b)

Applying Newton’s second law to the first of the masses, we find that

ü1 =
k

m
[−u1 + (u2 − u1)], (5.41)

where the term containing only u1 arises due to the spring to the left of the mass and the
term containing u2−u1 due to the spring to the right. A similar equation, but with u1 ↔ u2

can be found for the second mass and the full set of equations of motion for the system may
be written

ü = −V̂ u, (5.42)

where V̂ is the symmetric 2× 2 matrix

V̂ =
k

m

(
2 −1
−1 2

)
. (5.43)

This matrix has the normalised eigenvectors

X1 =
1√
2

(
1
1

)
and X2 =

1√
2

(
1
−1

)
(5.44)
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with eigenvalues λ1 = k/m and λ2 = 3k/m, respectively. Writing the general solution to
the problem as u(t) = f1(t)X1 + f2(t)X2, we find that

fk(t) = Ak cos(ωkt+ φk), (5.45)

where ωk =
√
λk and Ak and φk are integration constants. The general solution to the

problem is therefore

u(t) =
[
A1 cos(t

√
k/m+ φ1)X1 +A2 cos(t

√
3k/m+ φ2)X2

]
. (5.46)

The constants Ak and φk need to be fixed using initial conditions on the positions and
velocities of the two masses.

5.2.2 Operators on inner product spaces
When considering operators acting on general vector spaces, we want to carry several of the
properties we encountered in the finite dimensional setting with us. As for the finite setting,
we define an operator V̂ to be symmetric with respect to the inner product if the relation〈

u, V̂ v
〉

=
〈
V̂ u, v

〉
(5.47)

is satisfied for all vectors u and v in a real vector space. The corresponding relation in a
complex vector space defines Hermitian operators. Just as symmetric operators may be rep-
resented by symmetric matrices in finite-dimensional real vector spaces, Hermitian operators
may be represented by Hermitian matrices in finite-dimensional complex vector spaces.

Example 5.11 Let us consider the linear differential operator ∂x along with the inner
product

〈f, g〉 =

∫ ∞
−∞

f(x)g(x)dx (5.48)

on a suitable space of functions in one dimension that decay sufficiently fast as x → ±∞.
Using partial integration, we find that

〈f, ∂xg〉 =

∫ ∞
−∞

f(x)g′(x)dx = −
∫ ∞
−∞

f ′(x)g(x)dx = −〈∂xf, g〉 . (5.49)

Because of this, the operator ∂x is not a symmetric operator (due to the appearance of the
minus sign, it is anti -symmetric). However, this also means that〈

f, ∂2
xg
〉

= −〈∂xf, ∂xg〉 =
〈
∂2
xf, g

〉
, (5.50)

implying that the operator ∂2
x is symmetric.

As for operators on finite vector spaces, operators on more general vector spaces may
have eigenvectors that satisfy

V̂ u = λuu, (5.51)
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where λu is the eigenvalue associated with the eigenvector u of the operator V̂ . For any
eigenvector u, a very useful relation to keep in mind is〈

v, V̂ u
〉

= 〈v, λuu〉 = λu 〈v, u〉 , (5.52)

which follows directly from the fact that λu is a number and the linear property of the inner
product. In particular, this property may be used to show that any symmetric operator must
have real eigenvalues, see Problem 5.14. At this point, it should also be noted that linear
operators on function spaces are not necessarily differential operators, although we will deal
with these to a larger extent than others. The same ideas with eigenvalues and eigenvectors
apply equally well to any type of linear operator.

Example 5.12 Let us again consider the linear operator ∂x. In order to be an eigenvector
of this operator, a function f must satisfy

f ′(x) = λff(x) (5.53)

for some constant λf . This ordinary differential equation has the solution

f(x) = eλfx (5.54)

regardless of the value of λf . All of the functions on this form are therefore eigenfunctions
of ∂x. Whether or not these eigenfunctions are actually a part of the function space depends
on whether or not they satisfy the requirements of belonging to it.

Example 5.13 As an example of a linear operator that is not a differential operator, let
us consider pointwise multiplication by the function

π(a,b)(x) =

{
1, a < x < b

0, otherwise
. (5.55)

This defines the linear operator π̂(a,b) such that

(π̂(a,b)f)(x) = π(a,b)(x)f(x). (5.56)

Any function that is non-zero only in the interval a < x < b is an eigenfunction of this oper-
ator with eigenvalue one, while any function that is zero in the interval is an eigenfunction
with eigenvalue zero.

5.2.2.1 Differential operators and discretisation

It is sometimes useful to compare problems in finite dimensional vector spaces with problems
in infinite dimensional ones. While the mathematical structure in terms of operators may
be more evident in the finite dimensional spaces, as they are being represented by matrices,
problems with many degrees of freedom are often easier to solve if we approximate the
number of degrees of freedom as infinite while keeping macroscopic quantities fixed. In
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· · ·

L

Figure 5.2 The same as Fig. 5.1, but for an increasing number of masses and springs. Allowing the
number of masses and springs to grow while keeping some macroscopic quantities such as the total
mass, the overall spring constant, and total length fixed, the problem will be well approximated by
a continuum.

performing this sort of comparisons, it is useful to keep the finite difference approximations
of different derivatives in mind, most notably

ux(xk) ' u(xk+1)− u(xk)

∆x
and (5.57a)

uxx(xk) ' u(xk+1)− 2u(xk) + u(xk−1)

(∆x)2
, (5.57b)

for the first and second derivatives, respectively, where ∆x is the distance between the
equidistantly spaced points xk.

If we are faced with an infinite dimensional problem, such as the oscillations of a string
of a given length, where the function u(x, t) describing the shape of the string at time t
belongs to an infinite dimensional function space, the problem may be approximated by
considering the function u only at a finite discrete set of points xk. The function space
on such a set is finite dimensional and any derivatives may be approximated by the finite
difference approximations. As such, we will be able to approximate the differential operator
in terms of a matrix, much like the one that showed up in Example 5.10.

On the other hand, if we are faced with a system with a very large number of degrees
of freedom, the solution will generally involve the diagonalisation of a very large matrix,
i.e., an N ×N matrix for N degrees of freedom. Instead of performing this diagonalisation
explicitly, it may be easier to approximate the system with an infinite dimensional one. This
is illustrated in the following example.

Example 5.14 We consider a situation that is very similar to Example 5.10, but instead
of having two masses and three springs, we consider the case where we have N masses
and N + 1 springs, while we keep the total distance of the chain fixed at L, see Fig. 5.2.
The distance between consecutive masses is given by a = L/(N + 1) and the total mass
of the chain is M = Nm, where m is the mass of each small mass. We can also define the
macroscopic spring constant k0 = k/(N + 1), where k is the spring constant for each of the
small springs. The constant k0 is the spring constant of N + 1 springs with spring constant
k connected in series. If we consider how the deviation un of the nth mass depends on time,
we apply Newton’s second law and find

ün =
Fn
m
, (5.58)
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where Fn is the force acting on the mass, which may be expressed as

Fn = k(un+1 − 2un + un−1). (5.59)

We have here made the assumption that u0 = uN+1 = 0, since the walls are fixed. This
results in the relation

ü = −V̂ u, (5.60)

where u is a column vector containing the displacements un and V̂ is the N ×N matrix

V̂ =
k

m



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2
. . .

. . .
...

0 0
. . .

. . . −1 0
...

...
. . . −1 2 −1

0 0 · · · 0 −1 2


. (5.61)

Although this matrix is sparse and can be easily diagonalised by a computer, we would like
to find some analytical results as well. In order to do so, we instead consider the limit where
N → ∞ while keeping the macroscopic quantities M , k0, and L fixed. In the continuum
limit, we consider a function u(x, t), implying that un = u(xn, t), where xn = an. Rewriting
Eq. (5.58) in terms of the macroscopic variables, we find that

utt(xn) ' k0

M
N2(un+1 − 2un + un−1) ' k0

M
N2a2uxx(xn) =

k0L
2

M
uxx(xn). (5.62)

Introducing c2 = k0L
2/M , this is the wave equation with wave velocity c. If N is very

large, we should therefore find a reasonable approximation to the solution if we solve the
continuous problem instead.

5.3 STURM–LIOUVILLE THEORY
A very important class of differential operators in physics is that of the so-called Sturm–
Liouville operators. A Sturm–Liouville operator is a differential operator that can be written
as

L̂ = − 1

w(x)

[
∂

∂x
p(x)

∂

∂x
− q(x)

]
, (5.63)

where w(x), p(x), and q(x) are all positive functions. The reason these are so important is
that it is common for operators of the form

L̂ = − 1

w(~x)
[∇ · p(~x)∇− q(~x)] , (5.64)

to appear in different physical situations. Writing this operator down in component form in
Cartesian coordinates, we find that

L̂ = − 1

w
[∂ip∂i − q] ≡

N∑
i=1

L̂i −
q

w
(5.65)



Function Spaces � 277

and the operator is therefore a sum of several Sturm–Liouville operators L̂i in different
variables.

Example 5.15 The negative of the Laplace operator −∇2 is of the form

−∇2 = −∂i∂i. (5.66)

Each term in this sum is a Sturm–Liouville operator with w = p = 1 and q = 0.

5.3.1 Regular Sturm–Liouville problems
Most of the useful properties of Sturm–Liouville operators are apparent already for one-
dimensional problems in which a single Sturm–Liouville operator appears. For this reason,
we shall start our discussion regarding these properties for one-dimensional problems and
later use separation of variables to generalise the discussion to problems in higher dimen-
sions. For now, we assume that we have a Sturm–Liouville operator that is of the form

L̂ = − 1

w(x)
[∂xp(x)∂x − q(x)] . (5.67)

Since this is a differential operator of order two, we will need two boundary conditions when
solving differential equations involving it. Assume that we are studying a problem in the
interval a ≤ x ≤ b and we are looking at boundary conditions of the form

αaf(a) + βaf
′(a) = 0, αbf(b) + βbf

′(b) = 0. (5.68)

Since the boundary conditions are homogeneous, it is relatively easy to show that functions
fulfilling them form a vector space on which the Sturm–Liouville operator can act. The
problem of finding the eigenvalues and eigenvectors of this problem is called a regular Sturm–
Liouville problem based on the fact that the boundary conditions are regular. Explicitly,
the problem involves finding functions f(x) such that

L̂f(x) = λf(x), (5.69)

where f(x) satisfies the boundary conditions and λ is a constant.

Example 5.16 Let us solve the most basic regular Sturm–Liouville problem we may
imagine, namely that of L̂ = −∂2

x on the interval [0, 1] with homogeneous Dirichlet boundary
conditions

(ODE) : − f ′′(x) = λf(x), (5.70a)

(BC) : f(0) = f(1) = 0. (5.70b)

We can solve the differential equation by looking at the three different cases λ < 0, λ = 0,
and λ > 0 separately:

λ < 0: In this case, we can introduce k > 0 such that k2 = −λ. The general solution
to the differential equation is then given by

f(x) = Aekx +Be−kx = A′ cosh(kx) +B′ sinh(kx), (5.71a)
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where A, B, A′, and B′ are constants to be determined by the boundary conditions.
With the homogeneous Dirichlet boundary conditions the only possible solution is
A = B = 0, i.e., the trivial solution that is the zero vector in the function space.

λ = 0: The differential equation is now f ′′(x) = 0 with the solution

f(x) = Ax+B. (5.71b)

Again, the boundary conditions leave only the trivial solution A = B = 0.

λ > 0: Similar to the first case, we may introduce k > 0, but this time such that
λ = k2. The general solution to the differential equation is now

f(x) = A cos(kx) +B sin(kx). (5.71c)

Again, the boundary condition at x = 0 implies that f(0) = A = 0, but the boundary
condition at x = 1 is given by

f(1) = B sin(k) = 0, (5.72)

which allows for B to be arbitrary whenever sin(k) = 0. This occurs whenever k = πn,
where n is a positive integer (n must be positive since k is).

From the above discussion follows that there is a countable set of eigenfunctions

fn(x) = sin(knx), (5.73)

where kn = πn, with corresponding eigenvalues λn = k2
n = π2n2. We will continue to use

this example to illuminate the concepts throughout this section.

In general, we could ask ourselves if we should not also consider the possibility of having
complex eigenvalues λ in the example above. However, if we introduce the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x)dx (5.74)

on the function space, we find that −∂2
x is a symmetric operator and therefore must have

real eigenvalues. As should be verified (see Problem 5.18), any Sturm–Liouville operator in
a regular Sturm–Liouville problem is symmetric with respect to the inner product

〈f, g〉 =

∫
D

f(x)g(x)w(x)dx, (5.75)

where D is the domain of the function space and w(x) is the function appearing in the
definition of the Sturm–Liouville operator, which is here taken as the weight function of the
inner product.

Another important property of the eigenfunctions belonging to a Sturm–Liouville prob-
lem is that they, as the eigenvectors of a symmetric operator, are orthogonal to each other
as long as they have distinct eigenvalues. Deriving this property is left as an exercise, see
Problem 5.14.
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Example 5.17 We can check explicitly that the eigenfunctions we found in Example 5.16
are orthogonal with respect to the inner product of Eq. (5.74). We find that

〈fn, fm〉 =

∫ 1

0

sin(πnx) sin(πmx)dx, (5.76)

where the integrand may be rewritten using the trigonometric identity

sin(πnx) sin(πmx) =
1

2
[cos(π(n−m)x)− cos(π(n+m)x)] . (5.77)

Integration for n 6= m now results in

〈fn, fm〉 =
1

2π

[
sin(π(n−m)x)

n−m
− sin(π(n+m)x)

n+m

]1

0

= 0. (5.78a)

On the other hand, if n = m, we find that

〈fn, fn〉 =
1

2

[
x− sin(π(n+m)x)

π(n+m)

]1

0

=
1

2
(5.78b)

due to cos(π(n − n)x) = 1. We therefore also find that the norm of fn is given by ‖fn‖ =
1/
√

2.

5.3.1.1 Sturm–Liouville’s theorem

We have just seen that, from a Sturm–Liouville operator being symmetric with respect to a
particular inner product, its eigenfunctions must be orthogonal with respect to that inner
product (as long as they have distinct eigenvalues). In Example 5.16, we also showed that
the eigenfunctions fn of the Sturm–Liouville operator −∂2

x acting on functions that satisfy
homogeneous Dirichlet boundary conditions at x = 0 and x = 1 all had distinct eigenvalues
λn = π2n2, implying that they are all orthogonal to each other. These properties are not
coincidental, but follow directly from Sturm–Liouville’s theorem, which states that, for any
regular Sturm–Liouville problem:

1. There exists an infinite set of eigenfunctions fn with distinct eigenvalues λ1 < λ2 <
λ3 < . . ..

2. This set of eigenfunctions forms a complete basis on the function space, i.e., any
function g(x) in the function space satisfying the boundary conditions may be written
as

g(x) =

∞∑
n=1

gnfn(x), (5.79)

where the gn are the expansion coefficients in the basis fn(x).

The proof of this theorem is relatively involved and requires more mathematics than what
is available to us at this point. However, since the theorem is fundamental for the upcoming
discussion, we accept it as is for now.
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Example 5.18 In the case of Example 5.16, Sturm–Liouville’s theorem tells us that any
function g(x) that satisfies g(0) = g(1) = 0 may be written as a linear combination of the
sine functions sin(πnx)

g(x) =

∞∑
n=1

gn sin(πnx). (5.80)

This is the Fourier series for functions of this type.

For any given function g(x) in the function space, the coefficients of the expansion into
eigenfunctions of the Sturm–Liouville operator may be found by using the properties of the
inner product. In particular, by taking the inner product of Eq. (5.79) with fm, we find that

〈fm, g〉 =
∑
n

gn 〈fm, fn〉 =
∑
n

gnδnm 〈fm, fm〉 = gm 〈fm, fm〉 , (5.81)

where we have used the fact that the eigenfunctions are orthogonal. Dividing by ‖fm‖, the
expansion coefficient gm is given by

gm =
〈fm, g〉
〈fm, fm〉

=
〈fm, g〉
‖fm‖2

. (5.82a)

In order to simplify this expression, it is often convenient to work in a normalised basis
where ‖fn‖ = 1, where this equation reduces to

gm = 〈fm, g〉 . (5.82b)

In such a basis, the full eigenfunction expansion of the function g is of the form

g(x) =
∑
n

〈fn, g〉 fn(x) (5.83a)

while, in the case where the eigenfunctions are not normalised, we instead have

g(x) =
∑
n

〈fn, g〉
‖fm‖2

fn(x). (5.83b)

It should be noted that this expansion is exactly equivalent to the expression of a general
vector in a finite dimensional vector space in terms of an orthonormal vector basis, see
Eqs. (1.1) and (1.10).

Example 5.19 In the space of functions satisfying g(0) = g(1) = 0, we have seen that
finding the series expansion of a function g(x) amounts to finding the coefficients of its
Fourier series. This is generally done by the use of Fourier’s trick , i.e., multiplying by one
of the sines sin(πmx) and integrating from 0 to 1. For example, if we wish to find the Fourier
coefficients gn for the function g(x) = x(1− x), we would compute the integral∫ 1

0

x(1− x) sin(πmx)dx =
2

π3m3
[1− (−1)m]. (5.84a)

This must be equal to∑
n

gn

∫ 1

0

sin(πmx) sin(πnx)dx =
∑
n

gnδnm
1

2
=
gm
2
, (5.84b)
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where we have used the results of Example 5.17, implying that

gm =
4

π3m3
[1− (−1)m] =

{
1

π3k3 , (m = 2k)

0, (m = 2k + 1)
. (5.84c)

The Fourier expansion therefore tells us that

x(1− x) =

∞∑
k=1

sin(2πkx)

π3k3
. (5.85)

Although it pre-dates the Sturm–Liouville theory, Fourier’s trick is of course nothing else
than taking the inner product between the functions as described above.

5.3.2 Periodic and singular Sturm–Liouville problems
Not all Sturm–Liouville problems of physical interest are regular and so we need to consider
a few other situations as well. Luckily, the most important aspect of Sturm–Liouville’s
theorem, the existence of a complete set of eigenfunctions, will remain true also for the
problems discussed in this section.

A periodic Sturm–Liouville problem is the problem of finding the eigenfunctions of a
Sturm–Liouville operator on a function space of periodic functions f such that

f(x) = f(x+ L), (5.86)

where L is the period of the functions. Due to the periodicity, we may restrict the study of
this set of functions to the interval 0 ≤ x ≤ L, or any other interval of length L, with the
imposed boundary conditions

f(0) = f(L) and f ′(0) = f ′(L). (5.87)

Using these boundary conditions, it is again relatively easy to show that the Sturm–Liouville
operator will be symmetric with respect to the inner product using the w(x) appearing
in its definition as the weight function (naturally, the functions in the definition of the
Sturm–Liouville operator need to be periodic for a periodic Sturm–Liouville problem) and
integrating over a full period

〈f, g〉 =

∫ L

0

f(x)g(x)w(x)dx. (5.88)

The consequences of the Sturm–Liouville operator being symmetric, such as the eigenvalues
being real, remain true in this case.

Example 5.20 Let us again consider the Sturm–Liouville operator −∂2
x, this time re-

stricted to 2π periodic functions f(x) = f(x + 2π). As in Example 5.16, we find that the
eigenfunctions must satisfy the differential equation

−f ′′(x) = λf(x) (5.89)
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and there are no periodic solutions for λ < 0. For λ = 0 we find that

f(x) = Ax+B, (5.90)

which is periodic only if A = 0, resulting in a single non-trivial solution f(x) = B that is
periodic. In the case λ = k2 > 0, the solutions are of the form

f(x) = Aeikx +Be−ikx. (5.91)

The condition of periodicity requires that

A+B = Aei2πk +Be−i2πk (5.92)

which is fulfilled if k is an integer. In general, we therefore find that the eigenfunctions are
fn = eikx, where k is an arbitrary integer that may be positive, negative, or zero (when
including the result from the λ = 0 case, which is f0 = 1 = ei0x). However, apart from the
case k = 0, we find that the solutions are degenerate, i.e., for each solution eikx with k 6= 0,
there exists a linearly independent solution e−ikx with the same eigenvalue λ = k2.

Finally, we note that if we want our eigenfunctions to be real, e.g., if we are describing
a real function space, then we can introduce the linear combinations

cn(x) =
einx + e−inx

2
= cos(nx) and sn(x) =

einx − e−inx

2i
= sin(nx) (5.93)

for n > 0. These functions are linear combinations of the eigenfunctions e±inx and are
therefore also eigenfunctions with eigenvalue n2.

The example above shows that the eigenfunctions of periodic Sturm–Liouville problems
are not necessarily non-degenerate. However, the set of all eigenfunctions remains complete
and it is always possible to construct a complete orthonormal basis using the eigenfunctions
by taking any complete set of eigenfunctions and applying an orthogonalisation procedure,
such as the Gram–Schmidt procedure, to it.

In many physical applications, there will also be situations where the function p(x) that
appears in the definition of the Sturm–Liouville operator goes to zero at some point x0.
Such cases may be treated as long as this point is on the boundary of the domain of the
function space and we replace the boundary conditions at x0 with the requirement that the
functions are finite, i.e.,

|f(x0)| <∞. (5.94)

It may also happen that the interval is not finite, but that we are studying functions on an
infinite interval. In this case, the requirement on the function space is that the functions
should have finite norms according to the inner product. The problems of searching for
eigenfunctions and eigenvalues of Sturm–Liouville operators in these situations are called
singular Sturm–Liouville problems. In general, it will still be possible to find a complete set of
eigenvectors to a singular Sturm–Liouville problem, but the eigenvalues may be degenerate
and the spectrum of the Sturm–Liouville operator, i.e., the set of eigenvalues, may contain a
continuous part. This occurs frequently for several potentials in quantum mechanics, where
a potential may result in a spectrum with a discrete part, corresponding to bound states,
and a continuous part, corresponding to free states (or scattering states).
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Example 5.21 Consider the radial part of the Laplace operator in spherical coordinates
in three dimensions

L̂ = − 1

r2
∂rr

2∂r. (5.95)

If we are studying a region where the origin r = 0 is included in our domain, then the
problem of finding eigenvalues and eigenfunctions to this operator will be a singular Sturm–
Liouville problem, as will the problem of finding eigenvalues and eigenvectors when the
domain includes r → ∞. A typical problem where this will be an issue would be finding
the electrostatic potential V (r) of a spherically symmetric charge distribution ρ(r) in free
space, for which we would need to solve the differential equation

− 1

r2
∂rr

2∂rV =
ρ(r)

ε0
(5.96)

between r = 0 and r →∞. This problem is singular both due to the singularity in p(r) = r2

at r = 0 and due to the domain not having an upper boundary in r.

5.4 SEPARATION OF VARIABLES
Separation of variables is a technique that may be used to find solutions to some differen-
tial equations. The separation we will be mainly concerned with here is the separation of
partial differential equations, which essentially amounts to rewriting a differential equation
in several variables as an ordinary differential equation in one of the variables and a partial
differential equation in the remaining variables. Naturally, if there are only two variables in
the problem, the separation will result in two ordinary differential equations. The idea is to
reduce the problem to a set of simpler problems that may be solved individually. If we have
a partial differential equation in the variables x, y, and z, we can attempt to separate the
z coordinate by looking for solutions of the form

f(x, y, z) = g(x, y)Z(z). (5.97a)

If we are successful, we may continue to try to separate the x and y coordinates by the
ansatz

g(x, y) = X(x)Y (y) =⇒ f(x, y, z) = X(x)Y (y)Z(z). (5.97b)

If we have a homogeneous linear partial differential equation

L̂f(x, y, z) = 0, (5.98)

where L̂ is a general linear differential operator, the separation of the z variable proceeds
in the following manner:

1. Make the ansatz f(x, y, z) = g(x, y)Z(z) (c.f., Eq. (5.97a)).

2. Insert the ansatz into the differential equation and express the derivatives in terms of
derivatives of g and Z, respectively.

3. Attempt to rewrite the resulting differential equation as an equation where one of the
sides depend only on z and the other side only depend on x and y.
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4. Since each side depends on different parameters, both sides must be equal to the
same constant. Assume this constant is arbitrary and solve the resulting differential
equations separately.

It should be noted that the separation ansatz is not guaranteed to work, nor is it guaranteed
to provide solutions that may be adapted to the appropriate boundary conditions when it
does. However, as we shall see when we apply separation of variables to multidimensional
problems involving Sturm–Liouville operators, we will obtain the most general solutions by
virtue of the properties of one-dimensional Sturm–Liouville problems.

Example 5.22 Let us look at the partial differential equation

(∂x + ∂y)f(x, y) = 0 (5.99)

and search for separated solutions of the form f(x, y) = X(x)Y (y). Inserting the separation
ansatz into the differential equation, we find that

X ′(x)Y (y) +X(x)Y ′(y) = 0 =⇒ X ′(x)

X(x)
= −Y

′(y)

Y (y)
. (5.100)

Since the left-hand side depends only on x and the right-hand side depends only on y, they
must both be equal to the same constant λ and we may write

X ′(x) = λX(x), Y ′(y) = −λY (y), (5.101)

with the solutions

X(x) = Aeλx, Y (y) = Be−λy =⇒ f(x, y) = Ceλ(x−y), (5.102)

where C = AB. Note that all functions of this form are solutions to the original differential
equation, but not all solutions are of this form. In general, we may create superpositions
of these solutions that will not be a product of one function of x and one of y. In fact, all
functions of the form f(x, y) = g(x − y) solve the differential equation, as may be seen by
inserting this into the differential equation

(∂x + ∂y)g(x− y) = g′(x− y)(∂x + ∂y)(x− y) = g′(x− y)(1− 1) = 0. (5.103)

5.4.1 Separation and Sturm–Liouville problems
The separation of variables has a special application when the problem in question involves
one or more Sturm–Liouville operators. Imagine that we are given a problem of the form

(PDE) : [f(y)L̂x + L̂y]u(x, y) = g(x, y), (5.104a)

where L̂x is a Sturm–Liouville operator in x, L̂y is a linear differential operator in y and
f(y) and g(x, y) are known functions of their arguments. Furthermore, assume that we have
homogeneous boundary conditions on coordinate surfaces of x

(BC) : α±u(x, y) + β±∂xu(x, y) = 0. (x = x±) (5.104b)
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Since the partial differential equation involves a Sturm–Liouville operator, we can look for
solutions to the one-dimensional eigenvalue problem

(ODE) : L̂xX(x) = λX(x), (5.105a)

(BC) : α±X(x±) + β±X
′(x±) = 0. (5.105b)

Due to this being a Sturm–Liouville problem, we know that this problem has a set of
solutions Xn with corresponding eigenvalues λn and that this set forms a complete basis
of the function space satisfying the given boundary conditions. In particular, we note that,
for any fixed y, the function u(x, y) is a function of x that satisfies the given boundary
conditions and therefore it is possible to write it as a linear combination of the functions
Xn

u(x, y) =
∑
n

Xn(x)Yn(y), (5.106a)

where the expansion coefficients Yn(y) will generally depend on which value we choose to
fix y at. The equivalent argumentation can be made for the function g(x, y), which we write

g(x, y) =
∑
N

Xn(x)gn(y), (5.106b)

where again the expansion coefficients gn generally depend on y. Inserting this into the
original partial differential equation, we find that

[f(y)L̂x + L̂y]u(x, y) =
∑
n

[
f(y)Yn(y)L̂xXn(x) +Xn(x)L̂yYn(y)

]
=
∑
n

Xn(x)
[
f(y)Yn(y)λn + L̂yYn(y)

]
=
∑
n

Xn(x)gn(y). (5.107)

The last two steps of this equation may be rewritten in the form∑
n

Xn(x)
[
f(y)Yn(y)λn + L̂yYn(y)− gn(y)

]
= 0 (5.108)

and we can observe that the left-hand side is a linear combination of the functions Xn. The
important thing to note is that, since they are the solutions to a Sturm–Liouville problem,
the Xn are linearly independent and for a linear combination of Xn to be equal to zero, all
of the coefficients must be equal to zero, i.e.,

f(y)Yn(y)λn + L̂yYn(y)− gn(y) = 0. (5.109)

This is an ordinary differential equation in the variable y that may be solved separately.
We have thus used the fact that the differential operator in our problem involved a Sturm–
Liouville operator in the x coordinate in order to separate it away. The only remainder of it
in the differential equation for Yn(y) is the eigenvalue λn. Naturally, the coordinate y may
be replaced by a more general set of coordinates in a higher dimensional space and if L̂y
contains more one-dimensional Sturm–Liouville operators, this may be used to separate the
problem even further. We will use this technique extensively in Chapter 6 when applying
the concepts of this chapter to physical problems.
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V = V0
x
L

(1− x
L

)

y

x

L

L

∇2V = 0

V
=

0

Figure 5.3 The definition of and solution to a problem where we know the electric potential on the
boundaries of a square and wish to know the potential inside it.

Example 5.23 Consider the situation shown in Fig. 5.3, where we wish to find the elec-
trostatic potential V in two dimensions on a square 0 < x < L, 0 < y < L with boundary
conditions

(BC) : V (x, 0) = V (x, L) = V0
x

L

(
1− x

L

)
, V (0, y) = V (L, y) = 0 (5.110a)

and where there is no charge in the square itself, i.e., the electrostatic potential satisfies
Laplace’s equation

(PDE) : −∇2V (x, y) = (−∂2
x − ∂2

y)V (x, y) = 0. (5.110b)

Since we have homogeneous boundary conditions on the coordinate surfaces x = 0 and
x = L, we can expand the potential in the eigenfunctions Xn(x) = sin(πnx/L) to the
Sturm–Liouville problem

(ODE) : −X ′′n(x) = λnXn(x), (5.111a)

(BC) : Xn(0) = Xn(L) = 0. (5.111b)

The expansion will be of the form

V (x, y) =
∞∑
n=1

Yn(y) sin (knx) , (5.112)

where kn = πn/L, which inserted into Laplace’s equation results in

∞∑
n=1

[
k2
nYn(y)− Y ′′n (y)

]︸ ︷︷ ︸
=0

sin (knx) = 0. (5.113)

The coefficient in front of each sine in the sum must be zero since the sines are linearly inde-
pendent. We therefore find that the expansion coefficients Yn(y) must satisfy the ordinary
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differential equation
(ODE) : k2

nYn(y)− Y ′′n (y) = 0 (5.114)

for all n. The boundary conditions for this differential equation can be found by expanding
the boundary conditions in the y direction in the sines as well

V0
x

L

(
1− x

L

)
=
∑
n

4V0

π3n3
[1− (−1)n] sin(knx). (5.115)

Note that this is the same expansion as that in Example 5.19 with a rescaling x → x/L.
Comparing to the expansion of V (x, 0) = V (x, L), we find that

(BC) : Yn(0) = Yn(L) =
4V0

π3n3
[1− (−1)n]. (5.116)

The resulting problem is easily solved in terms of exponential functions and the solution is
shown in the figure as well.

As a special case of the procedure above, we may be interested in eigenvalue problems
such as

[f(y)L̂x + L̂y]u(x, y) = λu(x, y), (5.117)

where both L̂x and L̂y are Sturm–Liouville operators and λ is an eigenvalue to be deter-
mined. We also assume that we have homogeneous boundary conditions on both the x and
y coordinate surfaces. Separating out the x variable, we find that

[L̂y + f(y)λn]Yn(y) = λYn(y), (5.118)

where λn is the eigenvalue of Xn(x) in the expansion of u. Since L̂y is a Sturm–Liouville

operator, the combination L̂y + f(y)λn is also a Sturm–Liouville operator. The resulting
problem is therefore a new Sturm–Liouville problem that generally depends on n and has
a complete set of orthogonal eigenfunctions Υnm(y) with corresponding eigenvalues λnm as
solutions. Note that we generally will need two indices, n and m, to denote these solutions,
one that numbers the eigenvalue in the x-direction and one that numbers the solution to
the differential equation in y for that eigenvalue.

The main thing to note with this situation is that any function u(x, y) satisfying the
boundary conditions in the x direction may be written as a linear combination of the
eigenfunctions Xn of L̂x

u(x, y) =
∑
n

Yn(y)Xn(x) (5.119a)

due to the eigenfunctions being a complete basis in the x direction. Furthermore, since
Υnm(y) for a fixed n is a complete basis for functions of y that satisfy the boundary condi-
tions in the y direction, the coefficients Yn(y) may be expanded in terms of these functions

Yn(y) =
∑
m

AnmΥnm(y), (5.119b)

where Anm are the expansion coefficients. As a result, any function u(x, y) that satisfies the
boundary conditions of the problem may be written as

u(x, y) =
∑
n,m

AnmXn(x)Υnm(y). (5.120)
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It follows that the functions fnm(x, y) = Xn(x)Υnm(y) form a complete basis of variable
separated eigenfunctions to the two-dimensional problem that we started with in Eq. (5.117).
Again, this readily generalises to problems of higher dimensions. For example, in three-
dimensions, we may find complete sets of eigenfunctions of the form

fnm`(x
1, x2, x3) = X1

n(x1)X2
nm(x2)X3

nm`(x
3). (5.121)

The next section will be dedicated to finding functions of this type for several different
special cases of physical importance.

5.5 SPECIAL FUNCTIONS
With the theory developed in the previous sections of this chapter at hand, let us turn to
some particular cases and find some solutions of relevance for physics applications. We will
mainly be working with the Laplace operator ∇2 in different geometries in which it may be
separated into a sum of Sturm–Liouville operators in different coordinate directions.

Example 5.24 Let us consider the Laplace operator in two dimensions in a region 0 < x <
Lx, 0 < y < Ly, and homogeneous boundary conditions. By separating the x coordinate in
eigenvalue problem −∇2u = λu, we find that

Xn(x) = An cos(knx) +Bn sin(knx), (5.122)

where the value of kn and any constraints on the constants An and Bn will be implied by
the boundary conditions. For example, with homogeneous Dirichlet conditions, we would
find kn = πn/Lx and An = 0. Expanding the function u in terms of these functions, the
differential equation for Yn becomes

Y ′′n (y) + (λ− k2
n)Yn(y) = 0, (5.123)

which is a Sturm–Liouville problem for the operator −∂2
y with eigenvalue λ − k2

n. The
solution to this problem will be of the form

Υm(y) = Cm cos(`my) +Dm sin(`my), (5.124)

with eigenvalue `2m, which is independent of n. The possible values of `m and constraints
on the constants will be deduced from the boundary conditions in the y direction. The
eigenvalue of the product solution Xn(x)Υm(y) is given by the relation

λnm − k2
n = `2m =⇒ λnm = k2

n + `2m, (5.125)

i.e., it is the sum of the eigenvalues of the solutions in either direction. With homogeneous
Dirichlet boundary conditions on all boundaries, we would obtain `m = πm/Ly and the
eigenfunctions

fnm(x, y) = sin(knx) sin(`mx). (5.126)

These eigenfunctions are shown for 1 ≤ n,m ≤ 3 in Fig. 5.4.
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3
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Figure 5.4 The eigenfunctions sin(knx) sin(`my) for 1 ≤ n,m ≤ 3 in the case of a square where
Lx = Ly (and hence kn = `n).

5.5.1 Polar coordinates
For solving problems in regions where the boundaries are coordinate surfaces in polar or
cylinder coordinates, i.e., circle segments and radial lines in two dimensions, with the addi-
tion of planes parallel to the x1-x2-plane in three dimensions, it will be beneficial to work
with these coordinates. The Laplace operator in polar coordinates is given by

∇2 =
1

ρ
∂ρρ∂ρ +

1

ρ2
∂2
φ. (5.127)

We will assume that there are homogeneous boundary conditions and that we are looking
for eigenfunctions of the Laplace operator such that −∇2f(ρ, φ) = λf(ρ, φ).

The first thing to notice about the Laplace operator in polar coordinates is the appear-
ance of the operator ∂2

φ in the angular part. We are already accustomed to this operator
after working with the Laplace operator in Cartesian coordinates and know that it has
eigenfunctions on the form

Φm(φ) = Am cos(kmφ) +Bm sin(kmφ). (5.128)

There are now two options for a region of the sort we have described, either it has radial
lines as boundaries, or it is rotationally symmetric, see Fig. 5.5. In the case where there are
boundaries in the φ-direction, the problem of finding eigenvalues of −∂2

φ is a regular Sturm–
Liouville problem, which we have already discussed. On the other hand, the rotationally
symmetric domain is of particular interest and, since φ corresponds to the same spatial point
as φ + 2π, we must impose cyclic boundary conditions, from which we obtain km = m. In
this case, it is also often more convenient to work with the eigenfunctions

Φm(φ) = Ame
imφ (5.129)

and let m be any integer (negative as well as positive and zero, see Example 5.20). Regardless
of the boundary conditions, regular or cyclic, the separated eigenfunction f(ρ, φ) of the
Laplace operator will be given by

f(ρ, φ) = Rm(ρ)Φm(φ), (5.130)
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Figure 5.5 Regions in two dimensions that are well suited for being described in polar coordinates
with the black dots as the origin. The wedge on the left has boundaries that are coordinate surfaces
in both ρ and φ, while the rotationally symmetric region on the right has coordinate surfaces in ρ
as boundaries, but is cyclic in φ.

which leads to the Sturm–Liouville problem

−1

ρ
∂ρρ∂ρRm +

k2
m

ρ2
Rm = −R′′m −

1

ρ
R′m +

k2
m

ρ2
Rm = λRm. (5.131)

This differential equation appears in many situations in physics, not only when separating
the Laplace operator in polar coordinates, and is known as Bessel’s differential equation.
Since our boundary conditions were assumed to be homogeneous, we will also have homo-
geneous boundary conditions for Bessel’s differential equation and the problem of finding
the eigenfunctions will be a regular Sturm–Liouville problem as long as ρ = 0 is not part of
the domain and the domain is bounded. On the other hand, if ρ = 0 is part of the domain,
then the Sturm–Liouville operator is singular and for the boundary at ρ = 0 we instead
impose that the solutions must be regular |Rm(0)| <∞.

Example 5.25 A physical situation where we may be faced with a problem best expressed
in polar coordinates is when we wish to describe the transversal motion of a circular mem-
brane of radius r0 with a given isotropic tension S that is held fixed at the borders, i.e.,
essentially a drum skin. The motion can be modelled using the wave equation in two spatial
dimensions, which takes the form

1

c2
∂2
t u−∇2u =

(
1

c2
∂2
t − ∂2

ρ −
1

ρ
∂ρ −

1

ρ2
∂2
φ

)
u = 0 (5.132)

in polar coordinates, where u = u(ρ, φ, t) is the transversal displacement of the membrane
and the wave velocity c is given by the tension and the surface density ρS as c2 = S/ρS , see
Section 3.5.2. The boundary conditions on the membrane border are given by

u(r0, φ, t) = 0. (5.133)

For solving this problem, it will be beneficial to find the eigenfunctions of the Laplace
operator with the same boundary conditions in order to expand the solution in a series.
The eigenfunction problem follows the same steps as outlined above in order to separate
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the angular part and we are left with looking for radial functions Rm(ρ) solving the Sturm–
Liouville problem

(PDE) : −R′′m(ρ)− 1

ρ
R′m(ρ) +

m2

ρ2
Rm(ρ) = λRm(ρ), (5.134a)

(BC) : Rm(r0) = 0, |Rm(0)| <∞. (5.134b)

The first boundary condition results from requiring that Rm(r0)Φm(φ) = 0 and the second
is the requirement that the solutions are regular due to the Sturm–Liouville problem being
singular at ρ = 0.

5.5.1.1 Bessel functions

Solving Bessel’s differential equation is a rather complicated task and we will therefore
discuss a way of obtaining solutions when m is an integer. We start by considering the fact
that we wish to find eigenfunctions to Laplace’s equation

∇2f + λf = 0. (5.135)

One solution to this problem, for the moment disregarding any boundary conditions, is
given by

f(x1, x2) = ei
√
λx2

, (5.136)

which can be seen by inserting this function into the eigenvalue equation. Since we wish to
work in polar coordinates, we now express x2 as x2 = ρ sin(φ) and find that

f(ρ, φ) = ei
√
λρ sin(φ). (5.137)

Again, it can be checked explicitly by insertion into the eigenfunction equation that this is
indeed an eigenfunction with eigenvalue λ. For any fixed ρ, we can expand this function as
a function of φ in terms of the functions eimφ, as they form a complete basis of 2π periodic
functions

f(ρ, φ) =
∑
m

fm(ρ)eimφ, (5.138)

where we have introduced the ρ-dependent expansion coefficients fm(ρ). By insertion into
the eigenfunction equation, these coefficients must satisfy

∇2f + λf =
∑
m

[
f ′′m(ρ) +

1

ρ
f ′m(ρ)− m2

ρ2
fm(ρ) + λfm(ρ)

]
eimφ = 0. (5.139)

Since this is a linear combination of the functions eimφ that are linearly independent, each
term in the sum must be zero and it follows that fm(ρ) satisfies Bessel’s differential equation
for km = m. We can obtain an integral expression for fm by multiplying Eq. (5.136) by
e−imφ and integrating, i.e., taking the inner product with one of the basis functions of the
2π periodic functions, which results in

fm(ρ) =
1

2π

∫ π

−π
ei(
√
λρ sin(φ)−mφ)dφ ≡ Jm(

√
λρ), (5.140)
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where we have introduced the Bessel functions of the first kind Jm. In themselves, the
Bessel functions are independent of the eigenvalue λ as

√
λ is part of its argument. The

eigenvalue is instead implied by how the argument relates to the variable in the differential
equation. This is in direct analogy with how the definitions of the sine and cosine functions
do not specify an eigenvalue in Cartesian coordinates (or rather, normalise the eigenvalue
to one), but the eigenvalue is instead given by the factor multiplying the coordinate in the
argument, which can be determined from the boundary conditions.

In the more general setting where km = ν is not necessarily an integer, the Bessel
function Jν may be defined through its series expansion

Jν(x) =

∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(x
2

)2k+ν

, (5.141)

where Γ is the gamma function

Γ(t) =

∫ ∞
0

xt−1e−xdx. (5.142)

This definition is valid for both positive and negative ν and it should be noted that Jν
and J−ν solve the same differential equation, which is fortunate as we expect that there
should be two independent solutions to Bessel’s differential equation, since it is a differential
equation of order two. Near x = 0, we find that the Bessel functions behave as

Jν(x) ' 1

Γ(ν + 1)

xν

2ν
+O(x2+ν), (5.143)

implying that they are singular at x = 0 for negative ν unless Γ(ν + 1)→∞, which occurs
when ν is a negative integer. This behaviour will allow us to disregard the solutions with
negative ν as solutions to the singular Sturm–Liouville problem when ρ = 0 is part of the
domain and we impose the regularity condition that the eigenfunctions must be regular at
the origin.

When ν = m is an integer, Jm and J−m are no longer independent, as may be derived
directly from the integral representation

J−m(x) =
1

2π

∫ π

−π
eimφ+ix sin(φ)dφ = {τ = −φ+ π} =

1

2π
eimπ

∫ 2π

0

e−imτ−ix sin(τ−π)dτ

= (−1)m
1

2π

∫ π

−π
e−imτ+ix sin(τ)dτ = (−1)mJm(x), (5.144)

where we have done a variable substitution in the first step and used the fact that both
e−imτ and eix sin(τ) are 2π periodic functions of τ to change the interval of integration in
the last step. With only the Bessel functions of the first kind, we are therefore missing one
independent solution for integer values of ν. This may be remedied by the introduction
of the Bessel functions of the second kind (also known as Weber functions or Neumann
functions) defined as

Yν(x) =
Jν(x) cos(πν)− J−ν(x)

sin(πν)
(5.145a)

for non-integer values of ν and
Ym(x) = lim

ν→m
Yν(x) (5.145b)

when m is an integer. For non-integer ν this is just a rearrangement of the general solution,
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similar to rewriting eix and e−ix in terms of sine and cosine, while for integer m, we obtain a
second linearly independent solution to Bessel’s differential equation. That it is possible to
obtain a linearly independent function in this way is based on the fact that J−m = (−1)mJm
only implies that J−ν behaves as

J−ν(x) ' (−1)mJm(x) + (ν −m)fm(x) (5.146)

for ν ' m, where fm(x) = dJ−ν(x)/dν|ν=m is not proportional to Jm. This is not unique to
function spaces, but we can have similar situations also in finite dimensional vector spaces.

Example 5.26 As an example of such a situation, let us consider the two dimensional case
with

~v1(θ) = cos(2θ)~e1 + sin(2θ)~e2, ~v2(θ) = cos(θ)~e1 + sin(θ)~e2. (5.147)

The vectors ~v1 and ~v2 are linearly independent for all values of θ that are not integer
multiples of π, for which

~v1(nπ) = ~e1, ~v2(nπ) = (−1)n~e1. (5.148)

For non-integer multiples of π, we can exchange ~v2 for the vector

~u(θ) =
~v2(θ) cos(θ)− ~v1(θ)

sin(θ)
, (5.149)

which is linearly independent from ~v1. In the limit of θ → πn, we find that

~v1 ' ~v1(πn) + (θ − πn)~v ′1(πn) = ~e1 + 2(θ − πn)~e2, (5.150a)

~v2 ' ~v2(πn) + (θ − πn)~v ′2(πn) = (−1)n[~e1 + (θ − πn)~e2], (5.150b)

to linear order in θ − πn. Along with sin(πn) ' (−1)n(θ − πn), this implies that

~u ' [~e1 + (θ − πn)~e2]− ~e1 − 2(θ − πn)

(−1)n(θ − πn)
= (−1)n+1~e2, (5.151)

which is linearly independent from ~v1(πn) = ~e1, see Fig. 5.6.

The Bessel functions of the second kind Yν(x) all have the property of being singular in
the origin. Graphs of the Bessel functions of the first and second kind for a selection of integer
ν are shown in Figs. 5.7 and 5.8, respectively. There is a property of the Bessel functions that
is general and apparent from the figures, which is that they are oscillating back and forth
around zero. Consequently, the equations Jν(x) = 0 and Yν(x) = 0 have an infinite number
of roots, as do the corresponding equations J ′ν(x) = 0 and Y ′ν(x) = 0 for the derivatives.
This property is essential in finding non-trivial solutions to the eigenfunction equation with
given homogeneous boundary conditions. Generally, the zeros of the Bessel functions are not
integer multiples of each other as the zeros of the sine and cosine functions and they have
to be found through approximative means or through numerical computations. Luckily, this
is an exercise which has been performed and documented in tables for the occasions where
numerical values are necessary. We will denote the kth zero of the Bessel function Jm by
αmk and the kth zero of its derivative by α′mk. The values of the first couple of zeros are
listed in Table 5.1. It is always true that

αmk < αnk (5.152)
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Figure 5.6 The situation where the two black vectors become linearly dependent in a limit. However,
the properly scaled difference (gray vector) has non-zero limit which may be taken as a second
linearly independent basis vector.
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Figure 5.7 The first four Bessel functions of the first kind Jm(x) for integer m. Notable character-
istics are the oscillatory behaviour and that only J0 is non-zero at x = 0.
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Figure 5.8 The first four Bessel functions of the second kind Ym(x) for integer m. Notable charac-
teristics are the oscillatory behaviour and that all of the functions diverge in the limit x→ 0.

αmk m

k 0 1 2 3
1 2.40 3.83 5.14 6.38
2 5.52 7.02 8.42 9.76
3 8.65 10.17 11.62 13.02
4 11.79 13.32 14.80 16.22
5 14.93 16.47 17.96 19.41

α′mk m

k 0 1 2 3
1 0 1.84 3.05 4.20
2 3.83 5.33 6.71 8.02
3 7.02 8.54 9.97 11.36
4 10.17 11.71 13.17 14.59
5 13.32 14.86 16.35 17.79

Table 5.1 Tables containing the first five zeros of the first four Bessel functions and their derivatives,
i.e., αmk and α′mk, respectively. The values have been given to a precision of two decimals but are
generally transcendental. Note that zero is sometimes omitted as α′01 and all of the α′0k are then
moved up one step in the table. We have chosen to use this convention as J0(0) is non-zero, implying
that J0(α′01x) is a non-trivial solution to Bessel’s differential equation with m = 0, i.e., the constant
solution, for the cases where it is relevant. This will save some amount of bookkeeping in those
problems, but the convention should be kept in mind when consulting any table of Bessel function
zeros. For the Bessel functions with m > 1, the derivative in x = 0 is also equal to zero. However,
we do not need to include zero as α′m1 as the functions Jm(x) are also equal to zero in x = 0 and
therefore Jm(0x) would correspond to a trivial solution.
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for all m < n.

Example 5.27 Consider the situation where we are looking for eigenfunctions f of the
Laplace operator in two dimensions that are rotationally symmetric, i.e., functions of the
radial coordinate ρ only, in the region ρ ≤ R and fulfil the homogeneous Dirichlet boundary
condition f(R) = 0. In order to be an eigenfunction of the Laplace operator, f must satisfy
the equation

−∇2f = −1

ρ
∂ρρ∂ρf = λf, (5.153)

i.e., Bessel’s differential equation with k = 0, and therefore be of the form f(ρ) =
AJ0(

√
λρ) +BY0(

√
λρ). By the regularity condition f(0) <∞ and the fact that the Bessel

functions of the second kind are singular at ρ = 0, we must have B = 0. The boundary
condition at ρ = R now requires that

AJ0(
√
λR) = 0. (5.154)

For non-trivial solutions A 6= 0, this implies that λ = α2
0k/R

2, giving a countable set of
eigenfunctions

fk(ρ) = J0(α0kρ/R) (5.155)

that form a complete basis for the space of rotationally symmetric functions satisfying the
homogeneous boundary condition.

A large number of useful integral and derivative relations of the Bessel functions may be
derived from Eq. (5.140). Some of these are listed in Appendix A.3.2 and their derivation is
left as problems at the end of this chapter (see Problems 5.34 and 5.35). For our purposes,
the most important relation is the integral relation∫ 1

0

xJm(αmkx)Jm(αm`x)dx =
δk`
2
J ′m(αmk)2 =

δk`
2
Jm+1(αmk)2, (5.156)

which is related to the orthogonality and normalisation of the different eigenfunctions of
Bessel’s differential equation.

Returning to the problem of finding eigenfunctions of the two-dimensional Laplace oper-
ator, having found the eigenfunctions of Bessel’s differential equation in terms of the Bessel
functions, the two-dimensional eigenfunctions will be of the form

fkm(ρ, φ) =
[
AmkJm(

√
λmkρ) +BmkYm(

√
λmkρ)

]
Φm(φ), (5.157)

where Φm(φ) is given by Eq. (5.128) and the relations between Amk and Bmk as well
as the possible values of λmk are governed by the radial boundary conditions. Due to the
orthogonality relations for each of the individual one-dimensional Sturm–Liouville problems,
these functions will be orthogonal under the inner product

〈f, g〉 =

∫
D

f(ρ, φ)g(ρ, φ)dA =

∫
D

f(ρ, φ)g(ρ, φ)ρ dρ dφ, (5.158)

where D is the domain of the eigenfunctions.



Function Spaces � 297

m

0

1

2

3

k1

2

3

Figure 5.9 The shape of the first few eigenfunctions fcmk(ρ, φ) = Jm(αmkρ/R) cos(mφ) for m =
0, 1, 2 and 3 of the Laplace operator on a disc ρ ≤ R with the Dirichlet boundary condition
fmk(R,φ) = 0.

Example 5.28 A commonly encountered problem that will involve expansion in Bessel
functions is that of finding the eigenfunctions of the Laplace operator on a disc of radius
R with homogeneous Dirichlet boundary conditions. We have already concluded that these
functions must be of the form given in Eq. (5.157) and since the domain is the full disc, we
find that

Φm(φ) = Cme
imφ +Dme

−imφ. (5.159)

Since ρ = 0 is part of our domain, we must also have all Bmk = 0 in order for our eigen-
functions to fulfil the criterion of being regular at the origin. This leaves us with the eigen-
functions

fmk(ρ, φ) = Jm(
√
λmkρ)(Cmke

imφ +Dmke
−imφ), (5.160)

where the constant Amk in front of the Bessel function has been absorbed in Cmk and Dmk,
respectively. We now require that the boundary condition f(R,φ) = 0 is satisfied and that
the solution is non-trivial, leading to

Jm(
√
λmkR) = 0 =⇒ λmk =

α2
mk

R2
. (5.161)

The resulting functions fmk are degenerate with two solutions for each fixed m and k, except
for when m = 0, corresponding to different choices of Cmk and Dmk. If we wish to have
explicitly real eigenfunctions, we may choose the functions

f cmk(ρ, φ) = Jm(αmkρ/R) cos(mφ) and fsmk(ρ, φ) = Jm(αmkρ/R) sin(mφ) (5.162)

rather than those using the exponentials e±imφ. Some of these functions are illustrated in
Fig. 5.9.
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Figure 5.10 The first four modified Bessel functions of the first kind Im(x) for integer m. Like the
Bessel functions of the first kind Jm, the modified Bessel functions of the first kind are finite at
x = 0. However, they grow exponentially as x→∞ and do not have any zeros.

5.5.1.2 Modified Bessel functions

At times, we will encounter Bessel’s modified differential equation

−1

ρ
∂ρρ∂ρf +

ν2

ρ2
f = −f ′′ − 1

ρ
f ′ +

ν2

ρ2
f = −λf, (5.163)

with λ being a fixed positive number. The difference from Bessel’s differential equation is
the sign of λ and the modified equation will appear mainly when we have inhomogeneous
boundary conditions in the radial direction as a result of separating out other coordinates
from the problem. Formally, the equation will be satisfied by functions of the form

f(ρ) = AJν(i
√
λρ) +BYν(i

√
λρ). (5.164)

The functions Jν(ix) and Yν(ix) will generally be complex valued, but may be turned into
real functions by multiplication with i−ν . It is therefore convenient to introduce the modified
Bessel functions of the first and second kind according to

Iν(x) = i−νJν(ix) and Kν(x) =
π

2

I−ν(x)− Iν(x)

sin(πν)
, (5.165)

respectively. For integer m, Km is defined by the limit ν → m as was the case for the Bessel
functions of the second kind. Like the Bessel functions of the second kind, the modified
Bessel functions of the second kind diverge when the argument goes to zero. The first few
modified Bessel functions of the first and second kind for integer values of ν are shown in
Figs. 5.10 and 5.11, respectively.

The modified Bessel functions will play the same role in polar and cylinder coordinates
as the hyperbolic sine and cosine (alternatively the exponential functions) play in Cartesian
coordinate systems and they do share some characteristics with them. For example, in
Cartesian coordinates, we find that

−∂2
x sinh(x) = − sinh(x), (5.166a)
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Figure 5.11 The first four modified Bessel functions of the second kind Km(x) for integer m. Like
the Bessel functions of the second kind Ym, the modified Bessel functions of the second kind diverge
at x = 0. However, they decrease exponentially as x→∞ and do not have any zeros.

while in polar coordinates (
−1

ρ
∂ρρ∂ρ −

m2

ρ2

)
Im(x) = −Im(x). (5.166b)

In both cases, the differential operator on the left-hand side is the differential operator
resulting from separating out other coordinates from the Laplace operator and rather than
having a positive eigenvalue, these functions therefore have a negative eigenvalue and grow
exponentially as the argument x→∞.

Example 5.29 The modified Bessel functions will appear in situations when we are solving
Laplace’s equation in cylinder coordinates. Consider the situation where we wish to compute
the electric potential inside a cylinder of radius R and height h where the cylindrical surface
is being kept at a potential

(BC) : V (R, z) = V0
z

h

(
1− z

h

)
(5.167a)

while the end caps are grounded

(BC) : V (ρ, 0) = V (ρ, h) = 0. (5.167b)

Assuming there are no charges inside the cylinder, the potential inside the cylinder satisfies
Laplace’s equation

(PDE) : ∇2V = 0. (5.168)

Since the problem is rotationally symmetric, the potential will be a function of the coor-
dinates ρ and z only. Separating out the z coordinate and expanding in the eigenfunctions
sin(knz) of −∂2

z , we find that

V (ρ, z) =

∞∑
n=1

fn(ρ) sin(knz), (5.169)
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where kn = πn/h. Insertion into Laplace’s equation yields

∞∑
n=1

(
1

ρ
∂ρρ∂ρfn(ρ)− k2

nfn(ρ)

)
︸ ︷︷ ︸

=0

sin(knz) = 0. (5.170)

As earlier, the term multiplying the sine functions in each term of the sum must be equal to
zero due to the sine functions being linearly independent and thus each fn satisfies Bessel’s
modified differential equation with m = 0 and λ = k2

n. We conclude that

fn(ρ) = AnI0(knρ) +BnK0(knρ). (5.171)

Requiring that the potential is finite at ρ = 0, we must have Bn = 0 as K0 diverges in
the limit ρ → 0. The constants An can be fixed by considering the boundary condition at
ρ = R, which may be expressed as

V (R, z) =

∞∑
n=1

AnI0(knR) sin(knz) = V0
z

h

(
1− z

h

)
=

∞∑
n=1

4V0

π3n3
[1− (−1)n] sin(knz), (5.172)

where we have used the results of Example 5.19 to expand the boundary condition in terms
of sine functions. Solving for An now yields

An =
4V0

π3n3I0(knR)
[1− (−1)n] (5.173a)

and consequently

V (ρ, z) =

∞∑
n=1

4V0

π3n3
[1− (−1)n]

I0(knρ)

I0(knR)
sin(knz). (5.173b)

5.5.2 Spherical coordinates
Just as we have considered regions where the boundaries are coordinate surfaces in polar or
cylinder coordinates, we may be interested in doing the same for regions in three dimensions
whose boundaries are coordinate surfaces in spherical coordinates. In particular, this applies
to any rotationally symmetric regions such as the interior of a sphere or the region between
two concentric spherical shells. As a by-product, we are going to develop a basis for functions
on a sphere, much like the functions eimφ form a basis for functions on a circle, i.e., 2π
periodic functions. Let us start by recalling the form of the Laplace operator in spherical
coordinates

∇2 =
1

r2
∂rr

2∂r +
1

r2

(
1

sin(θ)
∂θ sin(θ)∂θ +

1

sin2(θ)
∂2
ϕ

)
=

1

r2
∂rr

2∂r −
1

r2
Λ̂, (5.174)
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where

Λ̂ = − 1

sin(θ)
∂θ sin(θ)∂θ −

1

sin2(θ)
∂2
ϕ (5.175)

is a differential operator acting only on the angular coordinates θ and ϕ. In particular,
we note that this expression contains Sturm–Liouville operators in all of the different co-
ordinates and is well suited for variable separation. Starting by separating the coordinate
ϕ, the operator −∂2

ϕ is equivalent to the operator −∂2
φ encountered when we considered

polar coordinates. In the same fashion as for polar coordinates, we therefore obtain the
eigenfunctions

Φm(ϕ) = Ame
imϕ +Bme

−imϕ = Cm cos(mϕ) +Dm sin(mϕ). (5.176)

Again, we underline the fact that m will be an integer whenever we consider a domain that
is rotationally symmetric around the x3-axis, but in general may take on different values
if this is not the case. For the purposes of this section, we will assume that the domain
does display this rotational symmetry, but this subtlety should be kept in mind in other
situations (see, e.g., Problem 5.50).

5.5.2.1 Legendre polynomials and associated Legendre functions

Solving the periodic Sturm–Liouville problem in the ϕ coordinate and assuming the eigen-
value of Φm with respect to the operator −∂2

ϕ to be m2, the separated eigenfunctions of
−∇2 take the form

fm(r, θ, φ) = Rm(r)Θm(θ)Φm(ϕ) (5.177)

resulting in the differential equation

− 1

r2
∂rr

2∂rRmΘm +
1

r2
Λ̂mRmΘm = λRmΘm, (5.178)

where

Λ̂m = − 1

sin(θ)
∂θ sin(θ)∂θ +

m2

sin2(θ)
(5.179)

is a Sturm–Liouville operator in the θ direction and we therefore look for its eigenfunctions
and eigenvalues.

Let us start our search for the eigenfunctions of Λ̂m by making the transformation of
variables

ξ = cos(θ) =⇒ ∂θ =
∂ξ

∂θ
∂ξ = − sin(θ)∂ξ. (5.180)

Upon performing this transformation, the eigenfunction equation for Λ̂m turns into

Λ̂m = −∂ξ(1− ξ2)∂ξPm(ξ) +
m2

1− ξ2
Pm(ξ) = µmPm(ξ), (5.181)

where Θm(θ) = Pm(cos(θ)) = Pm(ξ) and µm is the sought eigenvalue. This differential
equation is known as the general Legendre equation, with the special case of m = 0 being
referred to as Legendre’s differential equation. We shall begin by dealing with this special
case and finding the eigenfunctions of Λ̂0 and later generalising the solutions to arbitrary
m. For the first part, we shall suppress the use of the index m as it is implicitly set to zero.

If we are studying the Laplace operator in the full range of θ, i.e., 0 to π, the variable ξ
ranges from −1 to 1 and the Sturm–Liouville operator appearing in Legendre’s differential
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equation is singular at both ends, indicating that we are dealing with a singular Sturm–
Liouville problem and looking for solutions that are finite at ξ = ±1 as our only boundary
conditions. Looking at Legendre’s differential equation

−∂ξ(1− ξ2)∂ξP (ξ) = µP (ξ), (5.182)

we may expand P (xi) as a Maclaurin series

P (ξ) =
∞∑
n=0

pnξ
n. (5.183)

Inserting this into the differential equation results in the recursion relation

pn+2 =

(
n

n+ 2
− µ

(n+ 2)(n+ 1)

)
pn, (5.184)

implying that the entire series is defined by fixing µ, p0, and p1. As n→∞, p2n ∼ 1/n, and
thus the series

P (1) =

∞∑
n=0

pn (5.185)

diverges unless it terminates at a finite n = ` < ∞. If the series diverges, then P (ξ) is
singular in ξ = 1, but we are explicitly looking for solutions that are not singular in ξ = ±1.
The conclusion from this is that the series must terminate and that P (ξ) is therefore a
polynomial of some degree `. In order for p`+2 = 0 to hold, we find that

`− µ

`+ 1
= 0 =⇒ µ = `(`+ 1), (5.186)

providing us with the corresponding eigenvalues µ. Since the recursion relations for odd
and even n are independent and Eq. (5.186) can only hold for n = `, it follows that for
odd ` all pn with even n are equal to zero and vice versa. Consequently, the polynomials
are all either odd or even functions of ξ, depending on their degree. The polynomial of this
form of degree ` is denoted by P`(ξ) and is the Legendre polynomial of degree `. As usual,
the eigenfunctions are defined only up to a constant and the customary normalisation of
the Legendre polynomials is to require that P`(1) = 1. The polynomial coefficients may be
found through the recursion relation for any given ` or may be computed through Rodrigues’
formula

P`(ξ) =
1

2``!

d`

dξ`
(ξ2 − 1)`. (5.187)

Clearly, this is a polynomial of degree ` and it is easily verified by insertion into Legendre’s
differential equation that it is an eigenfunction with the appropriate eigenvalue. The Leg-
endre polynomials up to a degree of ` = 5 are given in Table 5.2 and those up to a degree
` = 4 are shown in Fig. 5.12.

Being a second order differential equation, there should exist a second linearly indepen-
dent solution Q`(ξ) to Legendre’s differential equation for every fixed eigenvalue and the
general solution should be of the form

P (ξ) = AP`(ξ) +BQ`(ξ). (5.188)

However, the solutions Q`(ξ) are inevitably singular and since we are searching for non-
singular solutions, we will largely disregard them.
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` P`(ξ) `(`+ 1)

0 1 0
1 ξ 2
2 1

2 (3ξ2 − 1) 6
3 1

2 (5ξ3 − 3ξ) 12
4 1

8 (35ξ4 − 30ξ2 + 3) 20
5 1

8 (63ξ5 − 70ξ3 + 15ξ) 30

Table 5.2 The first six Legendre polynomials P`(ξ) along with the corresponding eigenvalues `(`+1)
of Legendre’s differential equation.

–1.0 –0.5 0.0 0.5 1.0
–1.0

–0.5

0.0

0.5

1.0

ξ

P0(ξ)
P1(ξ)
P2(ξ)
P3(ξ)
P4(ξ)

Figure 5.12 The first five Legendre polynomials P`(ξ). Note how all of the Legendre polynomials
satisfy the property P`(−ξ) = (−1)`P`(ξ).
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As the Legendre polynomials are eigenfunctions with different eigenvalues of a Sturm–
Liouville operator whose weight function is one, they must be orthogonal under the inner
product

〈f, g〉 =

∫ 1

−1

f(ξ)g(ξ)dξ (5.189a)

or, in terms of the original coordinate θ,

〈f, g〉 =

∫ π

0

f(cos(θ))g(cos(θ)) sin(θ)dθ, (5.189b)

which may be found by performing the change of variables in reverse. In general, the or-
thogonality relation between the Legendre polynomials can be summarised as

〈P`, Pk〉 =

∫ 1

−1

P`(ξ)Pk(ξ)dξ =
2

2`+ 1
δ`k. (5.190)

Introducing the associated Legendre functions

Pm` (ξ) = (−1)m(1− ξ2)m/2
dm

dξm
P`(ξ), (5.191)

applying the Legendre differential operator ∂ξ(1 − ξ2)∂ξ, and using the fact that P`(ξ)
satisfies Legendre’s differential equation results in

∂ξ(1− ξ2)∂ξP
m
` (ξ) =

m2

1− ξ2
Pm` (ξ)− `(`+ 1)Pm` (ξ). (5.192)

In other words, we find that the associated Legendre functions are solutions to the general
Legendre equation with non-zero m. Note that the definition of the associated Legendre
functions involve a derivative of order m of the Legendre polynomial P`(ξ), which is of
order `. In order to have a non-trivial solution to the general Legendre equation, we must
therefore require that m ≤ ` and the set of eigenfunctions of the general Legendre equation
is the set of associated Legendre functions Pm` (ξ) with ` ≥ m and eigenvalue `(` + 1). As
the general Legendre equation forms a Sturm–Liouville problem of its own, these functions,
for a fixed m, also constitute a complete basis of functions on the interval −1 to 1, just as
the Legendre polynomials. The corresponding orthogonality relation is

〈Pm` , Pmk 〉 =

∫ 1

−1

Pm` (ξ)Pmk (ξ)dξ =
2(`+m)!

(2`+ 1)(`−m)!
δ`k. (5.193)

Note that the m in this inner product is the same for both associated Legendre functions.
The associated Legendre functions for different m are solutions to different Sturm–Liouville
problems and therefore not necessarily orthogonal with respect to this inner product.

Example 5.30 Consider the electric potential V (r, θ) between two concentric shells with
radii r1 and r2, respectively, where r1 < r2. If there is no charge density in the region
r1 < r < r2, then the potential satisfies Laplace’s equation

(PDE) : ∇2V (r, θ) = 0 (5.194a)
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r2

r1

∇2V = 0

V = 0

V = V0 cos(θ)

Figure 5.13 A system with two concentric shells with given electrical potentials. The figure shows
a section through the center of the shells with the inner shell having a radius r1 and the outer shell
a radius r2. The potential in the region between the spheres satisfies Poisson’s equation.

in this region. The inner shell is held at a potential

(BC) : V (r1, θ) = V0 cos(θ), (5.194b)

while the outer is kept grounded

(BC) : V (r2, θ) = 0 (5.194c)

(see Fig. 5.13). Since the boundary conditions are invariant under rotations around the
x3-axis, the solution will not depend on the spherical coordinate ϕ. Expanding the solution
for fixed r in the Legendre polynomials P`(cos(θ)), we obtain

V (r, θ) =
∞∑
`=0

R`(r)P`(cos(θ)) (5.195)

and insertion into Laplace’s equation yields

∇2V (r, θ) =
∞∑
`=0

[
R′′` (r) +

1

r
R′`(r)−

`(`+ 1)

r2
R`(r)

]
︸ ︷︷ ︸

=0

P`(cos(θ)) = 0, (5.196)

where the factor in front of the Legendre polynomial in each term must be equal to zero due
to the linear independence of the Legendre polynomials. The resulting differential equation

R′′` (r) +
2

r
R′`(r)−

`(`+ 1)

r2
R`(r) = 0 (5.197)

is of the Cauchy–Euler type and can be solved by the ansatz R`(r) = rk, giving

k(k − 1) + 2k − `(`+ 1) = 0 =⇒ k = ` or k = −(`+ 1). (5.198)
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The general solution is therefore of the form

R`(r) = A`r
` +

B`
r`+1

. (5.199)

The constants A` and B` may be found by applying the boundary conditions. First of all,
the outer boundary condition implies

R`(r2) = 0 =⇒ B` = −A`r2`+1
2 . (5.200)

The inner boundary conditions is of the form

V (R1, θ) = V0P1(cos(θ)) =⇒ R`(r1) =

{
V0, (` = 1)

0, (` 6= 1)
, (5.201)

where the inference is made by noting that the Legendre polynomials are linearly inde-
pendent and identifying the terms in the series solution with the boundary condition. This
implies A` = 0 for all ` 6= 1 and

A1 =
V0r

2
1

r3
1 − r3

2

=⇒ R1(r) =
V0r

2
1

r2

r3
2 − r3

r3
2 − r3

1

. (5.202)

The full solution for the potential between the spherical shells is therefore

V (r, θ) =
V0r

2
1

r2

r3
2 − r3

r3
2 − r3

1

cos(θ). (5.203)

Combining Rodrigues’ formula with the definition of the associated Legendre functions,
we find that

Pm` (ξ) =
(−1)m

2``!
(1− ξ2)m/2

d`+m

dξ`+m
(ξ2 − 1)`. (5.204)

This also allows the extension of associated Legendre functions to negative values of m as
long as |m| ≤ `, which is the range for which the associated Legendre functions exist. This
definition results in

P−m` (ξ) = (−1)m
(`−m)!

(`+m)!
Pm` (ξ). (5.205)

Naturally, this means that Pm` and P−m` are linearly dependent, so we can choose to include
either, but not both or none, in the complete bases and they only differ in the normalisation.

5.5.2.2 Spherical harmonics

We may combine our solutions for the Sturm–Liouville operators in the θ and ϕ directions
to construct a set of eigenfunctions of the operator Λ̂ that form a complete basis for the
functions on the unit sphere, i.e., functions f(θ, ϕ). For a fixed θ, we expand the function
f in terms of the functions eimϕ and obtain

f(θ, ϕ) =

∞∑
m=−∞

Θm(θ)eimϕ. (5.206a)
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The functions Θm(θ) may further be expanded in terms of the complete basis of associated
Legendre functions Pm` (cos(θ)) to yield

f(θ, ϕ) =
∞∑

m=−∞

∑
`≥|m|

A`mP
m
` (cos(θ))eimϕ =

∞∑
`=0

∑̀
m=−`

A`mP
m
` (cos(θ))eimϕ, (5.206b)

where all we have done in the second step is to change the order of the sums. The set
of functions Pm` (cos(θ))eimϕ thus forms a complete basis for the functions on the sphere
which is known as the spherical harmonics Y m` . We may choose to normalise this basis as
we see fit and this normalisation tends to differ between different disciplines. We will use
the normalisation

Y m` (θ, ϕ) = (−1)m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm` (cos(θ))eimϕ, (5.207)

which is commonly used in quantum physics, but the normalisation should be checked
whenever it is of importance for an application.

All of the spherical harmonics are orthogonal under the inner product

〈f, g〉 =

∫
S2

f(θ, ϕ)∗g(θ, ϕ)dA =

∫ 2π

ϕ=0

∫ π

θ=0

f(θ, ϕ)∗g(θ, ϕ) sin(θ) dθ dϕ, (5.208)

where S2 denotes the sphere, which is the domain of the functions. The orthogonality of
spherical harmonics with different m follows from the orthogonality of the eigenfunctions
eimϕ, while the orthogonality of spherical harmonics with the same m, but different `, follows
from the orthogonality of the associated Legendre functions. With our chosen normalisation,
the spherical harmonics are orthonormal〈

Y m` , Y m
′

`′

〉
= δ``′δmm′ . (5.209)

By design, the spherical harmonics are also the eigenfunctions of the operator Λ̂ and we
find that

Λ̂Y m` (θ, ϕ) = `(`+ 1)Y m` (θ, ϕ). (5.210)

Since the eigenvalue does not depend on m and −` ≤ m ≤ `, there are 2` + 1 different
spherical harmonics with eigenvalue `(`+1), i.e., all of the eigenvalues except zero correspond
to more than one eigenfunction. A selection of different spherical harmonics are shown in
Fig. 5.14. The functions with different values of ` in an expansion into spherical harmonics
are referred to as different multipoles, e.g., the ` = 0 spherical harmonic leads to a monopole,
the ` = 1 solutions dipoles, the ` = 2 solutions quadrupoles, etc. An expansion in terms of
the spherical harmonics is often referred to as a multipole expansion.

Example 5.31 As they form a complete basis for functions on a sphere, any function on
a sphere may be expressed as a series expansion in terms of the spherical harmonics. An
example of such an expansion is given in Fig. 5.15, where we show the function r(θ, ϕ) given
by the sum

r(θ, ϕ) =

`max∑
`=0

∑̀
m=−`

C`mY
m
` (θ, ϕ) (5.211)
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` = 0

` = 1

` = 2

m = 0

m = 1

m = 2

Figure 5.14 The spherical harmonics with ` ≤ 2. For each spherical harmonic, we show the absolute
value of the real part as the distance from the center. The real part is positive where the figure is
dark and negative where it is light. Note how the angles between the maxima of these spherical
harmonics are 2π/`.
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`max = 10 `max = 20

`max = 40 `max = 80

Figure 5.15 Earth’s topography as given by its series expansion into spherical harmonics. Each
successive image includes all terms with ` ≤ `max. As more terms are added to the series, the
series expansion becomes more and more accurate. Note that the variations have been severely
exaggerated. Data source: C. Hirt, M. Kuhn, W.E. Featherstone, F. Göttl, Topographic/isostatic
evaluation of new generation GOCE gravity field models, Journal of Geophysical Research – Solid
Earth 117 (2012) B05407.

for different values of `max as a function on the sphere. The constants C`m are taken to be
the expansion coefficients of the Earth’s topography. As seen in the figure, including only
the terms corresponding to lower values of ` results in a function that gives a very rough
idea about the main features. The sharper features in the function are reproduced once
terms with higher ` are included as well.

5.5.2.3 Spherical Bessel functions

Continuing the search for separated eigenfunctions of the Laplace operator in spherical
coordinates, we may now write such a function as

f(r, θ, ϕ) = R(r)Y m` (θ, ϕ). (5.212)

Inserting this into the eigenfunction equation and using the fact that Y m` is an eigenfunction

of Λ̂, we obtain

− 1

r2
∂rr

2∂rR(r) +
`(`+ 1)

r2
R(r) = λR(r). (5.213)

This equation is the spherical coordinate equivalent of Bessel’s differential equation and with
appropriate homogeneous boundary conditions it will become a Sturm–Liouville problem
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that is regular if r = 0 and r →∞ are not part of the domain and singular otherwise. Much
like Bessel’s differential equation, there will exist two linearly independent solutions, one of
which is singular at r = 0. We refer to these as spherical Bessel functions of the first and
second kind and denote them by j`(r) and y`(r), respectively.

There are a number of advantages of rewriting Eq. (5.213) using the substitution R(r) =
fk(r)r−k, which leads to

−f ′′k (r)− 2(1− k)

r
f ′k(r) +

`(`+ 1)− k(k − 1)

r2
fk(r) = λfk(r). (5.214)

There are two important choices of the constant k, the first of those is k = 1/2, which leads
to 2(1− k) = 1 and consequently

−f ′′1
2
(r)− 1

r
f ′1

2
(r) +

(`+ 1/2)2

r2
f 1

2
(r) = λf 1

2
(r), (5.215)

i.e., the function f 1
2
(r) satisfies Bessel’s differential equation with ν = `+1/2 and we already

know the independent solutions to be the Bessel functions J`+ 1
2
(
√
λr) and Y`+ 1

2
(
√
λr). As

per usual, the normalisation of the eigenfunctions needs to be chosen and the conventional
choice is

j`(x) =

√
π

2x
J`+ 1

2
(x) and y`(x) =

√
π

2x
Y`+ 1

2
(x). (5.216)

The second important choice of k is k = 1, which leads to the vanishing of the term with
the first derivative

−f ′′1 (r) +
`(`+ 1)

r2
f1(r) = λf1(r). (5.217)

In particular, this implies that the equation for ` = 0 reduces to f ′′(r) + λf(r) = 0, which
we know to have a solution in terms of sines and cosines. Consequently, we find that

j0(x) =
sin(x)

x
and y0(x) = −cos(x)

x
, (5.218)

where the normalisation is chosen to be compatible with Eq. (5.216). For general `,
Eq. (5.217) can be solved by

j`(x) = (−x)`
(

1

x

d

dx

)`
j0(x) and y`(x) = (−x)`

(
1

x

d

dx

)`
y0(x). (5.219)

Performing these derivatives for the first few spherical Bessel functions of the first kind, we
find that

j0(x) =
sin(x)

x
, (5.220a)

j1(x) =
sin(x)

x2
− cos(x)

x
, (5.220b)

j2(x) =

(
3

x2
− 1

)
sin(x)

x
− 3 cos(x)

x
, (5.220c)

j3(x) =

(
15

x3
− 6

x

)
sin(x)

x
−
(

15

x2
− 1

)
cos(x)

x
. (5.220d)

Similar expressions may be derived for the spherical Bessel functions of the second kind in
the same fashion. The spherical Bessel functions of the first and second kind for ` ≤ 3 are
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β`k `
k 0 1 2 3
1 π 4.49 5.76 6.99
2 2π 7.73 9.10 10.42
3 3π 10.90 12.32 13.70
4 4π 14.07 15.51 16.92
5 5π 17.22 18.69 20.12

β′`k `
k 0 1 2 3
1 0 2.08 3.34 4.51
2 4.49 5.94 7.29 8.58
3 7.73 9.21 10.61 11.97
4 10.90 12.40 13.85 15.24
5 14.07 15.58 17.04 18.47

Table 5.3 Tables containing the first five zeros of the first four spherical Bessel functions of the
first kind j` and their derivatives, i.e., β`k and β′`k, respectively. The values have been given to
a precision of two decimals but are generally transcendental. As for the Bessel functions, zero is
sometimes omitted as β′01. Note that β1k = β′0(k+1) as j′0(x) = −j1(x).

0 2 4 6 8 10 12 14
–0.5

0.0

0.5

1.0

x

j0(x)

j1(x)

j2(x)

j3(x)

Figure 5.16 The first four spherical Bessel functions of the first kind j`(x). Just as for the Bessel
functions of the first kind, we note an oscillatory behaviour and that only j0 is non-zero at x = 0.

shown in Figs. 5.16 and 5.17, respectively. Like the Bessel functions, the spherical Bessel
functions and their derivatives have an infinite number of zeros. We will denote the kth zero
of j` by β`k and the kth zero of its derivative by β′`k. From the form of the spherical Bessel
function j0, it is evident that β0k = πk. The values of β`k for general ` will not be as simple
to express, but may be computed numerically or found in tables such as Table 5.3.

Being solutions to a Sturm–Liouville problem, the eigenfunctions that are expressed in
terms of j` and y`, properly adapted to the boundary conditions, will be orthogonal under
the inner product

〈f, g〉 =

∫ b

a

f(r)g(r)r2dr, (5.221)

since the weight function of the Sturm–Liouville operator is w(r) = r2. In particular, the
spherical Bessel functions satisfy the relation∫ 1

0

j`(β`kx)j`(β`k′x)x2dx =
δkk′

2
j`+1(β`k)2, (5.222)

see Problem 5.45.
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y0(x)
y1(x)
y2(x)
y3(x)

0 2 4 6 8 10 12 14
–1.0

–0.5

0.0

0.5

x

Figure 5.17 The first four spherical Bessel functions of the second kind y`(x). Just as for the Bessel
functions of the second kind, the functions show an oscillatory behaviour and all of the functions
are singular at x = 0.

Example 5.32 As an exercise, let us expand the function f(r) = R−r in the eigenfunctions
of the Laplace operator in the region r ≤ R that satisfy homogeneous Dirichlet boundary
conditions at r = R. These eigenfunctions will generally be of the form

uk(r) = Akj0(
√
λkr) +Bky0(

√
λkr), (5.223)

since the spherical symmetry implies that ` = 0, since Y 0
0 is the only spherical harmonic

that is constant and therefore symmetric under rotations. Regularity at r = 0 implies that
Bk = 0 and the homogeneous Dirichlet condition at r = R consequently results in

λk =

(
πk

R

)2

(5.224)

in order to have non-trivial solutions. The expansion in terms of the eigenfunctions
j0(πkr/R) is given by

f(r) =

∞∑
k=1

Akj0(πkr/R) =

∞∑
k=1

Ck
sin(πkr/R)

r
, (5.225)

where Ck = RAk/πk. Taking the inner product of f with sin(πk′r/R)/r now results in

1

2
Ck′ =

∞∑
k=1

∫ R

0

sin(πk′r/R) sin(πkr/R)dr

=

∫ R

0

(R− r) sin(πk′r/R)r dr =
2R3

π3k′3
[1− (−1)k

′
]. (5.226a)

Multiplying this equation by two, we find that

Ck =
4R3

π3k3
[1− (−1)k] (5.226b)
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and consequently

R− r =

∞∑
k=1

4R3

π3k3
[1− (−1)k]

sin(πkr/R)

r
=

∞∑
k=1

4R2

π2k2
[1− (−1)k]j0(πkr/R). (5.227)

It should be noted that, multiplying the entire expansion by r, this is actually the same
series expansion as that found in Example 5.19.

Wrapping up the problem of finding the eigenfunctions of the Laplace operator with
homogeneous boundary conditions on a spherical surface, the general eigenfunction will be
of the form

fn`m(r, θ, ϕ) = [A`nj`(
√
λ`nr) +B`ny`(

√
λ`nr)]Y

m
` (θ, ϕ). (5.228)

As always, the relation between the constants A`n and B`n must be determined through the
boundary conditions, with B`n = 0 due to the requirement of regularity if r = 0 is part of
the domain. In particular, if we are studying the domain r ≤ R with homogeneous Dirichlet
conditions, the eigenfunctions are given by

fn`m(r, θ, ϕ) = j`(β`nr/R)Y m` (θ, ϕ), (5.229)

with corresponding eigenvalues λ`n = β2
`n/R

2. Note that, since the eigenvalue does not
depend on m and −` ≤ m ≤ `, there will be 2` + 1 different eigenfunctions with the same
eigenvalue λ`n.

Regardless of the boundary conditions, the eigenfunctions of the form presented above
will be orthogonal under the inner product

〈f, g〉 =

∫ b

r=a

∫ π

θ=0

∫ 2π

ϕ=0

f(r, θ, ϕ)∗g(r, θ, ϕ)r2 sin(θ)dr dθ dϕ

=

∫
a≤r≤b

f(r, θ, ϕ)∗g(r, θ, ϕ)dV, (5.230)

where we have assumed the domain of the Sturm–Liouville problem to be 0 ≤ a < r < b
and dV is the regular three-dimensional volume element. The orthogonality of functions
with different ` or different m follows from the orthogonality of the spherical harmonics
under the angular integrals, while the orthogonality of functions with the same ` and m,
but different n, follows from the orthogonality relations for the spherical Bessel functions.

5.5.3 Hermite functions
The Laplace operator does not always appear on its own as a Sturm–Liouville operator. In
many cases that will be encountered in quantum mechanics, we will need to solve Sturm–
Liouville problems of the form

−ψ′′(x) + V (x)ψ(x) = 2Eψ(x), (5.231a)

where V (x) is a function describing the potential energy at position x, ψ(x) is the quantum
mechanical wave function, and E is an energy eigenvalue. While discussing the methodology
of solving partial differential equations by using series and transform solutions, we will not
consider problems from quantum mechanics, but as they will be fundamental when pursuing
further studies in physics, we will briefly discuss the special case V (x) = x2, corresponding
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to a quantum mechanical harmonic oscillator, for future reference. It should be noted that
performing dimensional analysis on the ensuing differential equation

−ψ′′(x) + x2ψ(x) = 2Eψ(x), (5.231b)

the coordinate x and the energy eigenvalue E are necessarily dimensionless. However, this
may be adapted to a physical situation by an appropriate scaling to a physical distance
along with the introduction of the appropriate conversion factors. We will not discuss these
here as we are mainly interested in the Sturm–Liouville problem itself.

The weight function of the Sturm–Liouville operator −∂2
x + x2 is equal to one and

consequently, the eigenfunctions will be orthogonal with respect to the inner product

〈ψ1, ψ2〉 =

∫ ∞
−∞

ψ1(x)∗ψ2(x)dx (5.232)

and we restrict the operator to the function space containing functions of finite norm, i.e.,
functions that are square integrable on the real line. The problem may be rewritten in a
different form by performing the substitution

ψ(x) = e−x
2/2H(x), (5.233a)

resulting in the Sturm–Liouville problem

−ex
2

∂xe
−x2

∂xH(x) + x2H(x) = (2E − 1)H(x), (5.233b)

which has the weight function w(x) = e−x
2

and whose eigenfunctions are orthogonal under
the inner product

〈f, g〉e−x2 =

∫ ∞
−∞

f(x)∗g(x)e−x
2

dx. (5.234)

The function space in question is the space of functions with finite norm under this inner
product. Note that we have here denoted the inner product with weight function w(x)
by 〈·, ·〉w(x) to separate it from the inner product with w(x) = 1. Applying the differential

operator of the Sturm–Liouville problem to H(x) results in the differential equation

−H ′′(x) + 2xH ′(x) = (2E − 1)H(x) = 2λH(x). (5.235)

This equation is known as the Hermite equation and the first thing to note is that, as the
left-hand side only contains derivatives of the function H(x), any constant will solve the
equation with λ = 0 and therefore E = 1/2. We can define the eigenfunction

H0(x) = 1. (5.236)

Defining the differential operator â+ on the function space by

â+f(x) = 2xf(x)− ∂xf(x) (5.237)

the Hermite equation may be written as

â+∂xH(x) = (2E − 1)H(x). (5.238)

and we find that, for any function f(x),

∂xâ+f(x) = 2f(x) + (2x− ∂x)∂xf(x) = 2f(x) + â+∂xf(x). (5.239)
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Figure 5.18 The first five Hermite polynomials Hn(x). Note that the Hermite polynomials of even
degree are even functions while those of odd degree are odd functions. The Hermite polynomials
form a complete basis for functions on the real line that are square integrable with the weight

function e−x
2

.

In particular, if Hn(x) is an eigenfunction with eigenvalue corresponding to E = En, using
f(x) = Hn(x) and acting on the equation with â+ leads to

â+∂xâ+Hn(x) = 2â+Hn(x) + â+â+∂xHn(x) = 2â+Hn(x) + (2En − 1)â+Hn(x)

= [2(En + 1)− 1]â+Hn(x). (5.240)

Consequently, we find that

Hn+1(x) ≡ â+Hn(x) = (2x− ∂x)Hn(x) (5.241)

is also an eigenfunction of â+∂x, but with an eigenvalue corresponding to E = En+1 =
En + 1. Applying the operator â+ to a known eigenfunction therefore results in a new
eigenfunction with the eigenvalue E increased by one and the operator is therefore called a
raising operator (also creation operator). Starting from H0(x) as defined above, recursion
results in

Hn(x) = ân+H0(x) = (2x− ∂x)n1. (5.242)

Since En+1 = En + 1 and E0 = 1/2, we find that the eigenvalue corresponding to Hn(x)
is En = n + 1/2. When acting on a polynomial of degree n, the multiplication by 2x will
raise the polynomial degree to n + 1 and the differentiation lowers the polynomial degree
to n − 1, overall resulting in an addition of two polynomials of degree n + 1 and n − 1,
respectively, which is a polynomial of degree n + 1. A direct implication of this is that
Hn(x) is a polynomial of degree n as H0 is a polynomial of degree zero, i.e., a constant.
These polynomials are known as the Hermite polynomials. It should also be noted that if
Hn(x) is an even function of x, then Hn+1(x) will be an odd function and vice versa. Since
H0(x) is an even function, all Hermite polynomials of even degree are even functions and all
Hermite polynomials of odd degree are odd functions. The five first Hermite polynomials are
shown in Fig. 5.18 and listed in Table 5.4. Together, the set of Hermite polynomials form
a complete basis of the function space which is the domain of the Sturm–Liouville operator
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n Hn(x) En

0 1 1/2
1 2x 3/2
2 4x2 − 2 5/2
3 8x3 − 12x 7/2
4 16x4 − 48x2 + 12 9/2

Table 5.4 The first four Hermite polynomials Hn(x) along with their corresponding eigenvalues
En = n+ 1/2.

in Eq. (5.233b), implying that any function f(x) with finite norm with respect to the inner
product in Eq. (5.234) may be written as a linear combination of Hermite polynomials

f(x) =
∞∑
n=0

AnHn(x). (5.243)

The normalisation of the Hermite polynomials is given by the inner product relation

〈Hn, Hm〉e−x2 =

∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx = 2nn!
√
πδnm, (5.244)

where the inner product is using the weight function w(x) = e−x
2

, as defined in Eq. (5.234).
For the original application we had in mind, the solution to the quantum mechanical

harmonic oscillator, see Eq. (5.231b), the eigenfunctions are given by

ψn(x) =
e−x

2/2√
2nn!
√
π
Hn(x), (5.245)

where the normalisation is chosen in such a way that they are orthonormal with respect to
the inner product

〈ψn, ψm〉 =

∫ ∞
−∞

ψn(x)ψm(x)dx = δnm. (5.246)

The functions ψn defined in this manner are called the Hermite functions and differ from
the Hermite polynomials only by the multiplication with the exponential factor e−x

2/2

and a normalisation constant. The Hermite functions form a complete basis for the square
integrable functions on the real line. The shapes of the first five Hermite functions are shown
in Fig. 5.19.

5.6 FUNCTION SPACES AS REPRESENTATIONS
In Chapter 4, we discussed the representation of groups on vector spaces. With this in mind,
we may realise that given any symmetry transformation of the domain of a given function
space will provide us with a natural representation of the symmetry group. In particular, if
the transformation T is a symmetry transformation that maps x→ x′ = Tx on the domain
D of a function f(x), where x is in general a set of N coordinates describing the domain,
then the mapping

f(x)→ (ρ(T )f)(x) = f(Tx) (5.247)

is a representation of the corresponding symmetry group as long as f(Tx) belongs to the
function space.
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Figure 5.19 The shapes of the first five Hermite functions ψn(x) obtained by multiplying the

Hermite polynomials by e−x
2/2 and normalising. The dashed lines represent the value zero.

Example 5.33 Consider the set of linear functions f(x) = ax + b on the real line. This
is a two-dimensional vector space where each vector may be specified by the coefficients a
and b, cf. Example 5.3 with N = 2. The real line has the reflection x → Rx = −x as a
symmetry and the corresponding representation is the map f → ρ(R)f such that

(ρ(R)f)(x) = f(−x) = −ax+ b ≡ a′x+ b′, (5.248)

where a′ and b′ are the coefficients of the function ρ(R)f . Since the vector space is two-
dimensional, we may write this down on matrix form by specifying the transformations of
the coefficients a and b using a 2× 2 matrix(

a
b

)
→
(
a′

b′

)
=

(
−1 0
0 1

)(
a
b

)
=

(
−a
b

)
. (5.249)

In general, function spaces may be infinite dimensional and therefore not correspond to
representations that may be written down in matrix form.

5.6.1 Reducibility
From Schur’s first lemma, we know that if an operator commutes with all elements of an
irrep, then that operator’s action on that irrep must be proportional to that of the identity
operator. If we have an operator L and a representation ρ on a vector space V such that

Lρ(g)~v = ρ(g)L~v (5.250)

for all elements g of the represented group and vectors ~v in V , then L is said to commute
with the representation ρ, which we may write as the commutator relation

Lρ(g)− ρ(g)L = [L, ρ(g)] = 0. (5.251)
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x2

p

Rθ

x1

Figure 5.20 Two-dimensional rotations Rθ can transform the point p into any point on the circle
that has the distance from p to the origin as its radius. The circle is the simplest subset of the
two-dimensional plane which is invariant under rotations.

By Schur’s first lemma, this implies that the representation is reducible if L has a spectrum
containing more than one eigenvalue and may at least be reduced into representations
composed of the subspaces spanned by eigenvectors that have the same eigenvalue.

Example 5.34 Looking at Example 5.33, we have a representation of the group containing
the identity transformation e and the reflection of the real line R on the vector space of
linear functions. The operator L = x∂x acts on this vector space as

(Lf)(x) = x∂x(ax+ b) = ax (5.252)

and we therefore find that

(Lρ(R)f)(x) = x∂x(−ax+ b) = −ax = ρ(R)ax = (ρ(R)Lf)(x) (5.253)

for all functions f(x) = ax+ b in the vector space. That L commutes with ρ(e) is trivial as
ρ(e) is the identity transformation and we therefore have [L, ρ(g)] = 0 for both g = e and
g = R. We can draw the conclusion that any eigenfunctions of L with different eigenvalues
will be in different irreps. In particular, from Eq. (5.252) it is clear that the eigenfunctions
of L are f(x) = b and f(x) = ax with eigenvalues zero and one, respectively. The two-
dimensional representation in terms of the linear functions is therefore reducible and, since
both eigenvalues are non-degenerate, the functions f(x) = 1 and f(x) = x each form one-
dimensional irreps.

With this in mind, we turn our focus to the rotation groups. We will start by examining
the rotation group in two dimensions and later make the same considerations for three di-
mensions. In order to study rotations in two dimensions, we ask ourselves what the simplest
rotationally symmetric set of points is. Since any given point may be transformed to any
other point at the same distance from the origin, see Fig. 5.20, the simplest possible such
set is a circle, which may be parametrised by an angle θ. The vector space of functions f
on a circle, i.e., functions that are 2π periodic, therefore provides a representation ρ of the
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group of two-dimensional rotations. The action of this representation is given by

(ρ(Rα)f)(θ) = f(θ + α), (5.254)

where Rα is a rotation by an angle α.
By studying the periodic Sturm–Liouville problem posed by the operator −∂2

θ on 2π
periodic functions (see Example 5.20), we found that this vector space has a complete basis
consisting of the functions

fn(θ) = einθ, (5.255)

where n may take any integer value. These functions are all eigenfunctions of −∂2
θ with

eigenvalue n2. For any function f on the circle and any rotation Rα, we find that

−∂2
θρ(Rα)f(θ) = −∂2

θf(θ + α) = −f ′′(θ + α), (5.256a)

which follows directly from the chain rule. At the same time, we also have

ρ(Rα)(−∂2
θ )f(θ) = −ρ(Rα)f ′′(θ) = −f ′′(θ + α) = −∂2

θρ(Rα)f(θ) (5.256b)

leading to
[−∂2

x, ρ(Rα)] = 0. (5.256c)

As a direct consequence, the representation is reducible to subspaces spanned by the eigen-
functions of −∂2

θ that have the same eigenvalues, i.e., to function spaces of the form

g(θ) = Aeinθ +Be−inθ = C sin(nθ) +D cos(nθ) (5.257)

for n ≥ 0 (the function spaces with n < 0 are equivalent to the corresponding function space
with positive n). These function spaces are two-dimensional representations of the rotation
group except for when n = 0, for which the representation is one-dimensional. The action
of the representation on the function g(θ) is given by

ρ(Rα)g(θ) = C sin(n(θ + α)) +D cos(n(θ + α))

= [C cos(nα)−D sin(nα)]︸ ︷︷ ︸
≡C′

sin(nθ) + [C sin(nα) +D cos(nα)]︸ ︷︷ ︸
≡D′

cos(nθ). (5.258)

Since the representation is two-dimensional, we may write down the transformation of the
components C and D in matrix form(

C ′

D′

)
= ρ(Rα)

(
C
D

)
=

(
cos(nα) − sin(nα)
sin(nα) cos(nα)

)(
C
D

)
. (5.259)

Comparing with the representations in Example 4.33, we therefore find that these are exactly
the representations defined in Eq. (4.97).

It should be pointed out that, although the representation of the rotation group on 2π
periodic functions is reducible in this way, the two-dimensional representations we have
found are not irreducible when considering them as complex representations. Indeed, we
find that due to

ρ(Rα)einθ = einαeinθ, (5.260)

both functions e±inθ in Eq. (5.257) span their own complex functional space that is in-
variant under rotations and the irreps are therefore all one-dimensional. Not only are these
representations irreps, but together they form the set of all irreps of SO(2).

With the above in mind, we turn to the representation of the rotation group SO(3).
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Just as the elements of the group SO(2) maps a point in two dimensions to points on a
circle, the transformations of SO(3) will map a point to points on a sphere. We therefore
look at the set of functions on the unit sphere, which we know may be expanded in terms
of the spherical harmonics Y m` . Furthermore, for any function f(θ, ϕ), it can be shown that

Λ̂ρ(Rα~n)f = ρ(Rα~n)Λ̂f =⇒ [Λ̂, ρ(Rα~n)] = 0, (5.261)

i.e., the representation of the rotation group on the function space of functions on a sphere
commutes with the angular part of the Laplace operator. Consequently, the representation
is reducible to representations consisting of the subspaces spanned by spherical harmonics
that have the same eigenvalue of Λ̂. As the spherical harmonic Y m` corresponds to the
eigenvalue `(` + 1), it is degenerate with all other spherical harmonics with the same `.
Furthermore, since −` ≤ m ≤ `, there are 2` + 1 such spherical harmonics in total. The
SO(3) representation of functions on a sphere therefore reduces to representations of all
odd dimensions.

Unlike in the SO(2) case, the SO(3) representations in terms of the eigenfunctions with
degenerate eigenvalues of Λ̂ are irreducible. They also form the set of all possible irreps of
SO(3). It will turn out that these irreps are also irreps of the unitary group SU(2) based
on its double cover mapping to SO(3), but in this case there will also be additional irreps.

5.7 DISTRIBUTION THEORY
Although we generally assume all functions in physics to be smooth, there will be several
situations that we may want to model using approximations that are not actually part of
the function space we should be considering. In these situations, we may start worrying
about whether or not our differential equations are applicable. The resolution of this issue
is to consider a generalisation of functions called distributions. The mathematical field of
distribution theory is very deep, but we will here restrict ourselves to providing the general
idea as well as what we need for our peace of mind when we apply differential equations to
non-differentiable functions later on.

Example 5.35 One of the more common examples of a distribution that we encounter in
physics is the delta distribution or, as we have previously known it, the delta function. It is
generally introduced as a function that is zero everywhere except for in x = 0, but has the
property ∫

δ(x− a)f(x)dx = f(a). (5.262)

Clearly, the delta distribution δ(x) is not really a function as it does not have a particular
value in x = 0, but instead hand-wavingly is said to be infinite.

The delta distribution is easily generalised to more than one dimension by making the
equivalent assumptions on the behaviour outside of the origin and the behaviour of the
integral. It may be used to model several different phenomena in physics, as discussed in
Chapter 3, but is perhaps most useful as a description of the density of a quantity that
is contained at a single point in space or occurs at a single instant in time, either by
approximation or by having it as an underlying assumption of the theory. For example, we
may approximate the concentration of a substance by a delta distribution if it is contained in
a volume so small that we may not resolve it in experiments or such that it is a good enough
approximation for the solution to the problem we are considering. On the other hand, having
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point charges is usually a basic assumption in classical electromagnetism when describing
electrons and protons. These point charges would then be described by delta distributions.

As should be evident from its defining properties, the delta distribution is not really a
function, and definitely not a differentiable one as would be required to directly apply some
differential equations, such as the diffusion equation, in which the second derivative of the
concentration appears.

Rather than referring to mappings from a space of functions to numbers as functions,
they are instead called to as functionals and the value that the function ϕ(x) maps to under
the functional f is usually denoted f [ϕ] with the square brackets to underline the fact that
it is a functional. With the delta distribution in mind, we define a distribution to be a linear
functional from a set of sufficiently nice functions to the real or complex numbers. In other
words, in order to be a distribution, the functional must satisfy the relations

f [aϕ1] = af [ϕ1], (5.263a)

f [ϕ1 + ϕ2] = f [ϕ1] + f [ϕ2], (5.263b)

where a is a number and ϕ1 and ϕ2 are functions. Naturally, a mathematician would likely
encourage us to define what “sufficiently nice” means, but there are many dedicated text-
books on the subject and we will not use many of the properties or go very deep into the
theory. Instead, for now we just assume that everything we do with these functions is well
defined.

Example 5.36 Since we have already concluded that the delta distribution is not a func-
tion, let us define the delta distribution at x = ` as the functional δ`[ϕ] for which

δ`[ϕ] = ϕ(`). (5.264)

This definition is a functional since it maps any function ϕ(x) to its value at x = ` and we
can also check that it is linear by considering

δ`[a1ϕ1 + a2ϕ2] = a1ϕ1(`) + a2ϕ2(`) = a1δ`[ϕ1] + a2δ`[ϕ2]. (5.265)

We shall soon see how this relates to the integral property that is usually quoted when
referring to the delta distribution as a delta function.

Any locally integrable function f(x), whether differentiable or not, defines a distribution
f [ϕ] according to

f [ϕ] =

∫
f(x)ϕ(x)dx, (5.266)

where the integration is taken over the full domain of the argument functions ϕ. This is
a functional since it will give a number for any ϕ and it is linear due to the possibility of
moving constants out of the integral and splitting an integral of a sum into the sum of the
integrals. It should be noted that a function does not define a unique functional. With the
definition of two functionals f1 and f2 being equivalent if

f1[ϕ] = f2[ϕ] (5.267)

for all ϕ, Eq. (5.266) will result in two functions defining the same functional if they only
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ϕn(x)

x

f(x)

1/n

x = a

Figure 5.21 We can recover the value at x = a of a function f(x) used to define a distribution by
letting it act on a set of functions ϕn with decreasing support of size 1/n around x = a and that
integrate to one. Note that the limit limn→∞ ϕn is not a function, but rather converges towards
the delta distribution.

differ in a countable set of points. As long as f is continuous at x, the value of f(x) can be
recovered from the functional by taking the limit

f(x) = lim
n→∞

f [ϕn], (5.268)

where ϕn(x) is a series of functions that integrate to one and are non-zero only in an interval
of size 1/n around x, see Fig. 5.21.

Example 5.37 This definition of a functional given a function largely agrees with the way
of thinking about the delta distribution as having the property

δa[ϕ] =

∫
δ(x− a)ϕ(x)dx = ϕ(a) (5.269)

and calling δ(x− a) a delta function in x = a. If we try to use the inversion

δ(x− a) = lim
n→∞

δa[ϕn] = lim
n→∞

ϕn(a) (5.270)

we will find that if a 6= x, there will exist a number N such that ϕn is zero at a and
consequently δ(x−a) = 0 if n > N . However, for x = a we cannot use this inversion, as the
limit will depend on the set of functions chosen.

5.7.1 Distribution derivatives
As promised in the beginning of this section, we want to introduce a notion of derivatives
of distributions in order to justify their use in different physics problems. Looking at the
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distribution defined by a differentiable function f(x), a natural expectation is that the
derivative of the corresponding distribution should be

f ′[ϕ] =

∫
f ′(x)ϕ(x)dx, (5.271)

i.e., the distribution defined by the derivative of f(x). Applying partial integration to this,
we find that

f ′[ϕ] = −
∫
f(x)ϕ′(x)dx = −f [ϕ′], (5.272)

where the vanishing of the boundary term can be attributed to the functions ϕ being suffi-
ciently nice. For distributions that are not defined in terms of a differentiable function, we
instead take the above equation as a definition of the distribution derivative. This definition
readily generalises to distributions in several dimensions and partial derivatives as

∂if [ϕ] = −f [∂iϕ]. (5.273)

It should be noted that since ∂if is a distribution, it may again be differentiated with respect
to any of the coordinates by applying the very same definition of the derivative again.

Example 5.38 Consider the Heaviside function θ(x) on the real numbers, which is defined
as

θ(x) =

{
1, (x ≥ 0)

0, (x < 0)
. (5.274)

The Heaviside distribution θ[ϕ] is therefore given by

θ[ϕ] =

∫ ∞
−∞

θ(x)ϕ(x)dx =

∫ ∞
0

ϕ(x)dx. (5.275)

By definition, the derivative of the Heaviside distribution is given by θ′[ϕ] = −θ[ϕ′] and we
therefore find

θ′[ϕ] = −
∫ ∞

0

ϕ′(x)dx = −[ϕ(x)]∞x=0 = ϕ(0), (5.276)

where one of the niceness properties of ϕ is assumed to be that it vanishes as |x| → ∞.
Since θ′[ϕ] = ϕ(0) for all ϕ, we conclude that

θ′[ϕ] = δ0[ϕ]. (5.277)

In other words, as distributions are considered equivalent whenever they act the same way
on the functions, the derivative of the Heaviside distribution is the delta distribution δ0. It
should be noted that away from x = 0, the Heaviside is a constant and therefore has zero as
the derivative, which is perfectly compatible with δ(x) being equal to zero for these values
of x.

Throughout this book, whenever there are derivatives acting on functions that are not
differentiable, the proper way of making sense of the derivatives is to consider the functions
as distributions instead. However, we will not mention this fact explicitly but rather use
any resulting properties freely. This will be particularly true in Chapters 6 and 7, where we
will expand distributions in terms of eigenfunctions of different Sturm–Liouville operators
and solve differential equations where the inhomogeneities may be approximated by delta
distributions.
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Example 5.39 As a small teaser, let us consider the expansion of the delta distribution
δL/2 in the eigenfunctions of the Sturm–Liouville operator −∂2

x on the interval 0 < x < L
with homogeneous Dirichlet boundary conditions. We know that the corresponding eigen-
functions are fn(x) = sin(knx), where kn = πn/L and we wish to perform an expansion

δ(x− L/2) =
∑
n

dn sin(knx). (5.278)

Solving for dn, we find that

dn =
2

L

∫ L

0

sin(knx)δ(x− L/2)dx =
2

L
sin

(
knL

2

)
=

2

L
sin
(πn

2

)
. (5.279)

Note that |dn| for odd n is always equal to one and therefore the convergence of the sum
in Eq. (5.278) may be put in question and that δ(x − L/2) is not normalisable since the
inner product of δ(x − L/2) with itself would formally give δ(0) as the result. Thus, like
δ(x − L/2), its series expansion may not be regarded as an element of the function space,
but must be regarded as a distribution.

5.8 PROBLEMS
Problem 5.1. Discuss the requirements that a function must fulfil in order to describe the
transversal motion of a string that is held fixed between two points a distance ` apart. Does
the set of functions satisfying these requirements form a vector space?

Problem 5.2. Verify that the Lie algebra of a matrix group forms a vector space. Find
complete bases for the Lie algebras of the groups SO(2), SU(2), and SU(3).

Problem 5.3. Start from the definition of an inner product and derive the Cauchy–Schwarz
and triangle inequalities

|〈v, w〉|2 ≤ ‖v‖2 ‖w‖2 and ‖v + w‖ ≤ ‖v‖+ ‖w‖ . (5.280)

Hint: Consider the norm of the vector z = ‖w‖2 v − 〈w, v〉w.

Problem 5.4. Assume that the series {vn} converges to v. Show that the sequence is a
Cauchy sequence, i.e., for any ε > 0, there exists an N such that

‖vn − vm‖ < ε (5.281)

if n,m > N .

Problem 5.5. Verify that the expression

〈f, g〉w =

∫
f(x)∗g(x)w(x)dx, (5.282)

where w(x) > 0, defines an inner product on the space of functions in which 〈f, f〉 is well
defined.
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Problem 5.6. In a real vector space, the Cauchy–Schwarz inequality implies that

〈v, w〉 = ‖v‖ ‖w‖ cos(α) (5.283)

for some angle α. This angle may be interpreted geometrically as the angle between the
vectors. Compute the angle between the functions f(x) = 1 and g(x) = x in the space of
functions on the interval [−1, 1] under the inner products

a) 〈f, g〉 =

∫ 1

−1

f(x)g(x)dx,

b) 〈f, g〉 =

∫ 1

−1

f(x)g(x)(1− x3)dx, and

c) 〈f, g〉 =

∫ 1

−1

f(x)g(x)[1 + sin2(πx)]dx.

Problem 5.7. For the Lie algebra of SU(2), verify that if the matrices A and B are in the
Lie algebra, then

〈A,B〉 = − tr(AB) (5.284)

defines an inner product.

Problem 5.8. We have seen that the domain D of the functions in a function space can
be a discrete set in Example 5.8, where D was a discrete set of points {xk}. Define an inner
product on this function space as

〈f, g〉 =
N∑
k=1

wkf(xk)∗g(xk). (5.285)

Find the requirements that the numbers wk have to satisfy.

Problem 5.9. Determine the condition that w̃(x, x′) in

〈f, g〉 =

∫
D

∫
D

w̃(x, x′)f(x)∗g(x′) dx dx′ (5.286a)

needs to satisfy in order for the conjugate symmetry

〈f, g〉 = 〈g, f〉∗ (5.286b)

to be fulfilled.

Problem 5.10. In the vector space of all polynomials of degree N − 1 or less:

a) Verify that L̂ = d/dx is a linear operator on the space.

b) Is L̂ invertible, i.e., does an operator L̂−1 such that L̂−1L̂ = L̂L̂−1 = 1 exist?

c) Is L̂ nilpotent, i.e., is L̂n = 0 for some n?

Problem 5.11. Consider the different sets of functions on the interval 0 ≤ x ≤ 1 defined
by

a) f(0) = 1, f(1) = 0,
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b) f ′(0) = 0, f(1) = 0,

c) f ′′(0) = 1, f(1) = 1, and

d) f(0) = f(1),

respectively. Which of these sets form vector spaces with the addition and multiplication
by scalar defined pointwise?

Problem 5.12. The functions f(x) and g(x) are both elements of the same function space.
Which of the following combinations of f(x) and g(x) must necessarily belong to the function
space as well?

a) πf(x) + g(x)

b) 2f(x)− 5

c) f(x)g(x)

d) f(2x)

e) f(x)− 3g(x)

Problem 5.13. Let V̂ be a symmetric operator on a real Hilbert space with a countable
basis ~ei. Let the action of V̂ define the numbers Vji through the relation

V̂ ~ei = ~ejVji. (5.287)

Show that Vji = Vij .

Problem 5.14. Let V̂ be a symmetric operator on some Hilbert space. Prove that:

a) Any eigenvalue of V̂ is necessarily real.

b) Eigenvectors with different eigenvalues are necessarily orthogonal.

Problem 5.15. A particle moves randomly between N different sites, which can be labelled
by k = 1, . . . , N . For the site k at time t, we can denote the probability of the particle being
at the site by pk(t). We consider a situation where the particle moves from the site k to the
sites k + 1 and k − 1 with the same rate λ, resulting in the differential equation

ṗk = λ(pk+1 + pk−1 − 2pk). (5.288)

For the site k = 1, moving to k− 1 is replaced by moving to k = N , and for k = N moving
to k + 1 is replaced by moving to k = 1. Define the column matrix

P (t) =


p1(t)
p2(t)

...
pN (t)

 (5.289)

and find an expression for the matrix A such that Ṗ = AP . For the case of N = 3, find the
eigenvectors and eigenvalues of A and use them to write down the general solution to the
problem. Adapt this solution to the initial condition p1(0) = p3(0) = 0 and p2(0) = 1.
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Problem 5.16. In Problem 5.15 we considered a particle moving randomly between N
different sites. For large N , find an approximation to this problem in terms of a differential
equation on functions p(x, t) with period ` on the form pt = L̂p, where L̂ is a linear
differential operator in x. Find the corresponding eigenvectors and eigenvalues.

Problem 5.17. The harmonic oscillator can be described by its position x(t) and momen-
tum p(t), which satisfy the differential equations

ẋ(t) =
p(t)

m
and ṗ(t) = −kx(t). (5.290)

Write this as a matrix equation (
ẋ(t)
ṗ(x)

)
= A

(
x(t)
p(t)

)
(5.291)

and solve it by finding the eigenfunctions and eigenvalues of A.

Problem 5.18. For any regular Sturm–Liouville problem, show that the Sturm–Liouville
operator is symmetric with respect to the corresponding inner product.

Problem 5.19. Verify that any Sturm–Liouville operator with periodic p(x), q(x), and
w(x) is symmetric on the space of functions that satisfy periodic boundary conditions with
the same period as long as the inner product is taken with the appropriate weight function.

Problem 5.20. For the inner product space of complex square integrable functions on the
real line −∞ < x <∞ with the inner product defined by

〈f, g〉 =

∫ ∞
−∞

f(x)∗g(x) dx, (5.292)

verify that the following operators are linear and determine whether they are Hermitian or
not (assuming that the functions they act on are such that the result is also in the function
space):

a) L̂1f(x) = f ′(x),

b) L̂2f(x) = if ′(x),

c) L̂3f(x) = −f ′′(x),

d) L̂4f(x) = xf(x).

Problem 5.21. Consider the function space consisting of functions f(x) such that their
Taylor expansion

f(x) =

∞∑
k=0

fkx
k (5.293)

converges for all x. Determine the eigenfunctions and eigenvalues of the derivative operator
d/dx on this function space. Is d/dx an invertible operator?

Problem 5.22. For the function space such with elements f(x) that satisfy the Neumann
boundary conditions

(BC) : f ′(0) = f ′(L) = 0. (5.294)

Compute the eigenfunctions of the Sturm–Liouville operator −∂2
x on this function space
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and their corresponding eigenvalues. Verify that these eigenfunctions are orthogonal with
respect to the inner product

〈f, g〉 =

∫ L

0

f(x)g(x)dx (5.295)

and find their normalisation. Finally, express the function

f(x) = sin2(πx/L) (5.296)

in terms of the eigenfunction basis.

Problem 5.23. The Wronskian of two functions f and g is defined as the function

Wf,g(x) = f(x)g′(x)− f ′(x)g(x). (5.297)

Let f and g be eigenfunctions of a regular Sturm–Liouville problem on the interval a < x < b
satisfying the homogeneous boundary conditions

(BC) : f ′(a) = αf(a), g′(a) = αg(a). (5.298)

Assume that f and g have the same eigenvalue λ with respect to the Sturm–Liouville
operator and:

a) Compute the value of the Wronskian at x = a.

b) Show that p(x)Wf,g(x) is a constant function.

c) Use your result from (a) and (b) to show that g(x) = Cf(x), where C is a constant.

The result of this problem shows that the eigenvalues of a regular Sturm–Liouville problem
necessarily are non-degenerate as eigenfunctions with the same eigenvalue differ by the
multiplication of a constant.

Problem 5.24. A projection operator P̂ is an operator satisfying the relation P̂ 2 = P̂ . Show
that if a projection operator P̂ is invertible, then it is necessarily the identity operator and
determine which of the following operators are projection operators:

a) the operator π̂(a,b) defined in Eq. (5.55),

b) L̂f(x) =
2

L

∫ L

0

sin
(πx
L

)
sin

(
πx′

L

)
f(x′) dx′,

c) L̂f(x) = f ′(x).

Problem 5.25. Consider two projection operators (see Problem 5.24) P̂1 and P̂2. Show
that the sum P̂1 + P̂2 is a projection operator if P̂1P̂2 = P̂2P̂1 = 0.

Problem 5.26. Write down the two-dimensional Laplace operator ∇2 in parabolic coordi-
nates (see Problem 1.50). Find the differential equations describing the separated solutions
to the Helmholtz equation ∇2u = −k2u.

Problem 5.27. For the Sturm–Liouville operator L̂ = −d2/dx2, find the normalised eigen-
functions and eigenvalues for the boundary conditions f ′(0) = f(`) = 0.
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Problem 5.28. Consider the one-dimensional heat conduction problem

(PDE) : Tt − aTxx = κ0δ(x− x0), (5.299a)

(BC) : Tx(0, t) = 0, T (`, t) = 0. (5.299b)

Determine the stationary solution to this problem by expanding it in the appropriate eigen-
functions of the Sturm–Liouville operator −∂2

x.

Problem 5.29. Use the expressions for the sine and cosine functions in terms of exponential
functions in order to expand f(x) = sin(ϕ) cos2(ϕ) in terms of the exponential functions
einϕ.

Problem 5.30. Find the full solution of the problem in Example 5.23 in terms of the hyper-
bolic sine and cosine functions. Explicitly verify that your solution satisfies the differential
equation as well as the boundary conditions.

Problem 5.31. Consider the functions

a) u(x, y) = xy,

b) u(x, y) = 1− x2 − y2, and

c) u(x, y) = ex+y

in the square 0 < x, y < 1. For each of the functions, find the functions Yn(y) in the series
expansion

u(x, y) =

∞∑
n=1

Yn(y) sin (πnx) . (5.300)

Note: The functions do not satisfy the same boundary conditions at x = 0 and x = 1 as the
sine functions. However, they may be arbitrarily well approximated by functions that do.

Problem 5.32. Find the possible eigenvalues of the operator −∇2 in the square 0 < x, y <
L when the boundary conditions are given by

a) u(0, y) = u(L, y) = u(x, 0) = u(x, L) = 0,

b) u(0, y) = u(L, y) = uy(x, 0) = uy(x, L) = 0,

c) ux(0, y) = u(L, y) = u(x, 0) = u(x, L) = 0,

d) ux(0, y) = u(L, y) = u(x, 0) = uy(x, L) = 0.

In each of the cases, identify which eigenvalues are degenerate.

Problem 5.33. The modified Bessel functions of the first and second kind are defined in
Eq. (5.165). From the series expansion of the Bessel functions given in Eq. (5.141), verify
that the modified Bessel functions are real functions.

Problem 5.34. Starting from the integral form given in Eq. (5.140), show that the Bessel
functions satisfy the following relations:

a) J−m(x) = (−1)mJm(x),

b) J ′m(x) =
1

2
[Jm−1(x)− Jm+1(x)],
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c) Jm(x) =
x

2m
[Jm−1(x) + Jm+1(x)],

d) xJ ′m(x) = mJm(x)− xJm+1(x),

e) xJ0(x) =
d(xJ1(x))

dx
.

Note that relation (d) implies that J ′m(αmk) = −Jm+1(αmk) for all zeros αmk of Jm(x).

Problem 5.35. For a fixed m, the Bessel functions Jm(αmkx) are orthogonal with respect
to the inner product

〈f, g〉 =

∫ 1

0

xf(x)g(x)dx. (5.301)

To show this, start by computing the integral

(β2 − α2) 〈Jm(αx), Jm(βx)〉 = (β2 − α2)

∫ 1

0

xJm(αx)Jm(βx)dx, (5.302a)

where α and β are arbitrary constants, i.e., not necessarily zeros of Jm. Your result should
contain the constants α and β as well as the Bessel function Jm and its derivative. As a
direct result, show that the integral is equal to zero if α and β are both zeros of Jm or if
both are zeros of J ′m.

The normalisation of the inner product for the case when α = β = αmk, i.e., a zero
of Jm may be deduced from the integral you just computed as well. Let β = α + ε and
compute the integral ∫ 1

0

xJm(αmkx)Jm((αmk + ε)x)dx (5.302b)

in the limit when ε→ 0.
Hint: You may find some of the relations derived in Problem 5.34 to be useful along

with the fact that the Bessel functions satisfy Bessel’s differential equation.

Problem 5.36. For the two-dimensional domain ρ < r0 in polar coordinates, find the eigen-
functions to the Laplace operator that satisfy homogeneous Neumann boundary conditions
at ρ = r0.

Problem 5.37. A wedge shaped two-dimensional region is given by 0 < ρ < r0 and
0 < φ < φ0 in polar coordinates. Find the eigenfunctions of the Laplace operator that
satisfy homogeneous Dirichlet conditions on the boundary of this region, i.e., solve the
eigenvalue problem

(PDE) : ∇2u(ρ, φ) + λu(ρ, φ) = 0, (5.303a)

(BC) : u(r0, φ) = u(ρ, 0) = u(ρ, φ0) = 0. (5.303b)

Your result may contain the zeros of any Bessel functions.

Problem 5.38. Consider the two-dimensional region r1 < ρ < r2 in polar coordinates.
If there is no charge density within this region, the electric potential V (ρ, φ) satisfies the
Laplace equation

(PDE) :
1

ρ
∂ρρ∂ρV +

1

ρ2
∂2
φV = 0. (5.304a)

Expand the function V (ρ, φ) in the eigenfunctions of the Sturm–Liouville operator −∂2
φ



Function Spaces � 331

with appropriate boundary conditions and insert the result into the Laplace equation to
obtain an ordinary differential equation for the expansion coefficients, which are generally
functions of ρ. Solve this partial differential equation for the boundary conditions

(BC) : V (r1, φ) = 0, V (r2, φ) = V0 sin2(φ). (5.304b)

Problem 5.39. In cylinder coordinates, a function V (ρ, z) satisfies the Laplace equation

(PDE) : ∇2V (ρ, z) =
1

ρ
∂ρρ∂ρV + ∂2

zV = 0 (5.305a)

in the region r1 < ρ < r2, 0 < z < h with the boundary conditions

(BC) : V (r1, z) = V0, V (r2, z) = V (ρ, 0) = Vz(ρ, h) = 0. (5.305b)

Expand V (ρ, z) in terms of the eigenfunctions to the operator −∂2
z that satisfy appropriate

boundary conditions at z = 0 and h. Insert the resulting expansion in the Laplace equation
to obtain a set of ordinary differential equations for the expansion coefficients, which are
generally functions of ρ. Solve the resulting differential equations.

Problem 5.40. Explicitly verify that the eigenfunctions

unm(ρ, φ) = Jm(αmnρ/r0)eimφ (5.306)

of the Laplace operator in the region ρ < r0 with homogeneous Dirichlet boundary condi-
tions are orthogonal under the inner product

〈f, g〉 =

∫ 2π

φ=0

∫ r0

ρ=0

f(ρ, φ)∗g(ρ, φ)ρ dρ dφ. (5.307)

Problem 5.41. Find the expansion of the delta distribution δ(2)(~x − ~x0) in the two di-
mensional disc ρ < r0 in terms of the eigenfunctions of the Laplace operator satisfying
homogeneous Dirichlet boundary conditions (see Problem 5.40). Hint: Note that the inner
product on the disc can be rewritten as

〈f, g〉 =

∫
|~x|<r0

f∗(~x)g(~x) dx1dx2 (5.308)

in Cartesian coordinates.

Problem 5.42. Use the recurrence relation for the coefficients of the Legendre polynomials
to write down the form of the Legendre polynomials P6, P7, and P8. Verify your result using
Rodrigues’ formula.

Problem 5.43. Expand the following polynomials pk(x) in terms of the Legendre polyno-
mials P`(x):

a) p1(x) = 2x2 + 4x− 2

b) p2(x) = 3x− 2

c) p3(x) = x3 − 3x+ 1

Problem 5.44. Find explicit expressions for the associated Legendre functions P 1
1 , P 1

2 ,
and P 2

2 .
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Problem 5.45. Using the results of Problem 5.35, show that the spherical Bessel functions
satisfy the integral relation given in Eq. (5.222).

Problem 5.46. A grounded metal sphere with radius r0 is placed in an external electric
field. The resulting potential V (r, θ, ϕ), given in spherical coordinates, satisfies the Laplace
equation

(PDE) : ∇2V = 0 (5.309a)

with the boundary conditions

(BC) : V (r0, θ, ϕ) = 0, lim
r→∞

V (r, θ, ϕ) = V0
r

r0
cos(θ). (5.309b)

Expand the potential in spherical harmonics in order to derive a number of differential
equations in the radial coordinate r and solve them in order to find the potential V .

Problem 5.47. A potential V (r, θ, ϕ) satisfies the Laplace equation outside a sphere of
radius r0 with the boundary condition

(BC) : V (r0, θ, ϕ) = V0[3 cos2(θ)− 1]. (5.310)

Find the potential in the region r > r0 if it is assumed to be finite as r →∞.

Problem 5.48. Express the following functions f(θ, ϕ) on the unit sphere in terms of the
spherical harmonics Y m` (θ, ϕ):

a) sin(θ) sin(ϕ)

b) sin2(θ) cos(2ϕ)

c) cos2(θ)

Problem 5.49. On the interval 0 < r < r0, the functions

un(r) = j0

(
πnr

r0

)
, (5.311)

where n is a positive integer, form a complete orthogonal basis with the inner product

〈f, g〉 =

∫ r0

0

f(r)∗g(r)r2 dr. (5.312)

Find the coefficients in the series expansion of the function f(r) = cos(πr/2r0) in this basis.

Problem 5.50. Find the eigenfunctions and corresponding eigenvalues of the Laplace op-
erator inside the half-sphere

0 < r < r0, 0 < θ < π, and 0 < ϕ < π (5.313)

in spherical coordinates, under the assumption that the boundary conditions are homoge-
neous Dirichlet conditions.

Problem 5.51. Consider the Sturm–Liouville operator in Eq. (5.231b) and its eigenfunc-
tions ψn(x) with corresponding eigenvalues 2En. Show that the operators

α̂± = x∓ ∂x (5.314)
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relate eigenfunctions with different eigenvalues such that α̂±ψn is an eigenfunction with
eigenvalue 2(En ± 1).

We know that the eigenfunction with the smallest eigenvalue is given by

ψ0(x) =
e−x

2/2

π1/4
. (5.315)

Verify that α̂−ψ0(x) = 0, i.e., acting on it with α̂− does not give a non-trivial eigenfunction
with a lower eigenvalue.

Problem 5.52. Show that the operator α̂+ defined in Problem 5.51 satisfies the relation

α̂+p(x)e−x
2/2 = e−x

2/2(2x− ∂x)p(x). (5.316)

Use the same kind of argumentation to express α̂−p(x)e−x
2/2 in a similar manner. What

does this tell you about the relation between the Hermite polynomials Hn(x) and Hn−1(x)?

Problem 5.53. In Example 5.33, we considered the representation of spatial reflections on
the function space of linear functions on the real line. Find the three-dimensional matrix
representation ρ(R) of the spatial reflection on the space of all polynomials of degree two,
i.e., f(x) = ax2 + bx+ c such that a′b′

c′

 = ρ(R)

ab
c

 . (5.317)

In addition, also find the representation of the spatial translations x → x′ = x − `. Check
that the resulting matrix representation satisfies the necessary group relations.

Problem 5.54. Consider the Sturm–Liouville operator

L̂ = − d2

dx2
+ q(x) (5.318)

on the interval −a < x < a for functions q(x) that satisfy q(−x) = q(x). Assume that
we have boundary conditions at x = ±a that are homogeneous and symmetric under the
transformation x→ −x. Show that the eigenfunctions of the corresponding Sturm–Liouville
problem are either even or odd under this transformation, i.e., that L̂X(x) = λX(x) implies
that

X(−x) = ±X(x). (5.319)

Problem 5.55. The symmetries we encountered in Chapter 4 can be used to argue for the
possible degeneracies in the spectrum of a Sturm–Liouville operator.

a) Verify that the Laplace operator ∇2 commutes with the transformations ĉu(x, y) =
u(y, `− x) and σ̂u(x, y) = u(y, x) and that the homogeneous boundary conditions

(BC) : u(0, y) = u(`, y) = u(x, 0) = u(x, `) = 0 (5.320)

are invariant, i.e., that the transformations map functions satisfying the boundary
conditions to other functions satisfying the boundary conditions.

b) Show that the group generated by these transformations is isomorphic to the dihedral
group D4.
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c) The vector space of functions on the square 0 < x, y < ` with homogeneous Dirichlet
boundary conditions therefore provides a representation of D4 with the transforma-
tions ĉ and σ̂ discussed above. Use the fact that the Laplace operator commutes with
the transformations to discuss the different possibilities on how many eigenfunctions
can share the same eigenvalue. How does this discussion change if the allowed range
of y is increased by a small length δ?

d) Compare your argumentation to the actual set of eigenfunctions and eigenvalues.

Problem 5.56. We have seen that in the function space of functions on the unit sphere,
the spherical harmonics with a fixed ` form an irrep of the rotation group SO(3). Starting
from the spherical harmonic Y 0

1 (θ, ϕ), perform a small rotation by an angle α around the
x2-axis given by x1 → x1 +αx3 and x3 → x3−αx1 and verify that this rotation results in a
linear combination of the spherical harmonics Y m1 (θ, ϕ), i.e., the set of spherical harmonics
with ` = 1 is closed under rotations about the x2-axis. Repeat the argument for rotations
around the x1- and x3-axes and the spherical harmonics Y ±1

1 (θ, ϕ). Write down a matrix
representation for the action of SO(3) on the spherical harmonics Y m1 (θ, ϕ).

Problem 5.57. If f is a distribution and g is a sufficiently nice function, we can define a
new distribution fg according to

fg[ϕ] = f [gϕ]. (5.321)

Find explicit expressions that only refer to g and ϕ and their derivatives for the following
distributions:

a) δag[ϕ]

b) δ′ag[ϕ]

c) (δag)′[ϕ]

Also verify that (fg)′[ϕ] = f ′g[ϕ] + fg′[ϕ].
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Eigenfunction Expansions

With the theory of Chapter 5 in place, we are ready to apply it extensively in order to solve
several of the problems we encountered when modelling physics problems using partial
differential equations. In particular, we are here going to develop methods of using operator
eigenbases in which the original partial differential equations reduce to ordinary differential
equations that are generally easier to solve. In fact, we have already seen an example of the
approach we will take in Example 5.10, where we diagonalised an operator represented by a
2× 2 matrix in order to obtain two non-coupled ordinary differential equations rather than
two coupled ones. The approach taken in this chapter is going to be the direct equivalent of
this approach with the difference that our operators will be differential operators and the
vector spaces under study will be function spaces which are generally infinite dimensional.

In addition to presenting the general technique of series and transform solutions, we will
also discuss some of the particular physical properties of the solutions.

6.1 POISSON’S EQUATION AND SERIES
Already in Chapter 5, we saw several examples of solutions to Poisson’s equation where we
have expanded the solution in different eigenfunctions depending on the geometry of the
problem (in particular, see Examples 5.29 and 5.30). We shall now have a closer look at how
series expansion using the eigenfunctions of Sturm–Liouville operators may be applied in
order to solve more general physics problems, as the earlier examples were mainly restricted
to cases where the differential equations were homogeneous.

6.1.1 Inhomogeneous PDE
One of the more common partial differential equations in physics is Poisson’s equation

−∇2Φ(~x) = ρ(~x), (6.1)

where Φ(~x) is a scalar field that we wish to determine and ρ(~x) is a density of some sort. In
general, some additional physical constants may be present, but this does not change the
mathematical structure of the problem. Poisson’s equation appears in Newton’s theory of
gravity, where Φ(~x) is the gravitational potential and ρ(~x) the mass density, as well as in
electrostatics, where Φ(~x) is the electric potential and ρ(~x) the charge density.

In general, we will wish to solve Poisson’s equation for cases where the the density ρ(~x)
is not zero in the region of interest. With Sturm–Liouville theory in mind, let us first assume
that we have homogeneous boundary conditions on our region and consequently that there

335
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is a complete set of eigenfunctions fn(~x) to the Laplace operator that satisfy the boundary
conditions and the eigenfunction equation

−∇2fn(~x) = λnfn(~x). (6.2)

As a consequence of this, we can expand any function g(~x) in terms of the eigenfunctions

g(~x) =
∑
n

gnfn(~x). (6.3a)

In particular, this is true of both the potential Φ(~x) as well as the density ρ(~x)

Φ(~x) =
∑
n

Φnfn(~x) and ρ(~x) =
∑
n

ρnfn(~x), (6.3b)

respectively. Inserting these expansions into Poisson’s equation, we find that

ρ(~x) +∇2Φ(~x) =
∑
n

[
ρnfn(~x) + Φn∇2fn(~x)

]
=
∑
n

(ρn − λnΦn) fn(~x) = 0. (6.4)

Since all of the functions fn(~x) are linearly independent and the final expression is equal to
zero, the coefficient of each fn(~x) must be equal to zero and therefore

ρn − Φnλn = 0 =⇒ Φn =
ρn
λn
. (6.5a)

This may also be seen by taking the inner product of fm(~x) with both sides of Poisson’s
equation〈

fm, ρ+∇2Φ
〉

=
∑
n

(ρn − Φnλn) 〈fm, fn〉 = (ρm − Φmλm) ‖fm‖2 = 0 (6.5b)

due to the orthogonality of the eigenfunctions fm(~x). If we can find the expansion of ρ(~x), it
is now trivial to write down the expansion of the solution Φ(~x) as well, since the expansion
coefficients are related by division with the corresponding eigenvalue only.

The big caveat here is that the density ρ(~x) might not satisfy the boundary conditions.
However, in these situations, we can find a density that does and that is physically equiv-
alent to the original ρ(~x) and we treat this situation as if ρ(~x) does satisfy the boundary
conditions. The real resolution of this problem is considering ρ(~x) to be a distribution rather
than a function, resulting in the expansion being well defined. This will also apply when
ρ(~x) is best described by any sort of distribution, e.g., a delta distribution to model a point
charge.

Example 6.1 Consider the situation shown in Fig. 6.1, where a two-dimensional membrane
is clamped into a rectangular frame. We describe the rectangle by the coordinates 0 <
x < Lx, 0 < y < Ly, where the boundaries are kept fixed at u(x, y) = 0. Gravity acts
perpendicular to the frame, affecting the membrane with a force density ρg. We can model
the stationary shape of the membrane using Poisson’s equation and homogeneous Dirichlet
boundary conditions

(PDE) : −∇2u(x, y) = −gρ
σ
, (6.6a)

(BC) : u(x, 0) = u(x, Ly) = u(0, y) = u(Lx, y) = 0, (6.6b)
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u(x, y)
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Figure 6.1 The shape of a membrane clamped into a rectangular frame under the influence of
gravity may be described using Poisson’s equation. The right figure shows the resulting solution,
which may be expressed as a series.

where σ is the tension in and ρ the surface density of the membrane. The eigenfunctions
of the Laplace operator that satisfy the given boundary conditions are the products of sine
functions

fnm(x, y) = sin

(
πnx

Lx

)
sin

(
πmy

Ly

)
(6.7)

with corresponding eigenvalues

λnm = π2

(
n2

L2
x

+
m2

L2
y

)
. (6.8)

Since these eigenfunctions form a complete set of basis functions, we expand the solution
u(x, y) in terms of them

u(x, y) =
∑
nm

Anmfnm(x, y) =
∑
nm

Anm sin

(
πnx

Lx

)
sin

(
πmy

Ly

)
. (6.9)

Inserting this into the differential equation, we now obtain∑
nm

Anmλnmfnm(x, y) = −gρ
σ
. (6.10)

Multiplying by fnm(x, y) and integrating over the rectangle now gives

Anm = − 4ρg

σLxLyλnm

∫ Lx

x=0

∫ Ly

y=0

sin

(
πnx

Lx

)
sin

(
πmy

Ly

)
dx dy

= − 4gρ

σπ2nmλnm
[1− (−1)n][1− (−1)m]. (6.11)

Consequently, the shape of the membrane in its stationary state is given by

u(x, y) = −
∑
nm

4gρ[1− (−1)n][1− (−1)m]

σπ2nmλnm
sin

(
πnx

Lx

)
sin

(
πmy

Ly

)
. (6.12)
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It should be noted that this method of solving a partial differential equation is really
not much different from solving a matrix equation of the form

AΦ = ρ, (6.13)

where Φ and ρ are column vectors with n entries and A is a symmetric n× n matrix. The
expansion of Φ and ρ in terms of the eigenvectors of A corresponds to the expansion in
eigenfunctions of the Laplace operator we have just seen. In the basis of eigenvectors of A,
A is diagonal and its inverse is easily found by taking the reciprocal of each of its diagonal
elements.

6.1.2 Inhomogeneous boundary conditions
In many situations, we will be faced with problems where the boundary conditions are
not homogeneous. In these cases, the approach described above is not directly applicable.
Instead, we can apply an approach similar to that adapted in the previous chapter, where
we attempt to find coordinate directions that do have homogeneous boundary conditions,
expand the solution in eigenfunctions of Sturm–Liouville operators in these coordinates,
and end up with an ordinary differential equation for the remaining coordinate. Although
we have already discussed this technique, it is well worth repeating the general structure.

Let us assume that we have a problem of the form

(PDE) : R̂xf(x, y) + g(x)L̂yf(x, y) = 0, (6.14a)

(BC) : f(x, ay) = f(x, by) = 0, (6.14b)

f(ax, y) = h1(y), f(bx, y) = h2(y). (6.14c)

Here, L̂y is a Sturm–Liouville operator in the y-direction while R̂x is a second order dif-
ferential operator in the x-direction and may be a Sturm–Liouville operator or not. By
using the fact that L̂y is a Sturm–Liouville operator and the boundary conditions in the
y-direction are homogeneous, we can expand f(x, y) in its eigenfunctions Yn(y) for every
value of x. Since f(x, y) depends on x, the expansion coefficients obtained when performing
this expansion will generally depend on x

f(x, y) =
∑
n

Xn(x)Yn(y). (6.15)

Since Yn(y) is an eigenfunction of L̂y, we know that L̂yYn = λnYn, where λn is the corre-
sponding eigenvalue. Inserting this expansion into the partial differential equation, we now
obtain

R̂xf(x, y) + g(x)L̂yf(x, y) =
∑
n

[
Yn(y)R̂xXn(x) + g(x)Xn(x)L̂yYn(y)

]
=
∑
n

[
R̂xXn(x) + λng(x)Xn(x)

]
︸ ︷︷ ︸

=0

Yn(y) = 0, (6.16)

where the coefficient in front of each Yn(y) must be zero due to the linear independence of
these functions. The resulting ordinary differential equation

R̂xXn(x) + λng(x)Xn(x) = 0 (6.17)

may be solved separately for each n in order to obtain the solution to the problem. The
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r0

h V0

Figure 6.2 A cylinder of radius r0 and height h where the end-caps are grounded and the cylindrical
surface is being held at potential V0. We wish to find the potential inside the cylinder, which satisfies
Laplace’s equation with inhomogeneous boundary conditions.

boundary conditions necessary to uniquely solve each differential equation are found by
expanding the inhomogeneous boundary conditions hi(y) in the functions Yn(y) as well and
we find that

h1(x) =
∑
n

h1nYn(y) = f(ay, y) =
∑
n

Xn(ay)Yn(y), (6.18)

with the linear independence of the Yn(y) functions implying that Xn(ay) = h1n and a
similar expression holding at the other boundary.

Sometimes we will not have actual boundary conditions at one of the boundaries and
instead be faced with regularity conditions. This will typically occur when we are dealing
with operators that are singular at that boundary. The inhomogeneity will then enter at
the other boundary and we can apply the regularity condition for each differential equation
at the singular boundary.

Example 6.2 Consider a cylinder of radius r0 and height h where the end-caps are
grounded and the cylindrical surface is being held at the constant electric potential
V (r0, z) = V0, see Fig. 6.2. We furthermore assume that there is no charge contained
in the cylinder and wish to find the electric potential V (ρ, z) inside it. Note that the po-
tential V (ρ, z) will not depend on the angular coordinate φ as the problem is symmetric
under rotations around the z-axis. Since the electric potential satisfies Laplace’s equation,
we therefore need to solve the problem

(PDE) : −∇2V (ρ, z) = −
(
∂2
ρ +

1

ρ
∂ρ + ∂2

z

)
V (ρ, z) = 0, (6.19a)

(BC) : V (0, z) <∞, V (r0, z) = V0, V (ρ, 0) = V (ρ, h) = 0, (6.19b)
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where we have written out the Laplace operator in cylinder coordinates and imposed a
regularity condition at ρ = 0. Since we have homogeneous Dirichlet boundary conditions in
the z-direction, we consider the eigenfunctions

Zn(z) = sin(knz) (6.20)

of the Sturm–Liouville operator −∂2
z , where kn = πn/h. Expansion of the solution in these

eigenfunctions gives

V (ρ, z) =

∞∑
n=1

Rn(ρ) sin(knz) (6.21a)

for the solution and

V0 = 2V0

∞∑
n=1

1− (−1)n

πn
sin(knz) =

∞∑
n=1

Rn(r0) sin(knz) (6.21b)

for the boundary condition at ρ = r0. This results in

Rn(r0) =
2V0

πn
[1− (−1)n] (6.22)

due to the linear independence of the sine functions. Furthermore, the regularity condition
at ρ = 0 implies that Rn(0) < 0.

Insertion of the series expansion into the differential equation now leads to

∞∑
n=1

[
−R′′n(ρ)− 1

ρ
R′n(ρ) + k2

nRn(ρ)

]
sin(knz) = 0, (6.23)

and from the linear independence of the sine functions follows that

−R′′n(ρ)− 1

ρ
R′n(ρ) + k2

nRn(ρ) = 0 (6.24)

for all n. This equation is Bessel’s modified differential equation with the modified Bessel
functions as solutions

Rn(ρ) = AnI0(knρ) +BnK0(knρ). (6.25)

As the modified Bessel functions of the second kind K0(x) are not regular at x = 0, the
regularity condition at ρ = 0 immediately implies that all Bn = 0. We are left with the
boundary condition

Rn(r0) = AnI0(knr0) =
2V0

πn
[1− (−1)n] =⇒ An =

2V0[1− (−1)n]

πnI0(knr0)
. (6.26)

The electric potential inside the cylinder is therefore given by the sum

V (ρ, z) =

∞∑
n=1

2V0[1− (−1)n]

πnI0(knr0)
I0(knρ) sin(knz). (6.27)
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Figure 6.3 The problem of a membrane in a frame that is not flat. Its solution satisfies Laplace’s
equation with inhomogeneous boundary conditions and the problem may be rewritten as a problem
with homogeneous boundary conditions, but with an inhomogeneous differential equation. The
solution to the problem for f(y) = u0

y
Ly

(1− y
Ly

) is shown in the right figure.

6.1.2.1 Transferring inhomogeneities

There is an alternative to the approach given above and it is to go back to the solution
of Poisson’s equation with homogeneous boundary conditions, but inhomogeneities in the
differential equation. Given a problem of the form

(PDE) : −∇2u(~x) = 0, (~x ∈ V ) (6.28a)

(BC) : (α+ βn̂ · ∇)u(~x) = f(~x), (~x ∈ S) (6.28b)

where V is the domain in which we wish to solve the differential equation, S its boundary,
and n̂ the boundary normal, we can transfer the inhomogeneity from the boundary condition
to the differential equation itself. We do this by selecting any function g(~x), defined for all
points in V , that satisfies (α + βn̂ · ∇)g(~x) = f(~x) on the boundary. Introducing the new
function v(~x) = u(~x)− g(~x), we find that

(PDE) : −∇2v(~x) = ∇2g(~x), (~x ∈ V ) (6.29a)

(BC) : (α+ βn̂ · ∇)v(~x) = 0. (~x ∈ S) (6.29b)

The action of the Laplace operator on the function g(~x) may be computed and we are then
back in the situation where the boundary conditions are homogeneous and the differential
equation is inhomogeneous. Whether or not this approach is helpful depends on whether or
not the function g(~x) can be chosen in such a way that the resulting problem is easier to
solve.

Example 6.3 Consider the same situation as in Example 6.1, but instead of the gravi-
tational pull we introduce a frame that is not flat, see Fig. 6.3. The differential equation
describing this situation is

(PDE) : −∇2u(x, y) = 0, (6.30a)

(BC) : u(x, 0) = 0, u(x, Ly) = 0,

u(0, y) = u(Lx, y) = f(y) = u0
y

Ly

(
1− y

Ly

)
. (6.30b)
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Introducing v(x, y) = u(x, y)−f(y), we find that this function satisfies homogeneous Dirich-
let boundary conditions and that

−∇2v(x, y) = −∇2u(x, y) +
u0

Ly
∇2y

(
1− y

Ly

)
= −2u0

L2
y

. (6.31)

The resulting problem for the function v(x, y) is equivalent to that treated in Example 6.1
with gρ/σ replace by 2u0/L

2
y.

It should be noted that the problem in the example above has inhomogeneous boundary
conditions only in one direction. In general, a problem may have inhomogeneous boundary
conditions in several directions and is therefore not directly solvable by expanding in the
eigenfunctions in the directions with homogeneous boundary conditions. However, we can
then split the problem into several separate problems with each having inhomogeneities in
different directions.

6.1.3 General inhomogeneities
Splitting a problem into several simpler ones and adding the results is not an approach
unique to the case where we have inhomogeneous boundary conditions in several directions.
We can also apply this approach to the situation where we have inhomogeneities not only in
the boundary conditions in different directions, but also in the partial differential equation.
Let us therefore now consider a problem of the form

(PDE) : −∇2u(~x) = f(~x), (~x ∈ V ) (6.32a)

(BC) : (α+ βn̂ · ∇)u(~x) = g(~x), (~x ∈ S) (6.32b)

where S is the boundary of V . In this scenario, we may apply either of the methods discussed
above for the case where inhomogeneities appear in the boundary conditions.

6.1.3.1 Superpositions

The perhaps most straightforward way of solving the problem is to consider it as a combina-
tion of several different problems. In order to solve the problem in this fashion, we introduce
the functions u1(~x) and u2(~x) such that

(PDE) : −∇2u1(~x) = f(~x), −∇2u2(~x) = 0, (~x ∈ V ) (6.33a)

(BC) : (α+ βn̂ · ∇)u1(~x) = 0, (α+ βn̂ · ∇)u2(~x) = g(~x). (~x ∈ S) (6.33b)

Due to the linearity of the problem, we find that u(~x) = u1(~x) + u2(~x) solves the original
problem. If there are several boundaries on which g(~x) is non-zero, the problem for u2(~x)
may be further split into functions that each have inhomogeneous boundary conditions in
one coordinate direction only. In this fashion, any inhomogeneous problem may be reduced
to solving a number of problems of the forms we have already discussed and adding the
solutions, see Fig. 6.4.

Example 6.4 Imagine that we wish to compute the electric potential inside the spherical
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Figure 6.4 The solution to a general linear problem with inhomogeneities in the boundary condi-
tions as well as in the differential equation may be written as a sum of the solutions to problems
with inhomogeneities on only one of the coordinate boundaries or only in the differential equa-
tion. Here, the light domains and boundaries represent homogeneous differential equations and
boundary conditions, respectively, while the dark domain and lines represent inhomogeneities. The
solutions to the individual problems with inhomogeneities only in the differential equation or only
in one boundary direction can be superposed to construct the solution to the problem with inho-
mogeneities everywhere.

region r < r0 with a spherically symmetric charge distribution ρ(r) while the surface of the
region is held at a potential V (r0, θ) = V0 cos(θ). The resulting problem is given by

(PDE) : −∇2V (r, θ) =
ρ(r)

ε0
, (r < r0) (6.34a)

(BC) : |V (0, θ)| <∞, V (r0, θ) = V0 cos(θ). (6.34b)

We split this problem with inhomogeneities in both the differential equation and boundary
conditions into two by the ansatz V (r, θ) = V1(r) + V2(r, θ), where

(PDE) : −∇2V1(r) =
ρ(r)

ε0
, −∇2V2(r, θ) = 0, (r < r0) (6.35a)

(BC) : V1(r0) = 0, V2(r0, θ) = V0 cos(θ), |Vi(0, θ)| <∞. (6.35b)

We have here already concluded that V1 is a function of the radius r only as both the
differential equation and boundary conditions for V1 are symmetric under rotations.

The problem for V1 has homogeneous boundary conditions and is independent of
the angles θ and ϕ and it is therefore possible to expand the solution in the functions
Rn = j0(β0nr/r0) = r0 sin(πnr/r0)/πnr. Absorbing the constant r0/πn into the expansion
coefficients, we find that

V1(r) =

∞∑
n=1

An
sin(πnr/r0)

r
and ρ(r) =

∞∑
n=1

ρn
sin(πnr/r0)

r
. (6.36)

Insertion into the differential equation now yields

An =
r2
0ρn
π2n2

(6.37)
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and the expansion coefficients ρn can be found by taking the inner product of ρ(r) with
sin(πnr/r0)/r

ρn =

∫ r0
0
ρ(r) sin(πnr/r0)r dr∫ r0
0

sin2(πnr/r0)dr
=

2

r0

∫ r0

0

ρ(r) sin(πnr/r0)r dr. (6.38)

Note that the factor of r in the numerator is the weight function r2 divided by the r that
appears in the function sin(πnr/r0)/r. In the same fashion, the denominator does not have
a factor of r, since the r2 in the weight function is cancelled by the r in the denominators
of the basis functions. In summary, we obtain

An =
2r0

π2n2

∫ r0

0

ρ(r) sin(πnr/r0)r dr. (6.39)

In order to have a full solution to the problem, we must also solve the problem for
V2(r, θ). We do this by expanding the V2(r, θ) as well as the inhomogeneity in the boundary
condition in the Legendre polynomials P`(cos(θ)). For the boundary condition, we find that

V0 cos(θ) = V0P1(cos(θ)) (6.40)

and the only Legendre polynomial of interest is therefore P1(cos(θ)), as all others will
correspond to completely homogeneous differential equations with trivial solutions. We can
therefore directly make the ansatz

V2(r, θ) = f(r)P1(cos(θ)) = f(r) cos(θ). (6.41)

Inserting this into the homogeneous differential equation for V2(r, θ) we obtain

r2f ′′(r) + 2rf ′(r)− 2f(r) = 0. (6.42)

This is a differential equation of Euler type, to which we make the ansatz f(r) = Ark

resulting in k = 1 or k = −2. The solution for k = −2 does not satisfy the condition of
being regular at r = 0 and the boundary condition at r = r0 results in

V0 = f(r0) = Ar0 =⇒ V2(r, θ) =
V0r

r0
cos(θ). (6.43)

6.1.3.2 Transferring inhomogeneities

As an alternative to splitting the problem into several problems with different inhomo-
geneities, we can apply the very same approach that was discussed for problems where only
the boundary conditions were inhomogeneous and find any function that satisfies the in-
homogeneous boundary conditions. As we saw, this generally resulted in an inhomogeneity
appearing in the differential equation instead. In the case where the differential is already
inhomogeneous, we will find that the new inhomogeneity is just added to the already exist-
ing one. We therefore again end up with a problem where there are inhomogeneities only
in the differential equation and we may solve it by using the series expansion technique as
already discussed.
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6.2 STATIONARY AND STEADY STATE SOLUTIONS
When modelling different physical problems in Chapter 3, we discussed stationary and
steady state solutions to time-dependent partial differential equations such as the heat and
wave equations. By definition, a stationary state does not depend on time and the time
derivative of the quantity of interest u vanishes

∂tu(~x, t) = 0. (6.44)

For a steady state solution, the requirement is only that the time derivative of some property
of the system, such as the amplitude of oscillation or total energy, is equal to zero and the
property therefore remains constant.

It is often the case that a time-dependent problem exhibits stationary or steady state
solutions. In particular, this may occur when external sources or boundary conditions have
a periodic or exponential time dependence. In these situations, the time-dependent problem
can usually be reduced to a time-independent one by an appropriate ansatz regarding the
time dependence of the solution. In the case of a stationary solution u(~x, t) = u(~x), both
the heat and wave equations reduce to Poisson’s equation due to the relations

∂tu−D∇2u = −D∇2u, ∂2
t u− c2∇2u = −c2∇2u. (6.45)

This is no longer true for steady state solutions, but it is often the case that the time
dependence may be factored out if it is an eigenfunction of the time derivative operator. In
particular, if there is a time-dependent inhomogeneity in the heat equation

(PDE) : ∂tu−D∇2u = f(~x)g(t), (6.46)

where g′(t) = kg(t), i.e., g(t) = g0e
kt for some g0, we can use the ansatz u(~x, t) = v(~x)g(t)

and obtain
f(~x)g(t) = v(~x)g′(t)− g(t)D∇2v(~x) = g(t)(k −D∇2)v(~x). (6.47a)

We therefore find that
−D∇2v(~x) + kv(~x) = f(~x). (6.47b)

The left-hand side contains the negative of the Laplace operator −∇2 and if we have homo-
geneous boundary conditions, we may solve the problem by performing a series expansion
in its eigenfunctions, just as we did for Poisson’s equation. The same principle also applies
for the wave equation when the time dependence of the inhomogeneity can be factored out
and satisfies g′′(t) = kg(t).

Example 6.5 A homogeneous metallic sphere of radius r0 and heat diffusion coefficient a
is doped with a homogeneously distributed radioactive substance with mean life τ . Due to
the radioactive decays, energy will be evenly deposited inside the sphere in proportion to
the number of decays. Since this energy will heat up the sphere, the temperature inside the
sphere will satisfy the sourced heat equation

(PDE) : Tt(r, t)− a∇2T (r, t) = κe−t/τ , (6.48a)

where κ is the value of the source term at t = 0. The source decays exponentially with time
as the radioactive substance decays and therefore decreases in activity. If the sphere is kept
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in a surrounding temperature T = 0 with a large heat transfer coefficient, the corresponding
boundary conditions will be given by

(BC) : T (r0, t) = 0. (6.48b)

We have here assumed that the solution T (r, t) is independent of the angles θ and ϕ due to
the rotational symmetry of the problem. Making the ansatz T (r, t) = R(r)e−t/τ now leads
to the problem

(ODE) : − 1

τ
R(r)− a

[
R′′(r) +

1

r
R′(r)

]
= κ, (6.49a)

(BC) : |R(0)| <∞, R(r0) = 0. (6.49b)

This problem may be solved by expanding R(r) and κ in the spherical Bessel functions
j0(πkr/r0) according to

R(r) =

∞∑
k=1

Rk
sin(πkr/r0)

r
and κ =

∞∑
k=1

κk
sin(πkr/r0)

r
, (6.50)

respectively. Insertion into the differential equation and identification of the coefficients in
front of each linearly independent spherical Bessel function now yields(

a
π2k2

r2
0

− 1

τ

)
Rk = κk =⇒ Rk =

κkτr
2
0

aτπ2k2 − r2
0

. (6.51)

The expansion coefficients κk may be obtained through the inner product of κ with the
spherical Bessel functions.

6.2.1 Removing inhomogeneities
Of course, the stationary or steady state solutions will not always satisfy the initial con-
ditions for a given problem. In fact, since the stationary solution will always be equal to
the corresponding initial condition and the initial value for the steady state solution may
be found by letting t = t0, where t0 is the initial time, any other initial condition will lead
to a solution that is not stationary or a steady state. However, it is often interesting to
expand the general solution around the stationary or steady state solutions, in particular
when we are dealing with dissipative systems and any solution approaches these solutions
asymptotically.

In the case where we know a particular solution up(~x, t) to the inhomogeneous heat
equation

(PDE) : ut(~x, t)− a∇2u(~x, t) = κ(~x, t), (6.52)

we can introduce v(~x, t) = u(~x, t)−up(~x, t), resulting in the homogeneous differential equa-
tion

vt(~x, t)− a∇2v(~x, t) = 0 (6.53)

for the difference v(~x, t). Setting the initial time to t = 0, the initial condition v(~x, 0) will
be given by

(IC) : v(~x, 0) = u(~x, 0)− up(~x, 0), (6.54)
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where the first term will be known due to the initial conditions on the sought function
u(~x, t) and the second term can be computed by letting t = 0 in the particular solution
up(~x, t). The resulting problem for v(~x, t) is therefore a homogeneous differential equation
with given initial conditions. The inhomogeneity has thus been moved from the differential
equation to the initial condition. In particular, stationary and steady state solutions are
suitable choices to fill the purpose of up(~x, t) and they can be found through the means we
have just discussed.

Example 6.6 In Example 6.5, we computed the temperature inside a sphere with a
radioactive substance as the heat source. We found a solution of the form

T (r, t) = Tp(r, t) =

∞∑
k=1

κkτr
2
0

aτπ2k2 − r2
0

sin(πkr/r0)

r
e−t/τ , (6.55)

where κk were the expansion coefficients of the constant function κ. This solution is only
the solution to the actual physical problem if the physical problem comes with the initial
condition

T (r, 0) = Tp(r, 0) =

∞∑
k=1

κkτr
2
0

aτπ2k2 − r2
0

sin(πkr/r0)

r
. (6.56)

If we instead let the initial condition be given by the sphere being held at a constant
temperature T0, it will be of the form

(IC) : T (r, 0) = T0. (6.57)

We can still use the solution Tp(r, t) to take care of the inhomogeneity in the differential
equation by letting T (r, t) = u(r, t) + Tp(r, t), where u(r, t) will be the solution to the
problem

(PDE) : ut(r, t)− a∇2u(r, t) = 0, (6.58a)

(BC) : |u(0, t)| <∞, u(r0, t) = 0, (6.58b)

(IC) : u(r, 0) = T0 − Tp(r, 0). (6.58c)

Expanding the constant T0 in terms of the functions sin(πkr/r0)/r, we can write the initial
condition for u(r, t) as

u(r, 0) =

∞∑
k=1

κk

[
T0

κ
− τr2

0

aτπ2k2 − r2
0

]
sin(πkr/r0)

r
. (6.59)

Note that the ratio T0/κ arises from both κ and T0 being constants expanded in the same
eigenfunctions and the expansion coefficients of T0 are therefore given by κkT0/κ.

Although we have here used the heat equation as the primary example, it should be
noted that the methods presented in this section apply equally well to the wave equation
or any other time-dependent partial differential equation that involves a Sturm–Liouville
operator in the spatial part.
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6.3 DIFFUSION AND HEAT EQUATIONS
We have so far discussed the solution to Poisson’s equation and the spatial differential
equations resulting from assuming a stationary or steady state solution. It is therefore
about time that we turn our attention to the solution of the more general time-dependent
problems of physical interest. In particular, we will discuss the solutions and phenomenology
of the heat and wave equations we derived in Chapter 3. Starting with the heat equation,
we will consider the general problem

(PDE) : ut(~x, t)− a∇2u(~x, t) = κ(~x, t), (~x ∈ V ) (6.60a)

(BC) : αu(~x, t) + β~n · ∇u(~x, t) = 0, (~x ∈ S) (6.60b)

(IC) : u(~x, 0) = g(~x), (~x ∈ V ) (6.60c)

where V is the domain inside of which we are interested in solving for u(~x, t) and S is the
boundary of V . We have here assumed homogeneous boundary conditions for convenience
as it will allow us to expand the solution in eigenfunctions of the operator −∇2. For the
moment, we will assume that V is a compact volume such that the set of eigenfunctions
of −∇2 will be countable. Any problem with inhomogeneous boundary conditions may be
recast on this form by transferring the inhomogeneity to the differential equation and the
initial condition as described earlier.

6.3.1 Initial conditions
Let us first discuss the case where there is no source present, i.e., κ(~x, t) = 0, and the
only inhomogeneity in the problem is given by the initial condition g(~x). Since our problem
contains the operator −∇2 and has homogeneous boundary conditions on the surface S, we
may express the solution u(~x, t) and the initial condition g(~x) as linear combinations of a
set of eigenfunctions Xn(~x) satisfying

−∇2Xn(~x) = λnXn(~x), (6.61)

where λn is the corresponding eigenvalue. It should be noted that n here is just a dummy
variable used for labelling the eigenfunctions. In practice, it may be more convenient to use
several dummy variables instead. An example of this is when we have found the eigenfunc-
tions by separation of variables and have one label per direction. The expansions of u(~x, t)
and g(~x) will take the forms

u(~x, t) =
∑
n

un(t)Xn(~x), g(~x) =
∑
n

gnXn(~x). (6.62)

The time dependence of the expansion coefficients un(t) is necessary as the function u(~x, t)
will generally be different functions of ~x for different t.

Inserting the series expansions of u(~x, t) and g(~x) into Eqs. (6.60), we find that∑
n

[u′n(t) + aλnun(t)]Xn(~x) = 0, (6.63a)∑
n

un(0)Xn(~x) =
∑
n

gnXn(~x). (6.63b)

Since the functions Xn(~x) are linearly independent, we may identify the coefficients of each
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Xn(~x) on both sides of the equations, leading to an infinite number of decoupled ordinary
differential equations

(ODE) : u′n(t) + aλnun(t) = 0, (6.64a)

(IC) : un(0) = gn. (6.64b)

Luckily, these equations are all of the same form and are generally solved by

un(t) = gne
−aλnt. (6.65)

The solution u(~x, t) is therefore given by

u(~x, t) =
∑
n

gnXn(~x)e−aλnt. (6.66)

This approach to solving the heat equation is exactly equivalent to the way in which we
solved Laplace’s equation with inhomogeneous boundary conditions earlier. The only dif-
ference is that we left out the coordinate direction with the inhomogeneous boundary con-
ditions in the case of Laplace’s equation in order to solve the resulting ordinary differential
equation in that coordinate. In contrast, for the heat equation we expand in the eigenfunc-
tions of the full Laplace operator, resulting in a set of ordinary differential equations in time
rather than in a remaining spatial coordinate.

Example 6.7 In a thin medium placed in a circular Petri dish of radius r0, a substance
diffuses with diffusivity D. An amount Q of the a substance is located at the center of
the medium at time t = 0 and we are looking to describe the concentration q(~x, t) of
the substance as a function of the position in the medium and of time. Assuming that no
substance can pass through the surface of the medium or through the walls of the Petri dish,
we may model the time evolution of the concentration by the partial differential equation

(PDE) : qt(ρ, t)−D∇2q(ρ, t) = 0, (ρ < r0) (6.67a)

(BC) : |q(0, t)| <∞, qr(r0, t) = 0, (6.67b)

(IC) : q(~x, 0) = Qδ(2)(~x). (6.67c)

The homogeneous boundary condition at ρ = r0 is due to the current being zero in the
normal direction at this boundary and we have assumed that the concentration only depends
on the polar coordinate ρ due to the rotational symmetry of the problem. We have also
chosen not to give the initial condition in polar coordinates as the delta function describing
the initial condition is at the boundary and coordinate singularity of the problem in polar
coordinates.

The eigenfunctions of the operator−∇2 satisfying the boundary conditions of Eq. (6.67b)
are given by

Rm(ρ) = J0(α′0mρ/r0) (6.68)

with corresponding eigenvalues λm = α′20m/r
2
0. The initial condition may be expanded in

these functions and we find that

Qδ(2)(~x) = Q

∞∑
m=1

dmRm(ρ), (6.69)
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where the expansion coefficients dm may be computed as

dm =

〈
Rm, δ

(2)
〉

‖Rm‖2
(6.70)

and the inner product is given by

〈f, g〉 =

∫
ρ<r0

f(~x)g(~x)dA = 2π

∫ r0

0

ρf(ρ)g(ρ)dρ. (6.71)

Again it should be noted that the last form of this inner product is not directly applicable
to the inner product in the numerator because of the delta function. This inner product is
instead easier to compute by applying the defining property〈

Rm, δ
(2)
〉

=

∫
ρ<r0

Rm(ρ)δ(2)(~x)dA = Rm(0) (6.72)

leading to

dm =
Rm(0)

‖Rm‖2
. (6.73)

Expanding the solution q(ρ, t) in Rm(ρ) and inserting the result into the differential equa-
tion, we find that

q(ρ, t) = Q

∞∑
m=1

Rm(0)

‖Rm‖2
Rm(ρ)e−Dα

′2
0mt/r

2
0 . (6.74)

An important piece of phenomenology is evident from the discussion in this section, the
solutions to the homogeneous heat equation with homogeneous boundary conditions are
exponentially decaying. The decay rate for each eigenfunction of the Laplace operator is
proportional to its eigenvalue and given by aλn, indicating that after a long time has passed,
the eigenfunction corresponding to the lowest eigenvalue will completely dominate the so-
lution as the eigenfunctions with higher eigenvalues will decay faster. Since the negative
of the Laplace operator is positive definite, none of the solutions will grow exponentially.
The only possibility of not having an exponential decay is the case when we have homoge-
neous Neumann boundary conditions that allow a constant eigenfunction with eigenvalue
zero. This is the case in the above example where the eigenfunction for m = 0 has zero
eigenvalue due to α′01 = 0.

Any problem involving the heat equation that allows a stationary or steady state solution
may be recast on the form we have assumed here by transferring the inhomogeneities to the
initial condition as shown in the previous section. The solutions to the heat equation will
therefore approach the stationary or steady state solution for large times. When the steady
state solution is exponentially decaying as in Example 6.5, the full solution will also decay
to zero but the rate at which this occurs will depend on the constant aλ1τ . If aλ1τ > 1,
the steady state solution decays slower than all of the contributions from the homogeneous
problem, whereas if aλ1τ < 1, the eigenfunction corresponding to the lowest eigenvalue λ1

will dominate the solution for large times.
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6.3.2 Constant source terms
Let us now consider the situation where the source term κ(~x, t) in Eqs. (6.60) is a general
function of the spatial variable ~x, but does not depend on time, i.e., κ(~x, t) = κ(~x). For the
sake of the argument, we will work with initial conditions that are homogeneous g(~x) = 0.
Since the heat equation is linear, this is not really a restriction as we can always split a
problem with several inhomogeneities into one problem with the inhomogeneous source and
another one with the inhomogeneous initial condition. The latter of these problems can be
solved as just described while for the former we can expand both the inhomogeneous source
term and the solution in the eigenfunctions of the Laplace operator as

κ(~x) =
∑
n

κnXn(~x), u(~x, t) =
∑
n

un(t)Xn(~x). (6.75)

Insertion into the differential equation and using the fact that the Xn(~x) are linearly in-
dependent to identify the terms in the sums on both sides of the equation now results in

(ODE) : u′n(t) + aλnun(t) = κn, (6.76a)

(IC) : un(0) = 0. (6.76b)

This differential equation is solved by

un(t) =
κn
aλn

(1− e−aλnt), (6.77)

which may be obtained by first finding the particular solution un,p(t) = κn/aλn and then
adapting the homogeneous solution to the initial condition.

In the end, whether we treat any inhomogeneous initial conditions separately or not
does not really matter for the solution. If we keep the inhomogeneous initial condition and
expand it in the eigenfunctions Xn(~x), we will find the ordinary differential equations

(ODE) : u′n(t) + aλnun(t) = κn, (6.78a)

(IC) : un(0) = gn. (6.78b)

This may be solved in exactly the same fashion as Eqs. (6.76), by finding the particular
solution and then adapting the homogeneous solution to the boundary conditions. The
resulting solution is now given by

un(t) =
κn
aλn

(1− e−aλnt) + gne
−aλnt. (6.79)

Note that this is exactly the same result as that which would be obtained by superposing
the solution to the problem with an inhomogeneous differential equation and homogeneous
boundary conditions with that of the problem with a homogeneous differential equation and
inhomogeneous boundary conditions.

Example 6.8 A thin rod of length ` with heat diffusion coefficient a is isolated everywhere
except for the endpoints, which are kept at a constant temperature T0, and at the position
x = x0, where a constant amount of heat is added per time unit after t = 0, see Fig. 6.5. If
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T0

x0

`
x

T0

Figure 6.5 A rod of length ` that is assumed to be isolated everywhere except the endpoints, which
are held at temperature T0 and at x = x0 where we add a fixed amount of heat per time unit.

we assume that the rod has had time to adapt to the endpoint temperature before t = 0,
we can model this situation as

(PDE) : Tt(x, t)− aTxx(x, t) = κ0δ(x− x0), (6.80a)

(BC) : T (0, t) = T (`, t) = T0, (6.80b)

(IC) : T (x, 0) = T0. (6.80c)

In order to solve this problem, we start by removing the inhomogeneities in the boundary
and initial conditions by introducing u(x, t) = T (x, t) − T0, which will have homogeneous
boundary and initial conditions and satisfy the same partial differential equation as T (x, t)

(PDE) : ut(x, t)− auxx(x, t) = κ0δ(x− x0), (6.81a)

(BC) : u(0, t) = u(`, t) = 0, (6.81b)

(IC) : u(x, 0) = 0. (6.81c)

As we have seen earlier, the eigenfunctions of −∂2
x with these boundary conditions are given

by the sine functions

Xn(x) = sin
(πnx

`

)
(6.82)

with corresponding eigenvalues λn = π2n2/`2 = k2
n. Expanding the solution and inhomo-

geneity in terms of these functions, we find that

κ0δ(x− x0) =
2κ0

L

∞∑
n=1

sin (knx0) sin (knx) (6.83)

and consequently

u(x, t) =
2κ0

aL

∞∑
n=1

sin(knx0)

k2
n

(1− e−ak
2
nt) sin(knx). (6.84)

An alternative approach to solving a problem with a constant inhomogeneity in the
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source term is to find the corresponding stationary solution, which will satisfy the boundary
conditions and Poisson’s equation. This solution will exactly correspond to the constant
term in Eq. (6.77) and using this solution we may rewrite the problem as a problem with
an inhomogeneity only in the initial condition. This procedure may be favourable if the
stationary solution can be found and expressed on a relatively simple form. However, a series
expansion may still be necessary in order to find the solution to the remaining problem with
the inhomogeneity in the initial condition.

Example 6.9 In the case of Example 6.8, it is relatively easy to find the stationary solution.
As δ(x − x0) = 0 for both x < x0 and for x > x0, the stationary solution in these regions
will be a linear function ust(x)

ust(x) =

{
A−x, (x < x0)

A+(x− `), (x > x0)
, (6.85)

where we have already accounted for the boundary conditions at x = 0 and x = `. In order
to satisfy the differential equation at x = x0, the constants A± must be given by

A− =
(

1− x0

`

)
κ0, A+ = −κ0x0

`
. (6.86)

This can be seen by taking the distribution derivative of the stationary solution, but may
also be deduced based on physical reasoning, requiring that the heat transported away must
be equal to the heat added in the stationary solution and that temperature is a continuous
function.

We may now rewrite the problem as a problem with a homogeneous partial differential
equation, homogeneous boundary conditions, and an inhomogeneous initial condition by
letting v(x, t) = u(x, t) − ust(x). Due to the homogeneous initial condition for u(x, t), the
initial condition for v(x, t) will be given by

v(x, 0) = u(x, 0)− ust(x) = −ust(x). (6.87)

6.3.3 Critical systems
The cases we have discussed so far have been concerned with situations where the source
term has been independent of the actual quantity that we wish to solve for. While this is
sufficient to describe many situations, there are also many situations where this is no longer
true. Instead, we must often account for situations where the production or destruction of
a substance depends on its concentration. Examples of cases where this becomes important
include the situation where we are interested in the concentration of a radioactive substance
subject to diffusion or the situation where the presence of a substance in a medium acts as
a catalyst for its own production, such as for the thermal neutrons in a fission reactor core.

Example 6.10 Consider the situation where we are looking to describe the concentration
q of diffusing radioactive atoms as a function of position and time. In this situation, the
concentration will not change only due to diffusion, but also drop due to the radioactive
decays. The number of decays per unit time inside a volume V is given by the number of
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atoms of the substance multiplied by the decay rate 1/τ , where τ is the mean life of the
radioactive decay. We therefore find that the number of decays inside the volume per unit
time is given by

K = −1

τ

∫
V

q(~x, t)dV (6.88)

and the source density is therefore

κ(~x, t) = −1

τ
q(~x, t), (6.89)

leading to the partial differential equation

qt(~x, t)−D∇2q(~x, t) = −1

τ
q(~x, t), (6.90)

where D is the diffusivity.
If the presence of a substance instead acts as a catalyst for its own creation, we may

have a situation such that the substance is created with a source density proportional to its
concentration. This will lead to a differential equation of the form

qt(~x, t)−D∇2q(~x, t) = γq(~x, t), (6.91)

where γ is the rate at which a given amount of substance duplicates.

The only difference between the differential equations derived in the example above is
the sign in front of the source term. We can therefore treat both cases in the same fashion
by assuming that we have a partial differential equation given by

ut(~x, t)−D∇2u(~x, t) = κ0u(~x, t), (6.92)

where the constant κ0 may be taken as either negative or positive depending on the problem
in question. By moving the source term to the left-hand side, we find that

ut(~x, t)− (D∇2 + κ0)u(~x, t) = 0. (6.93)

Despite the generally non-zero source term, this differential equation is still a homogeneous
linear partial differential equation and we will therefore still have the possibility of solving
it using superposition. Since κ0 is taken as a constant, any eigenfunction Xn(~x) of −∇2 will
satisfy

−(D∇2 + κ0)Xn(~x) = (Dλn − κ0)Xn(~x), (6.94)

where λn is the eigenvalue of Xn(~x) with respect to −∇2. Because of this, the differential
equations obtained when expanding the solution in terms of a linear combination of Xn(~x)
will remain decoupled even after the introduction of the source term, but with a shifted
eigenvalue. The expansion

u(~x, t) =
∑
n

un(t)Xn(~x) (6.95)

inserted into the differential equation therefore results in the ordinary differential equations

u′n(t) + (Dλn − κ0)un(t) = 0 (6.96)
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and therefore
u(~x, t) =

∑
n

un(0)Xn(~x)e(κ0−Dλn)t. (6.97)

The major difference as compared to the solution of the source-free heat equation is the
appearance of the constant κ0 in the exponent. As we discussed in relation to the source
free heat equation, its solutions were found to be exponentially decaying with a decay
constant proportional to the eigenvalue λn. With the introduction of the linear source term,
we instead find that the part of the solution proportional to Xn(~x) decays with a decay
constant

1

τn
= Dλn − κ0. (6.98)

For the cases where κ0 is negative, i.e., when the source term describes a sink, the phe-
nomenology does not change significantly. The solutions still decay exponentially, but the
process is speeded up by the sink. However, when 0 < κ0 < Dλn the decay of the mode
Xn(~x) is slowed down and at the critical value

κ0 = Dλn ≡ κc,n, (6.99)

the coefficient of Xn(~x) is constant in time. When this happens for any λn, the solution
will no longer approach the stationary or steady state solution for large times. With the
ordering λ1 < λ2 < . . . of the eigenfunctions, the critical value κc,n will be lower for smaller
values of n and the first mode to be affected in this way will be the X1(~x) mode.

If we have values of κ0 which are larger than κc,n, the coefficient in front of Xn(~x)
will grow exponentially instead of decaying. In this situation, the full solution u(~x, t) will
generally grow exponentially as well. This exponential growth is the underlying reason that
a runaway nuclear reaction may occur when a critical mass of fissile material is created.
It should be noted that it is important to keep the limitations of the model in mind when
we encounter exponentially growing solutions of this kind. In many cases, we may have
obtained the model by linearising a non-linear problem in which case the model is only
valid for small variations of the solution. With an exponential growth, such approximations
will only be valid as long as the solution may be considered a small variation.

The comparison of κ0 and Dλn has a simple physical interpretation. While κ0 is the rate
at which any amount of the substance duplicates, Dλn is the rate with which any amount
of substance in the nth eigenmode diffuses out of the system. Therefore, if κ0 is larger than
Dλn, the amount of substance in the nth eigenmode will increase, since it is being produced
faster than it diffuses out of the system.

Example 6.11 As a very crude approximation, we describe a nuclear reactor core as a
cylinder with radius r0 and height h. The concentration of thermal neutrons n(~x, t) in the
core follows the partial differential equation

(PDE) : nt(~x, t)−D∇2n(~x, t) = κ0n(~x, t), (~x ∈ V ) (6.100a)

(BC) : n(~x, t) = 0, (~x ∈ S) (6.100b)

where V is the core volume and S its surface. We have here assumed that any neutrons
reaching the edge of the core are effectively transported away from it. While this model is
extremely crude and not accurate enough to describe an actual reactor core, it serves the
purpose of illustrating the mechanism behind a critical system. The constant κ0 may be
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thought of as a combination of the source term due to the fission reactions and the sink due
to absorption in the control rods.

The eigenfunctions of the Laplace operator satisfying the given boundary conditions are
of the form

Xnkm(ρ, φ, z) = Jm(αmkρ/r0) sin(πnz/h)eimφ (6.101a)

with corresponding eigenvalues

λnkm =
α2
mk

r2
0

+
π2n2

h2
. (6.101b)

The lowest eigenvalue is therefore obtained for the lowest possible values of αmk and n,
which occurs for m = 0, k = 1, and n = 1, resulting in

Dλ110 = D

(
α2

01

r2
0

+
π2

h2

)
= κc,110. (6.102)

As can be seen from this relation, the physical dimensions of the core directly influence the
critical value of κ0 with a larger core corresponding to a lower critical value. Therefore, a
large core will require a much lower value of κ0 before becoming critical.

In situations where the source term depends on the concentration in a non-linear fashion,
the concept of criticality may still be applied to the problem resulting from a linearisation
of the problem for small deviations from a stationary solution. Assuming that we have a
partial differential equation of the form given in Eqs. (6.60) with a source term

κ(~x, t) = f(u(~x, t)) (6.103)

and a stationary solution ust(~x) satisfying

−D∇2ust(~x) = f(ust(~x)), (6.104)

the difference v(~x, t) = u(~x, t)− ust(~x) satisfies

vt(~x, t)−D∇2v(~x, t) = f ′(ust(~x))v(~x, t) (6.105)

for small v(~x, t). This is a linear partial differential equation for v(~x, t) and we can solve it
as earlier by finding and expanding in the eigenfunctions to the problem

−
[
D∇2 + f ′(ust(~x))

]
X(~x) = λX(~x). (6.106)

If all of the eigenvalues λ are positive, the stationary solution is stable, indicating that any
deviation will tend to decay over time. On the other hand, if any eigenvalue is negative,
the solution is unstable and there are deviations from ust that will increase exponentially
with time, generally implying that the approximation of small deviations will eventually
be violated. If there are eigenvalues that are zero, the time evolution of the corresponding
eigenmodes will depend on higher order corrections.

Example 6.12 A bacterial culture is living on the surface of a growth medium in a circular
Petri dish of radius r0, see Fig. 6.6. The bacteria move randomly on this surface resulting in a
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r0

Figure 6.6 The growth of a bacterial culture on the two dimensional surface of a growth medium
in a Petri dish of radius r0 may be described by a non-linear partial differential equation. By
linearising the solution around the stationary solutions we can find whether or not they are stable.

diffusive current and their net reproduction is given by κu(u0− u), where u is the bacterial
concentration, u0 the bacterial concentration at which there is not enough resources to
support more bacteria, and κ is a constant relating to how quickly a bacteria may undergo
binary fission. The resulting bacterial concentration is described by the differential equation

(PDE) : ut(~x, t)−D∇2u(~x, t) = κu(u0 − u), (6.107a)

(BC) : ~n · ∇u(~x, t) = 0, (ρ = r0) (6.107b)

where D is the diffusivity of the bacteria and ~n is normal to the edge of the Petri dish.
There are two stationary solutions to this problem, u(~x, t) = 0 and u(~x, t) = u0. Both of
these solutions result in both sides of the partial differential equation becoming zero.

If we linearise the solution around the stationary solution ust(~x) = 0 by introducing
u(~x, t) = ust(~x) + v(~x) and keeping only terms that are linear in v(~x), we find that

vt(~x, t)−D∇2v(~x, t) = κu0v(~x, t). (6.108)

Because of the boundary conditions of the problem, the lowest eigenvalue of the operator
−∇2 is equal to zero, corresponding to a constant eigenfunction. As a result, the stationary
solution ust(~x) = 0 is unstable as the constant multiplying v(~x, t) on the right-hand side is
positive.

On the other hand, if the system is instead linearised around ust(~x) = u0, the linearised
differential equation becomes

vt(~x, t)−D∇2v(~x, t) = −κu0v(~x, t). (6.109)

In this situation, the constant multiplying v(~x, t) on the right-hand side is negative, resulting
in the linearised source leading to a faster decay of all eigenfunction modes in v(~x, t). Because
of this, the stationary solution ust(~x) = u0 is a stable solution. Any small deviation from
this solution will result in a solution that approaches ust(~x) = u0 for large times.
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6.3.4 Time-dependent sources
We have already seen how time-dependent sources may be treated by removing the inho-
mogeneities from the differential equations and boundary conditions in the cases where it
is possible to find a stationary or steady state solution to the problem. However, it may
not always be apparent or even possible to find a solution of this form and we may have to
take a more general approach for more complicated time-dependent inhomogeneities. One
method we may always fall back on is that of series expansions in the eigenfunctions of the
Laplace operator. For the problem given by Eqs. (6.60), we may generally consider the case
where the source term κ(~x, t) is an arbitrary function of the spatial variables and time. For
any fixed t, this function may be expanded as

κ(~x, t) =
∑
n

κn(t)Xn(~x), (6.110)

where Xn(~x) are the eigenfunctions of the Laplace operator and the expansion coefficients
κn(t) now generally depend on the time t. With precisely the same argumentation as for
the time-independent sources, this eventually leads to the decoupled differential equations

u′n(t) +Dλnun(t) = κn(t). (6.111)

Naturally, this differential equation is exactly equivalent with Eq. (6.76a) with the only
difference that the right-hand side is now time-dependent. The general solution is given by

un(t) = un(0)e−Dλnt +

∫ t

0

κn(τ)e−Dλn(t−τ)dτ. (6.112)

While it is straightforward to check that this expression solves the differential equation by
differentiating it, its derivation is left for our discussion of Green’s functions in Chapter 7.

6.4 WAVE EQUATION
Many of the approaches we have discussed in connection to the heat equation remain valid
when attempting to solve the wave equation using series expansions in eigenfunctions of
the Laplace operator. The main difference arises from the fact that the wave equation is
of second order in the time variable t, whereas the heat equation was of first order in t.
Therefore, we will generally require two initial conditions in the case of the wave equation
rather than the one that was required for the heat equation. The general wave equation
problem that we are interested in will be of the form

(PDE) : utt(~x, t)− c2∇2u(~x, t) = f(~x, t), (~x ∈ V ) (6.113a)

(BC) : αu(~x, t) + β~n · ∇u(~x, t) = 0, (~x ∈ S) (6.113b)

(IC) : u(~x, 0) = g(~x), ut(~x, 0) = h(~x). (~x ∈ V ) (6.113c)

As for the heat equation problem given by Eqs. (6.60), we are here interested in the solution
u(~x, t) within the volume V with boundary S.

6.4.1 Inhomogeneous sources and initial conditions
Let us first discuss the case where we have an inhomogeneous source term f(~x, t) that does
not depend on the function u(~x, t) as well as inhomogeneous initial conditions g(~x) and
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h(~x). Just as we did for the heat equation, the solution u(~x, t) and the inhomogeneities may
be expanded in the eigenfunctions Xn(~x) of the Laplace operator

u(~x, t) =
∑
n

un(t)Xn(~x), f(~x, t) =
∑
n

fn(t)Xn(~x),

g(~x) =
∑
n

gnXn(~x), h(~x) =
∑
n

hnXn(~x), (6.114)

where the functions fn(t) and the constants gn and hn may be determined by taking the
inner product of the corresponding functions and the eigenfunctions Xn(~x). Inserting the
expansions into the partial differential equation and the initial conditions results in the
decoupled ordinary differential equations

(ODE) : u′′n(t) + c2λnun(t) = fn(t), (6.115a)

(IC) : un(0) = gn, u′n(0) = hn, (6.115b)

where λn is the eigenvalue of Xn(~x) with respect to −∇2. This derivation is exactly anal-
ogous to what we have seen for the heat equation, with the addition of an extra initial
condition due to the wave equation being a differential equation of second order in time.
Just as for the heat equation, the resulting ordinary differential equations may be solved
separately and the full solution to the problem is given by the superposition of the individual
solutions.

In the situation where we do not have any inhomogeneity in the wave equation, i.e.,
when f(~x, t) = 0, Eq. (6.115a) has the general solution

un(t) = An sin(ωnt) +Bn cos(ωnt), (6.116)

where the natural angular frequency ωn of the nth mode is given by

ωn = c
√
λn ≡ ckn. (6.117)

As expected, this general solution has two unknown constants An and Bn, as the dif-
ferential equation for un(t) is of second order. These two constants are fully determined by
the initial conditions, which result in

un(0) = Bn = gn, u′n(0) = ωnAn = hn. (6.118)

The solution to the homogeneous wave equation is therefore given by

u(~x, t) =
∑
n

[
hn
ωn

sin(ωnt) + gn cos(ωnt)

]
Xn(~x). (6.119)

Unlike the solutions to the homogeneous heat equation, which were exponentially decreasing
with time, the eigenmodes of the wave equation are oscillating with angular frequency ωn
and constant amplitude. Because of this, the solutions to the wave equation will generally
not approach a stationary or steady state solution, but instead oscillate around them as
long as there are no additional dissipative forces acting on the system.
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Figure 6.7 The guitar is an example of a plucked string instrument. Sound is generated by plucking
the strings and then allowing them to vibrate freely. This differs from instruments such as bowed
string instruments that are continuously driven by the rubbing of a bow.

Example 6.13 Plucked string instruments, such as a guitar (see Fig. 6.7), are a category
of instruments which create sound from the vibrations resulting from a fixed string being
plucked, i.e., released from some initial state and then allowed to vibrate under the influence
of internal forces only. The wave equation describing the movement of such a string is of
the form

(PDE) : utt(x, t)− c2uxx(x, t) = 0, (0 < x < `) (6.120a)

(BC) : u(0, t) = u(`, t) = 0, (6.120b)

(IC) : u(x, 0) = g(x), ut(x, 0) = h(x), (6.120c)

where c2 = S/ρ` is the wave speed in the string, ` the string length, S the tension in the
string, and ρ` its linear density (see also Example 3.18).

As we have already discussed, the eigenfunctions of the operator −∂2
x with homogeneous

Dirichlet boundary conditions are given by

Xn(x) = sin(knx), (6.121)

where kn = πn/`. It follows that the string vibrations are going to be described by

u(x, t) =

∞∑
n=1

[
hn
ωn

sin(ωnt) + gn cos(ωnt)

]
sin(knx), (6.122)

where ωn = ckn are the natural angular frequencies of the string. The natural frequencies
therefore correspond to the sound frequencies that will be produced by the string, with the
lowest angular frequency ω1 = cπ/`, for which n = 1, corresponding to the fundamental
frequency of the string, while the remaining frequencies are overtones.

In general, when a string is plucked, all of its eigenmodes will be excited with different
amplitudes depending on the exact nature of the initial conditions created. As a result,
different ratios of the overtones to the fundamental frequency may arise when plucking the
string differently, resulting in different sound sensations.
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6.4.2 Damped systems
In the example we have just seen, the plucked string will oscillate forever with constant
amplitude. This may be a good model for a short time period after the string is plucked,
but it is relatively obvious that it is not for longer times. While a guitar string may continue
to produce sound for a some time, the sound eventually fades away and the string comes
to a rest due to loss of vibrational energy in the string. Additionally, without the loss of
energy in the string, the creation of sound waves would violate the conservation of energy,
as energy is needed to create the sound waves. Since infinitely oscillating guitar strings and
violation of energy conservation are not particularly pleasing features, we can amend the
model by introducing a damping term into the wave equation (see, e.g., Example 3.10)

(PDE) : utt(~x, t) + 2kut(~x, t)− c2∇2u(x, t) = 0. (6.123)

This change of the wave equation does not prevent us from expanding the solution and initial
conditions in eigenfunctions of the Laplace operator in the same way as earlier. Instead, the
main change introduced in the case of the damped wave equation is the appearance of a
first order time derivative in each of the resulting ordinary differential equations

u′′n(t) + 2ku′n(t) + ω2
nun(t) = 0. (6.124)

These differential equations may be solved by making the ansatz

un(t) = eαt, (6.125)

resulting in the characteristic equation

α2 + 2kα+ ω2
n = 0 =⇒ α = −k ±

√
k2 − ω2

n. (6.126)

From these solutions, we can divide the eigenmodes into three different categories:

1. Underdamped eigenmodes: In the case where k < ωn, the roots of Eq. (6.126) are
complex and may be written in the form

α = −k ± iω′n, (6.127)

where ω′n =
√
ω2
n − k2 is a real number. The general solution may therefore be written

as

un(t) = e−kt(Ane
iω′nt +Bne

−iω′nt) = e−kt[Cn sin(ω′nt) +Dn cos(ω′nt)], (6.128)

where we have rewritten the solution in terms of the real sine and cosine functions
instead of the complex exponentials in the second step. The solutions are therefore
oscillatory with an amplitude that decreases exponentially with time. Note that the
solutions approach the undamped solutions when k → 0 as the exponential suppression
then disappears and ω′n → ωn.

2. Overdamped eigenmodes: For the modes in which the damping is very strong, i.e.,
when k > ωn, both roots to Eq. (6.126) are real and given by

α± = −k ±
√
k2 − ω2

n ≡ −k ± δk. (6.129)

The general solutions for un(t) in this regime are of the form

un(t) = e−kt(Ane
δk t +Bne

−δk t). (6.130)

Since δk < k, these solutions are always exponentially decaying with time and show
no oscillatory behaviour. In the limit where k � ωn, we find that δk → k and we are
left with a solution that is decaying very slowly and one that decays at the rate 2k.
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Figure 6.8 Examples of the three possible cases of damping for the same initial conditions.

3. Critically damped eigenmodes: Finally, there is a possibility of having k = ωn for one
eigenmode (or several in the case of degenerate eigenmodes). In this situation, there is
only one double root α = k to Eq. (6.126) and the general solution for un(t) is given
by

un(t) = e−kt(Ant+Bn). (6.131)

Much like the overdamped solutions, these solutions do not show any oscillatory be-
haviour and are exponentially decreasing.

The general behaviour of underdamped, overdamped, and critically damped solutions are
shown in Fig. 6.8. It should be noted that a system described by the damped wave equa-
tion will contain many eigenmodes and it is possible for a system to simultaneously have
some modes that are underdamped, some that are overdamped, and some that are crit-
ically damped. In general, it is the eigenmodes with higher frequencies that will display
underdamping while the lower frequency modes, if any, will be overdamped.

6.4.3 Driven systems
In many situations, there will be external sources for the wave equation, resulting in a
constant or time-dependent inhomogeneity f(~x, t) that does not depend on the solution
u(~x, t). A case of particular interest occurs in the situation when the external source has a
sinusoidal dependence on time

f(~x, t) = F (~x) sin(ωt). (6.132)

In this scenario, we can apply the methods discussed earlier for finding a steady state
solution that takes care of this inhomogeneity.

We will consider the general damped situation, which is now of the form

(PDE) : utt(~x, t) + 2kut(~x, t)− c2∇2u(~x, t) = F (~x) sin(ωt). (6.133)

If we make the ansatz u(~x, t) = v(~x) sin(ωt), we obtain

[−ω2v(~x)− c2∇2v(~x)] sin(ωt) + 2kωv(~x) cos(ωt) = F (~x) sin(ωt). (6.134)

In this expression, the time dependent factor sin(ωt) only factors out if k = 0 and we
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therefore need to be a little bit more inventive. As series expansions in terms of the eigen-
functions have proven useful before, we express both F (~x) and u(~x, t) as series expansions
in the eigenfunctions Xn(~x) of the Laplace operator with expansion coefficients Fn and un,
respectively,

F (~x) =
∑
n

FnXn(~x), u(~x, t) =
∑
n

un(t)Xn(~x). (6.135)

This leads to the ordinary differential equations

Fn sin(ωt) = u′′n(t) + 2ku′n(t) + ω2
nun(t), (6.136)

where ω2
n = c2λn and λn is the eigenvalue corresponding to the eigenfunction Xn(~x). These

equations have the same problem as the original partial differential equation, i.e., they
cannot be solved by the ansatz of a time dependence proportional to sin(ωt). Instead, we
make the ansatz

un(t) = An sin(ωt+ φn), (6.137)

where An is an amplitude and φn a phase factor. An argument for making this ansatz is
that it is again a sinusoidal function of t with the same angular frequency ω as the left-hand
side of Eq. (6.136), but has an additional freedom in the phase factor that we can adapt in
order for both sides of the equation to have the same time-dependence. Inserting the ansatz
into the differential equation results in

Fn sin(ωt) = [(ω2
n − ω2) sin(ωt+ φn) + 2kω cos(ωt+ φn)]An

=
√

(ω2
n − ω2)2 + (2kω)2 sin (ωt+ φn + αn) , (6.138)

where αn = atan(2kω/(ω2
n − ω2)). Identifying the amplitudes and phases of both sides of

this equation results in

An =
Fn√

(ω2
n − ω2)2 + (2kω)2

, (6.139a)

φn = −αn = atan

(
2kω

ω2 − ω2
n

)
. (6.139b)

We note that the amplitude An is generally maximal for a given source amplitude Fn when
the function

Rn(ω) = (ω2
n − ω2)2 + (2kω)2 (6.140)

is minimised. If the damping is very small such that k → 0, the corresponding amplitude
An →∞ as ω → ωn while, for an arbitrary k, we find that

R′n(ωrn) = 0 =⇒ ω2
rn = ω2

n − 2k2 (6.141)

defines the resonant angular frequency ωrn of the nth eigenmode such that the amplitude
An is maximal when ω = ωrn. In the case when k > ωn/

√
2, i.e., for sufficiently strong

damping in relation to the natural angular frequency ωn, there is no real solution for the
resonant angular frequency and the amplitude always decreases with increasing ω. Note that
this occurs already in the underdamped region. The behaviour of the amplitude An as a
function of the driving angular frequency ω is shown in Fig. 6.9. The phase shift φn describes
when the driven oscillation in the nth mode reaches its maximum in relation to when the
driving source does. The correct branch of the atan function compatible with Eq. (6.138)
is that for which −π < φn < 0, such that the shift always represents a phase lag, i.e., the
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Figure 6.9 The behaviour of the amplitude An as a function of the driving angular frequency ω for
different values of the damping coefficient k. The maximal amplitude corresponds to the undamped
case k = 0. The thin dashed line shows how the position and amplitude of the resonant angular
frequency ωrn changes as k is varied.

ωn ω
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π

0

Figure 6.10 The dependence of the phase shift φn on the driving angular frequency ω for different
values of the damping coefficient k. The phase shift is a step function for k = 0 and gradually
moves away from this shape as k increases.
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Figure 6.11 Oscillations on a string with tension S and linear density ρ` can be driven by moving
the endpoints to enforce the boundaries moving as u(0, t) = u(`, t) = A sin(ωt).

maximum of the oscillation amplitude occurs after the maximum of the driving force. The
exception is the undamped case with k = 0 for which we find that φn = 0 whenever ω < ωn
and φn = −π when ω > ωn. The phase shift as a function of the driving angular frequency
is shown in Fig. 6.10.

In a system with many different natural angular frequencies ωn, each one that satisfies
ωn >

√
2k has its own resonant angular frequency. This implies that the system may be

subjected to resonant driven oscillations at several different values of the driving angular
frequency ω. As the damping k is increased, the lower frequency eigenmodes will no longer
exhibit a resonant angular frequency, starting with the fundamental mode, which has the
lowest natural angular frequency.

Example 6.14 Consider a string with tension S, linear density ρ`, and length `, see
Fig. 6.11. In the absence of an external force, the transversal movement of the string follows
the source free wave equation. If we start moving the endpoints in the transversal direction
with an angular frequency ω and amplitude A, we can model the movement of the string as

(PDE) : utt(x, t)− c2uxx(x, t) = 0, (6.142a)

(BC) : u(0, t) = u(`, t) = A sin(ωt), (6.142b)

where c2 = S/ρ`. We can rewrite this on the form considered above by introducing

v(x, t) = u(x, t)−A sin(ωt), (6.143)

leading to
vtt(x, t)− c2vxx(x, t) = Aω2 sin(ωt) (6.144)

and homogeneous Dirichlet boundary conditions for v(0, t) and v(`, t). The eigenfunctions
of the operator −∂2

x satisfying the boundary conditions are Xn(x) = sin(knx), where kn =
πn/` and the resulting steady state solution therefore becomes

v(x, t) = 2A sin(ωt)
∞∑
n=1

1− (−1)n

πn

sin(knx)

ω2
n/ω

2 − 1
, (6.145)

where ωn = ckn. Due to the absence of a damping term, the amplitude of the nth eigenmode
diverges as ω → ωn. This may be remedied by introducing a small damping term k � ω1,
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Figure 6.12 The amplitudes of the different modes in the driven one-dimensional wave equation
and homogeneous Dirichlet boundary conditions as a function of the driving angular frequency
ω. The natural angular frequencies are given by ωn = nω1 and the damping coefficient is set to
k = 0.3ω1. The vertical dashed lines show the positions of the natural angular frequencies. Note
that the resonance appears slightly below the natural angular frequencies for the first few modes
and that the relatively large damping results in the resonant amplitude for the first mode being
less than a factor two times the amplitude at zero driving angular frequency.

which will result in large, but finite, amplitudes. With the damping term being small, the
resonances still occur at ω ' ωn. We also note that only the eigenmodes with odd n have
non-zero amplitude. This is due to the reflection symmetry of the problem around the
string’s mid-point implying that the even n eigenmodes, whose eigenfunctions are odd with
respect to the midpoint, cannot be excited in this fashion. If we instead decide to move only
one of the ends, we would excite all of the eigenmodes.

Experimental demonstrations similar to the one described here are often used in high-
school classes in order to demonstrate the concept of standing waves. Changing the driving
angular frequency ω changes the eigenmode that experiences resonant behaviour of its
amplitude, allowing the different eigenmodes to be identified by eye. To be overly picky,
the resonant angular frequencies do not occur exactly at the natural angular frequencies
ωn. However, in order for the amplitude to be appreciably larger than the input amplitude
at the endpoints, the damping must be so small that the difference between the resonant
angular frequency and the natural angular frequency cannot be distinguished, see Figs. 6.12
and 6.13.

6.5 TERMINATING THE SERIES
So far in this chapter, we have mainly encountered solutions in terms of series containing
an infinite number of eigenmodes to the Laplace operator or other combinations of Sturm–
Liouville operators. The exception to this in the approaches discussed so far would be when
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Figure 6.13 The same as Fig. 6.12 but for k = 0.01ω1. Note how the resonances have become
much stronger and that they gain a large factor compared to the amplitude at zero driving angular
frequency. By tuning the driving angular frequency to one of the natural angular frequencies, the
corresponding mode will completely dominate the solution.

the inhomogeneities are such that only a finite number of the resulting ordinary differential
equations are inhomogeneous, which is a rather special case. Since it may be quite cumber-
some to deal with infinite series if we wish to compute a numerical value, let us discuss the
implications of terminating the series at some finite value of n. We start this discussion by
considering a function f(~x) that may be expanded in terms of the eigenfunctions Xn(~x) of
some combination of Sturm–Liouville operators

f(~x) =
∑
n

fnXn(~x). (6.146)

We consider the function space such that f(~x) is square integrable with weight function
w(~x) and hence

‖f‖2 =

∫
V

|f(~x)|2 w(~x)dV = 〈f, f〉 , (6.147)

where w(~x) is the appropriate weight function for the eigenfunctions Xn(~x) to be orthogonal.
Using the expansion of f(~x) in terms of the eigenfunctions, its norm may be rewritten as

〈f, f〉 =
∑
nm

f∗nfm 〈Xn, Xm〉 =
∞∑
n=1

|fn|2 ‖Xn‖2 . (6.148)

In order for this series to be convergent, for any ε > 0 there must exist a number N such
that for all M > N ∣∣∣∣∣‖f‖2 −

M∑
n=1

|fn|2 ‖Xn‖2
∣∣∣∣∣ < ε, (6.149)

implying that
∞∑

n=M+1

|fn|2 ‖Xn‖2 < ε. (6.150)
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We can now construct the function

f̃k(~x) =
k∑

n=1

fnXn(~x), (6.151)

i.e., the function that has the same expansion in terms of Xn(~x) except for the fact that it
is terminated at a finite n = k. Defining

δf(~x) = f(~x)− f̃k(~x) =
∞∑

n=k+1

fnXn(~x), (6.152)

we find that

‖δf‖2 = 〈δf, δf〉 =

∫
V

∣∣∣f(~x)− f̃k(~x)
∣∣∣2 w(~x)dV =

∞∑
n=k+1

|fn|2 ‖Xn‖2 . (6.153)

As we have argued, we can always find a finite k such that this sum is arbitrarily small,
implying that the integral of the squared difference between f(~x) and f̃k(~x) is as well. As
|f(~x)− f̃(~x)|2 ≥ 0 everywhere, this also means that we can truncate the series at a finite n
and still obtain an approximation that should be reasonably close to f(~x). Naturally, the
actual n at which we can do this depends on the function f(~x). It should be noted that the
above argument does not hold for functions and distributions that are not square integrable
as they may formally have infinite norm.

Since the large n eigenfunctions are rapidly oscillating, we are essentially throwing away
any small scale structure when approximating a function by truncating a series in this man-
ner. As a result, the smallest features of the approximated function that can be reproduced
are given by the highest n eigenfunctions that we choose to keep in the expansion.

Example 6.15 In the simplest case, let us consider the function f(x) = θ(1/2−x), where θ
is the Heaviside step function, on the interval 0 < x < 1 and its expansion into the functions
Xn(x) = sin(πnx). The infinite series expansion is given by

f(x) =
∞∑
n=1

2

πn
[1− cos(πn/2)] sin(πnx). (6.154)

Approximating this with

f̃k(x) =
k∑

n=1

2

πn
[1− cos(πn/2)] sin(πnx), (6.155)

we find that ∫ 1

0

∣∣∣f(x)− f̃k(x)
∣∣∣2 dx =

∞∑
n=k+1

2

π2n2
[1− cos(πn/2)]2, (6.156)

which can be made arbitrarily small by selecting a large enough k. The function f(x) is
shown along with f̃k(x) for some choices of k in Fig. 6.14. The typical feature size of the
function sin(πnx) is of length 1/n and we therefore expect that the size of the region where
the sharp feature of f(x) at x = 1/2 will not be well reproduced is proportional to 1/k.
The appearance of strong oscillations in this region as the series is terminated is known as
Gibbs’ phenomenon.
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Figure 6.14 The approximations f̃k(x) of the step function θ(1/2−x) for different values of k. The
oscillatory overshooting near the steps is called Gibbs’ phenomenon. The appearance of Gibbs’
phenomenon in the beginning of the interval is due to the approximation using functions that
satisfy homogeneous Dirichlet conditions.

6.5.1 Heat and diffusion equations
In the case of the homogeneous heat equation with homogeneous boundary conditions, we
found that the series expansion of the solution was of the form

u(~x, t) =
∞∑
n=1

un(0)e−aλntXn(~x). (6.157)

Although the entire solution tends to zero, the eigenmodes corresponding to the smaller
eigenvalues do so slower than the ones corresponding to larger eigenvalues. If we consider
the function

v(~x, t) = eaλ1tu(~x, t) =

∞∑
n=1

un(0)e−a(λn−λ1)tXn(~x), (6.158)

this function has one eigenmode that will have a constant expansion coefficient, namely
the n = 1 eigenmode, while the other eigenmodes show an exponential decay. The function
v(~x, t) will have the same shape as u(~x, t) for every t and we can consider how important
the higher eigenmodes are for this shape by comparing it with

ṽ1(~x, t) = u1(0)Xn(~x), (6.159)

which is just the series expansion truncated after the first term. We find that

‖v(~x, t)− ṽ1(~x, t)‖2 =

∞∑
n=2

e−a(λn−λ1)t |un(0)|2 ‖Xn‖2

≤ e−a(λ2−λ1)t
∞∑
n=2

|un(0)|2 ‖Xn‖2

= e−a(λ2−λ1)t ‖v(~x, 0)− ṽ1(~x, 0)‖2 (6.160)

and therefore the importance of the eigenmodes with larger eigenvalues for the shape of the
solution also decays exponentially. Generally, eigenmodes for which a(λn − λ1)t � 1 may
be safely ignored.
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Example 6.16 Let us consider a one-dimensional example where a substance diffuses with
diffusivity D in the region 0 < x < ` and we have an amount Q of the substance at x = x0

at time t = 0. This situation can be modelled as the problem

(PDE) : ut(x, t)−Duxx(x, t) = 0, (6.161a)

(BC) : ux(0, t) = ux(`, t) = 0, (6.161b)

(IC) : u(x, 0) = Qδ(x− x0). (6.161c)

We have here chosen boundary conditions such that none of the substance diffuses out of
the region. The eigenfunctions of −∂2

x satisfying the boundary conditions are given by

Xn(x) = cos(knx), (6.162)

where kn = πn/` and n runs from zero to infinity. The solution to this problem is given in
terms of the series

u(x, t) = Q

∞∑
n=0

cos(knx0) cos(knx)

‖Xn‖2
e−Dk

2
nt, (6.163)

where

‖Xm‖2 =

{
`, (n = 0)
`
2 , (n 6= 0)

. (6.164)

The approximation

ũ(x, t) = Q
cos(k0x0) cos(k0x)

‖X0‖2
e−Dk

2
0t =

Q

`
(6.165)

is quite obviously horrible at t = 0. However, as time goes by and the eigenmodes with
n 6= 0 decay away, the entire solution tends to the constant solution where the substance is
evenly distributed throughout the region.

6.5.2 Wave equation
Unlike the heat equation, the solutions to the wave equations are oscillatory rather than
exponentially decaying. This implies that in order to have a reasonable approximation af-
ter truncating the series, we must include all of the terms that were necessary to have a
reasonable approximation at t = 0. This statement is modified when we instead study the
damped wave equation. As we have seen, the introduction of a damping term generally
leads to the amplitudes of the eigenmodes being subject to exponential decay just as for the
heat equation. All of the eigenmodes with ωn ≥ k are critically damped or underdamped
and therefore exhibit an exponential suppression e−kt. For times t � 1/k, this suppres-
sion is significant and we can truncate the series by excluding all critically damped and
underdamped modes to make the approximation

u(~x, t) =
∑
n

un(t)Xn(~x) '
∑
ωn<k

un(t)Xn(~x). (6.166)
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Since all of the remaining modes are overdamped, the coefficients un(t) may be expressed
through Eq. (6.130) and we find

u(~x, t) '
∑
ωn<k

e−kt(Ane
δknt +Bne

−δknt)Xn(~x) '
∑
ωn<k

Ane
−(k−δkn)tXn(~x), (6.167)

where δkn =
√
k2 − ω2

n and we have used the fact that the term proportional to Bn decays
even faster than the underdamped modes. We now have a situation that is completely
analogous to that encountered in the case of the heat equation with aλn replaced by k−δkn.
Since δkn is larger for the modes with lower frequencies, the mode corresponding to the
fundamental angular frequency will exhibit the slowest decay and be dominant at large
times.

The behaviour of the damped wave equation for large times is very similar to that of
the diffusion equation. The eigenmodes with larger eigenvalues all become irrelevant and if
we consider the initial conditions of the strongly overdamped modes for which ωn � k, and
therefore δk → k, we find that

An = un(0) +
u′n(0)

2k
, Bn = −u

′
n(0)

2k
. (6.168)

As already mentioned, the term with the coefficient Bn will be strongly suppressed, while
the term with the An will remain. The evolution of the solution for large times will therefore
be equivalent to that of the heat equation with aλn → k − δkn and the initial condition

u(~x, 0) =
∑
ωn�k

[
un(0) +

u′n(0)

2k

]
Xn(~x). (6.169)

The underlying reason for this is that when k − δkn is small, the time derivative u′n(t) is
suppressed by k− δkn while the second time derivative u′′n(t) is suppressed by (k− δkn)2 in
Eq. (6.124). The second time derivative therefore becomes negligible and the damped wave
equation reduces to the heat equation for these modes

u′′n(t) + 2ku′n(t) + ω2
nun(t) ' 2ku′n(t) + ω2

nun(t) = 0. (6.170a)

This may be rewritten as

u′n(t) +
ω2
n

2k
un(t) = 0, (6.170b)

which is the ordinary differential equation describing the evolution of the nth eigenmode of
the heat equation with aλn = ω2

n/2k. This is consistent with the replacement aλn → k−δkn
for ωn � k as

k − δkn = k −
√
k2 − ω2

n '
ω2
n

2k
. (6.171)

Naturally, the discussion above requires that there exist modes that are overdamped. If
this is not the case, all modes will be exponentially suppressed by the factor e−kt and the
solution will tend to zero.

6.6 INFINITE DOMAINS
In this chapter we have so far been concerned with problems defined in a bounded spatial
region, leading to the Sturm–Liouville operators of interest having a countable set of eigen-
functions with a corresponding discrete set of eigenvalues. In many situations occurring in
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physics, it will be motivated to consider unbounded regions such as the real line or the first
quadrant of R2. In such regions, the methods described here will still work to some extent,
but the spectrum of the Sturm–Liouville operators will be continuous rather than discrete.

For our purposes in this section, we will consider a problem of the form

(PDE) : L̂u(~x) = λu(~x), (~x ∈ V ) (6.172a)

(BC) : (α+ β~n · ∇)u(~x) = 0, (~x ∈ S) (6.172b)

where L̂ is a combination of Sturm–Liouville operators in different coordinates, V is an
unbounded region and S its boundary. In addition, we require that the solutions are bounded
as |~x| → ∞

lim
|~x|→∞

|u(~x)| <∞. (6.172c)

The boundary conditions of Eq. (6.172b) will generally not be strong enough to constrain
the eigenvalues of L̂ to a discrete set as was the case when the region V was bounded.
Instead, there will be a continuum of eigenvalues λ that may or may not be degenerate.
The corresponding eigenfunctions X~k(~x) satisfy the eigenfunction relation

L̂X~k(~x) = λ(~k)X~k(~x) (6.173)

as well as the boundary conditions. Here, the vector ~k contains a general set of parameters
that uniquely identify the different eigenfunctions. This vector will be restricted to some
region K. If the eigenfunctions are not degenerate, we may use the eigenvalue λ itself and K
is then the spectrum of the L̂. The functions X~k(~x) will generally not be square integrable,
but will satisfy the inner product relation〈

X~k, X~k′
〉

=

∫
V

X~k(~x)∗X~k′(~x)w(~x)dV = 0 (6.174)

for all ~k 6= ~k′, where w(~x) is the weight function associated with the operator L̂. In order
for this relation to be well defined, it should generally be seen as a distribution on K and
the general form of the inner product will be〈

X~k, X~k′
〉

=

∫
V

X~k(~x)∗X~k′(~x)w(~x)dV = N(~k)δ(~k − ~k′), (6.175)

where N(~k) is a function relating to the normalisation of the eigenfunctions. We can always
rescale the eigenfunctions as

X̃~k(~x) =
X~k(~x)√
N(~k)

. (6.176)

The new eigenfunctions X̃~k(~x) are then normalised as〈
X̃~k, X̃~k′

〉
= δ(~k − ~k′). (6.177)

This relation is the orthogonality relation for the eigenfunctions of the symmetric operator
L̂.

Just as we could express functions in bounded regions as linear combinations of eigen-
functions to a Sturm–Liouville problem, we can express functions in the unbounded regions
as linear combinations of the functions discussed above. The big difference is that the most
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general linear combination in the discrete case was a sum, where the summation was taken
over all of the eigenfunctions, and in order to include all of the eigenfunctions in the un-
bounded case, we instead need to integrate over all eigenfunctions. In other words, we can
write a function f(~x) as

f(~x) =

∫
K
f̃(~k)X~k(~x)dK. (6.178)

Comparing with the series expansion

f(~x) =
∑
n

fnXn(~x) (6.179)

in the bounded case, the analogy is made clear by the correspondence of the quantities

~k ←→ n, (6.180a)∫
K
. . .←→

∑
n

. . . , (6.180b)

f̃(~k)dK ←→ fn, (6.180c)

X~k(~x)←→ Xn(~x). (6.180d)

Just as for the bounded case, the expansion coefficients f̃(~k) may be found by taking the
inner product between f(~x) and one of the eigenfunctions according to

〈
X~k′ , f

〉
=

∫
K
f̃(~k)

〈
X~k′ , X~k

〉
dK =

∫
K
f̃(~k)N(~k)δ(~k − ~k′)dK = f̃(~k′)N(~k′), (6.181a)

implying that

f̃(~k) =

〈
X~k′ , f

〉
N(~k)

. (6.181b)

The function f̃(~k) is often referred to as a transform of the function f(~x). The two functions
convey the same information but one is a function on the spatial domain V , whereas the
other is a function on the set K.

Example 6.17 The first example that comes to mind when looking for problems such as
the ones described above is letting L̂ = −∂2

x in one dimension where −∞ < x < ∞. This
region has no boundaries and therefore no boundary conditions at any finite x. We are left
with the singular Sturm–Liouville problem

(PDE) : − ∂2
xX(x) = λX(x), (6.182a)

(BC) : |X(±∞)| <∞. (6.182b)

For λ < 0, we find that
X(x) = Ae−kx +Bekx, (6.183)

where k2 = −λ. None of these solutions are bounded at both infinities and we conclude
that λ ≥ 0 for all solutions. For λ = 0, the general solution is given by

X(x) = Ax+B. (6.184)
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With the requirement of the solution being bounded at the infinities, the constant A must
be equal to zero and we are left with a constant function

X0(x) =
1

2π
, (6.185)

where the normalisation is purely conventional. Finally, for λ = k2 > 0, the general solution
is

X(x) = Aeikx +Be−ikx. (6.186)

Both of these solutions are bounded at the infinities and are therefore allowed. We now
need to construct K and we do so by assigning

Xk(x) =
1

2π
eikx (6.187)

for −∞ < k <∞. Again, the normalisation of these functions is arbitrary and the choice of
the factor 1/2π is purely conventional. The case λ = 0 is here covered by k = 0. At the same
time, the first term in Eq. (6.186) is covered by k > 0, while the second term is covered by
k < 0. The allowed region K is therefore the entire real line and we also have

λ(k) = k2. (6.188)

The inner product between two of these eigenfunctions is given by

〈Xk, Xk′〉 =
1

2π
δ(k − k′) =⇒ N(k) =

1

2π
. (6.189)

The general expression of a function f(x) in terms of the eigenfunctions is given by

f(x) =
1

2π

∫ ∞
−∞

f̃(k)eikxdk (6.190a)

while the function f̃(k) is found to be

f̃(k) =
2π

2π

∫ ∞
−∞

f(x)e−ikxdx =

∫ ∞
−∞

f(x)e−ikxdx. (6.190b)

Just as the series expansion of a function on a bounded interval in terms of the eigenfunctions
of −∂2

x was found to be a Fourier series, we may recognise this transform in terms of the
eigenfunctions of −∂2

x on the entire real line as the Fourier transform.

6.6.1 Domains with a boundary
The example we have just seen in the Fourier transform was a special case in that its
definition was the entire real line. In many other situations, we will be dealing with a region
that has a finite boundary in one direction. In these situations, we are left with a problem
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of the form

(PDE) : L̂X(x) = λX(x), (6.191a)

(BC) : αX(a) + βX ′(a) = 0, lim
x→∞

|X(x)| <∞, (6.191b)

where we have put a limit x > a on the domain of the functions X(x). The corresponding
problem with an upper boundary and no lower boundary on x is conceptually equivalent so
we will concentrate on this formulation. In these situations, the single boundary condition
will restrict the number of possible solutions, but the spectrum may still be continuous
depending on the operator L̂.

6.6.1.1 The Fourier sine and cosine transforms

A special case of the above is obtained when we let a = 0 and study the Sturm–Liouville
operator −∂2

x. As was argued in Example 6.17, studying the corresponding problem on the
entire real line we ended up with the Fourier transform. For concreteness, let us work with
a homogeneous Dirichlet condition at x = 0 to obtain

(ODE) : X ′′(x) + λX(x) = 0, (6.192a)

(BC) : X(0) = 0. (6.192b)

The requirement of being bounded at x→∞ along with the boundary condition results in
discarding all solutions with λ ≤ 0. We are left with the case λ = k2 for which

X(x) = A sin(kx) +B cos(kx), (6.193)

where the boundary condition now implies that B = 0. We may therefore take k > 0 and
consider the non-degenerate solutions

Xk(x) =
2

π
sin(kx), (6.194)

where we have chosen the normalisation by convention. The inner product on the functions
on the interval x > 0 is given by

〈f, g〉 =

∫ ∞
0

f(x)∗g(x)dx, (6.195)

which implies that

〈Xk, g〉 =
2

π

∫ ∞
0

sin(kx)g(x)dx =
1

iπ

∫ ∞
0

(eikx − e−ikx)g(x)dx

=
1

iπ

∫ ∞
−∞

eikxḡ(x)dx, (6.196)

where we have defined ḡ(x) = g(x) for x > 0 and ḡ(x) = −g(−x) for x < 0, i.e., ḡ(x) is an
odd extension of g(x) to the entire real line. In particular, for g(x) = Xk′(x) = 2 sin(k′x)/π
we find

〈Xk, Xk′〉 = − 1

π2

∫ ∞
−∞

eikx(eik
′x − e−ik

′x)dx

= − 2

π
[δ(k + k′)− δ(k − k′)] =

2

π
δ(k − k′), (6.197)
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where the last step follows from both k and k′ being positive. Consequently, N(k) = 2/π in
this case.

Writing down the transform expression, a function on x > 0 for which f(0) = 0 or,
equivalently, an odd function on the entire real line, may be written in terms of the functions
Xk(x) as

f(x) =
2

π

∫ ∞
0

f̃s(k) sin(kx)dx, (6.198a)

where we have introduced the Fourier sine transform f̃s(k) with a subscript s to separate
it from the Fourier transform seen in Example 6.17. Taking the inner product with Xk, we
can express the Fourier sine transform as

f̃s(k) =

∫ ∞
0

sin(kx)f(x)dx. (6.198b)

Expressions similar to these may be obtained for the case of homogeneous Neumann bound-
ary conditions with the exception that the cosine term survives rather than the sine term.
In this situation, the proper expansion to the real line will be an even function rather than
an odd (see Problem 6.44), leading to the Fourier cosine transform f̃c(k) for functions on
x > 0 satisfying the Neumann conditions or, equivalently, for even functions on the real
line. As any function f(x) may be written as a sum of one odd and one even function, the
Fourier sine and cosine transforms can be combined such that

f(x) =
2

π

∫ ∞
0

[f̃s(k) sin(kx) + f̃c(k) cos(kx)]dk. (6.199)

This should not be very surprising as the sine and cosine are linearly independent superpo-
sitions of the functions e±ikx.

6.6.1.2 Hankel transforms

In some situations, mainly when dealing with domains that are well described in polar
coordinates, we will be faced with problems of the form

(ODE) : −R′′(ρ)− 1

ρ
R′(ρ) +

ν2

ρ2
R(ρ) = λR(ρ), (ρ > 0) (6.200a)

(BC) : |R(0)| <∞. (6.200b)

We recognise the differential equation here as Bessel’s differential equation and the boundary
condition at ρ = 0 implies that the solutions we seek are Bessel functions of the first kind

Rk(ρ) = Jν(kρ), (6.201)

where λ = k2. The Bessel functions satisfy the orthogonality relation

〈Rk, Rk′〉 =

∫ ∞
0

ρJν(kρ)Jν(k′ρ)dρ =
1

k
δ(k − k′), (6.202)

where the inner product has the weight function w(ρ) = ρ due to the form of Bessel’s
differential operator. This means that N(k) = 1/k in Eq. (6.175). For a function f(ρ)
defined for ρ ≥ 0 we can now define the Hankel transform of order ν as

f̃ν(k) =

∫ ∞
0

ρf(ρ)Jν(kρ)dρ (6.203a)
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with the corresponding inversion formula

f(ρ) =

∫ ∞
0

kf̃ν(k)Jν(kρ)dk. (6.203b)

Note that the Hankel transforms for different values of ν are independent and different from
each other.

6.7 TRANSFORM SOLUTIONS
Transforms can be used much in the same way as we used series expansions. By expanding a
solution in terms of a transform related to the relevant differential operator, we can exchange
partial differential operators for a multi-variable function for ordinary differential equations
for transform. We can start by studying the homogeneous heat equation

(PDE) : ut(x, t)− auxx(x, t) = 0, (6.204a)

(IC) : u(x, 0) = f(x) (6.204b)

on the real line. For any fixed value of t, we can express u(x, t) in terms of its Fourier
transform

u(x, t) =
1

2π

∫ ∞
−∞

ũ(k, t)eikxdk. (6.205)

Inserted into the heat equation, we find that

ũt(k, t) + ak2ũ(k, t) = 0, (6.206)

which is an ordinary differential equation for u(k, t) for every fixed value of k. This is
completely analogous to how we obtained ordinary differential equations for the expansion
coefficients un(t) when we dealt with series solutions, in fact, it is the very same differential
equation we obtained when solving the heat equation in that fashion. We already know the
solution to this differential is of the form

ũ(k, t) = ũ(k, 0)e−ak
2t = f̃(k)e−ak

2t, (6.207)

where f̃(k) is the Fourier transform of the initial condition. The solution u(x, t) is therefore
given by the integral expression

u(x, t) =
1

2π

∫ ∞
−∞

f̃(k)eikx−ak
2tdx. (6.208)

In many cases, the integrals appearing in the transform solutions are analytically solvable
either by explicit computation or through knowledge about the Fourier transforms of sev-
eral template functions. Such knowledge is often listed in tables of Fourier transforms (see
Appendix A.4).

Example 6.18 Consider the one-dimensional diffusion of a substance in a medium with
diffusivity D, where an amount Q of the substance is originally located at the point x = x0

at time t = 0. This situation is described by Eqs. (6.204) with f(x) = Qδ(x− x0). We can
find the Fourier transform of f(x) as

f̃(k) =

∫ ∞
−∞

Qδ(x− x0)e−ikxdx = Qe−ikx0 . (6.209)
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By the argumentation above, we find that the Fourier transform of the solution at time t is
given by

ũ(k, t) = Qe−ak
2t−ikx0 (6.210a)

and therefore

u(x, t) =
Q

2π

∫ ∞
−∞

e−ak
2t+ik(x−x0)dk. (6.210b)

This integral can be computed analytically. We start by making the change of variables
s = k

√
at, leading to dk = ds/

√
at and hence

u(x, t) =
Q

2π
√
at

∫ ∞
−∞

e−s
2+is(x−x0)/

√
atds. (6.211)

Completing the square in the exponent we find that

−s2 + is
x− x0√

at
= −

(
s− ix− x0

2
√
at

)2

− (x− x0)2

4at
≡ −z2 − (x− x0)2

4at
(6.212)

where we have introduced

z = s− ix− x0

2
√
at

. (6.213)

Changing variables from s to z, we have the complex integral

u(x, t) =
Q

2π
√
at
e−

(x−x0)2

4at

∫
Γ

e−z
2

dz, (6.214)

where Γ is the contour in the complex plane where the imaginary part is equal to
−(x − x0)/2

√
at (see Fig. 6.15). However, the integrand e−z

2

is analytic and exponen-
tially suppressed as Re(z)→ ±∞ while keeping Im(z) fixed. The integral along the contour
Γ is therefore the same as the integral along the real axis and we are left with the standard
Gaussian integral

u(x, t) =
Q

2π
√
at
e−

(x−x0)2

4at

∫ ∞
−∞

e−z
2

dz =
Q√
4πat

e−
(x−x0)2

4at . (6.215)

This is an example of a situation where the transform solution results in an exact analytic
expression. The solution of this problem is depicted in Fig. 6.16 for several different times
t.

As for the series solutions, there is nothing particular about using this method for solving
partial differential equations that are of first order in time, or for only solving partial differ-
ential equations that include time as a variable for that matter. We can equally well apply
similar methods for solving, e.g., Poisson’s equation or the wave equation. Naturally, the
use of transform solutions is not restricted to the one-dimensional case but works when an
appropriate transform can be written down. A common type of problem where such meth-
ods are useful includes problems in all of RN , where we can make use of an N -dimensional
Fourier transform

u(~x, t) =
1

(2π)N

∫
RN

û(~k, t)ei
~k·~xdV. (6.216)

Note that the basis functions used to construct this N -dimensional Fourier transform are
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Γ−ix− x0

2
√
at

Re(z)

e−z
2

Im(z)

Figure 6.15 The integral in Eq. (6.214) is taken along the curve Γ as the endpoints tend to infinity.

As the integrand e−z
2

is analytic in the shaded region and exponentially suppressed as Re(z)→ ±∞
with fixed imaginary part, the integral may be rewritten as an integral along the real line.

Figure 6.16 The solution to the diffusion equation on the entire real line for a delta function initial
condition for different times. As time progresses, the Gaussian shaped solution spreads out.
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r0

h

V0

Figure 6.17 Two infinite plates separated by a distance h. The lower plate is kept grounded while
a disc of radius r0 on the upper plate is held at potential V0 and the rest of the plate is grounded.
We wish to find an expression for the potential in between the plates.

of the form

X~k(~x) =
1

(2π)N
ei
~k·~x =

1

(2π)N
ei

∑
j kjx

j

=
∏
j

eikjx
j

2π
. (6.217)

In other words, they are variable separated solutions where each factor corresponds to a
basis function from the one-dimensional case.

Example 6.19 Two infinite plates are parallel and a distance h apart. We introduce a
coordinate system such that the first plate is located at x3 = 0 and the second at x3 = h.
The first plate is assumed to be grounded and therefore has an electric potential zero while
the second plate has a non-zero potential V0 whenever ρ < r0 in cylinder coordinates, see
Fig. 6.17. The electric potential in the region between the plates then satisfies

(PDE) : −∇2V (ρ, z) = 0, (0 < z < h) (6.218a)

(BC) : V (ρ, 0) = 0, V (ρ, h) = V0θ(r0 − ρ). (6.218b)

Taking the two-dimensional Fourier transform in the x1 and x2 directions, we may write

V (ρ, z) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

Ṽ (~k, z)ei(k1x
1+k2x

2)dk1dk2, (6.219)

where ~k = k1~e1 + k2~e2. Insertion into the differential equation yields the infinite set of
ordinary differential equations

k2Ṽ (~k, z) = ∂2
z Ṽ (~k, z), (6.220)

which in turn implies

Ṽ (~k, z) = A(~k) cosh(kz) +B(~k) sinh(kz), (6.221)
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where k = |~k|. The boundary condition at z = 0 implies Ṽ (~k, 0) = 0 and hence A(~k) = 0,
leaving us with

Ṽ (~k, z) = B(~k) sinh(kz). (6.222)

In order to find an expression for B(~k), we need to make use of the boundary condition at
z = h, for which we have the transform

Ṽ (~k, h) =

∫
ρ<r0

V0ρe
−ikρ cos(φ−θ~k)ρdρ dφ

= 2πV0

∫ r0

0

ρJ0(kρ)dρ =
2πV0r0

k
J1(kr0), (6.223)

where θ~k is the angle between ~k and the x1-axis. In the second step we have used the
integral expression of Eq. (5.140) for the Bessel function J0 and in the third we have used
the relation xJ0(x) = d(xJ1(x))/dx in order to perform the integral. As a consequence, we
find that

B(~k) =
2πV0r0

k

J1(kr0)

sinh(kh)
(6.224)

and therefore

V (ρ, z) =
V0r0

2π

∫
J1(kr0)

k

sinh(kz)

sinh(kh)
ei
~k·~rdk1dk2

= V0r0

∫ ∞
0

J1(kr0)
sinh(kz)

sinh(kh)
J0(kρ)dk, (6.225)

where we again have used the integral expression of the Bessel function J0 to perform the
angular integral. As expected from the rotational symmetry of the problem, the solution
depends only on the coordinates ρ and z. Note that the Fourier transform V̂ (~k, z) also did

not depend on the direction of ~k, but only on the magnitude k.
This example also demonstrates the close connection between the Fourier transform in

two dimensions with the Hankel transform. As our functions did not depend on the angle
φ, the Fourier transform essentially turned into the Hankel transform of order zero. If there
had been an angular dependence, the Fourier transform would have turned into a sum
over several different Hankel transforms, essentially replacing one of the Fourier transform
integrals by a sum. This is directly related to the different, but equivalent, description of
the plane in Cartesian and polar coordinates, respectively.

6.7.1 Mixed series and transforms
In many situations, we will be faced with problems in which the domain of the solution is
infinite in some directions and finite in others. In such cases we can combine a transform
solution in the infinite directions with a series solution in the finite ones. For concreteness,
let us assume that we have a two dimensional eigenvalue problem of the form

(PDE) : L̂u(x, y) = λu(x, y), (6.226a)

(BC) : αau(a, y) + βaux(a, y) = αbu(b, y) + βbux(b, y) = 0, (6.226b)
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where L̂ = f(y)L̂x + L̂y is a sum of one-dimensional Sturm–Liouville operators as in
Eq. (5.104a). We wish to solve this eigenvalue equation on the domain a < x < b and
−∞ < y < ∞. Following the same kind of logic as when we separated the eigenfunctions
of Sturm–Liouville operators on finite domains, the eigenfunctions Xn(x) of L̂x have the
property

L̂xXn(x) = µnXn(x), (6.227)

where µn is the corresponding eigenvalue. Due to the orthogonality of the functions Xn(x),
any function h(x, y) may be expanded in these for a fixed y

h(x, y) =
∑
n

Xn(x)hn(y). (6.228)

We may now consider the Sturm–Liouville operators L̂y,n = L̂y + f(y)µn on the infinite
domain in the y coordinate with corresponding eigenfunctions Ynk(y), where n is the index
belonging to the Sturm–Liouville operator and k a generally continuous parameter denoting
the different eigenfunctions of L̂y,n. We can now write any function of y, in particular the
hn(y), using the transform

hn(y) =

∫
k

h̃n(k)Ynk(y)dk, (6.229)

implying that

h(x, y) =
∑
n

∫
k

h̃n(k)Xn(x)Ynk(y)dk. (6.230)

Note that we have chosen to expand hn(y) in terms of the eigenfunctions of the corre-
sponding L̂y,n. We thus find an expansion of h(x, y) in terms of the eigenfunction products
Xn(x)Ynk(y) that satisfy

L̂Xn(x)Ynk(y) = Xn(x) [f(y)µn + L̂y]︸ ︷︷ ︸
=L̂y,n

Ynk(y) = λnkXn(x)Ynk(y), (6.231)

where λnk is the eigenvalue of Ynk(y) with respect to L̂y,n. These product functions are there-
fore a complete set of eigenfunctions satisfying the eigenvalue equation given in Eq. (6.226a).
The expansion functions h̃n(k) are the combined transforms and series coefficients.

While the above discussion deals with a two-dimensional situation, the generalisation
to more than two dimensions is straightforward. Each of the infinite directions will then
correspond to a transform and each of the finite directions to a series.

Example 6.20 In a long canal with stationary water, an amount Q of a substance is
released at time t = 0 in the middle of the canal. If we assume that the substance diffuses
with diffusivity D, that the width of the canal is h, and approximate the canal to be of
infinite length, the concentration u(x, y, t) of the substance will satisfy the relations

(PDE) : ut(x, y, t)−D∇2u(x, y, t) = 0, (6.232a)

(BC) : uy(x, 0, t) = uy(x, h, t) = 0, (6.232b)

(IC) : u(x, y, 0) = Qδ(x)δ(y − h/2). (6.232c)

We have here introduced a coordinate system according to Fig. 6.18 and assumed that no
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Q h

x

y

Figure 6.18 An amount Q of a substance is released in the middle of a canal with stationary
water and allowed to diffuse. We introduce a coordinate system such that −∞ < x < ∞ and
−h/2 < y < h/2.

substance will flow out of the canal at the boundaries. For each fixed t, we can express the
concentration as

u(x, y, t) =
1

2π

∑
n

∫
k

ũn(k, t) cos(κny)eikxdk, (6.233)

i.e., as an expansion in the eigenfunctions cos(κny)eikx/2π of the Laplace operator, which
satisfy

− 1

2π
∇2 cos(κny)eikx = (κ2

n + k2)
1

2π
cos(κny)eikx, (6.234a)

with corresponding eigenvalue
λn(k) = κ2

n + k2, (6.234b)

where κn = πn/h. After solving the ordinary differential equations resulting from insertion
into the problem, we find that

ũn(k, t) = ũn(k, 0)e−Dλn(k)t. (6.235)

As usual, the initial conditions ũn(k, 0) may be found by expressing the original initial
condition in terms of the function basis as well. We find that

ũn(k, 0) =
1

Nn

∫ ∞
x=−∞

∫ h

y=0

Qδ(x)δ(y − h/2) cos(κny)e−ikxdxdy

=
Q

Nn
cos(πn/2), (6.236)

where Nn = (1+δ0n)h/2 is a normalisation factor based on the normalisation of cos(0y) = 1
being different from the normalisation of the other eigenfunctions in the y-direction. All in
all, the concentration is given by the function

u(x, y, t) =
Q

2π

∑
n

cos(κny) cos(πn/2)

Nn

∫
k

eikxe−Dλn(k)tdk. (6.237)

The integral part of this solution may be performed in the same way as for Example 6.18.

In some situations, different sets of coordinates on the same domain may lead to different
numbers of coordinates giving rise to transforms instead of series. An example of this occurs
when we consider an infinite two-dimensional plane. If we introduce Cartesian coordinates
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xi on the plane, the eigenfunctions of the Laplace operator will be of the form

f~k(~x) =
1

4π2
ei
~k·~x =

1

4π2
ei(k1x

1+k2x
2), (6.238)

with eigenvalue λ(~k) = ~k 2. The parameters ki are both continuous, leading to a two-
dimensional Fourier transform.

If we instead choose to use polar coordinates ρ and φ, we obtain a periodic Sturm–
Liouville problem in the angular direction when computing the eigenfunctions, while the
radial direction results in different Bessel functions. The eigenfunctions are therefore of the
form

gn,k(ρ, φ) = Jn(kρ)einφ, (6.239)

where n is any integer and the corresponding eigenvalues are λn(k) = k2.
An important observation here is that the resulting function bases span the same vector

space and are all eigenfunctions of the same operator. In particular, this implies that the
subspaces with the same eigenvalues of the Laplace operator must be the same as well.
Consequently, it should be possible to express any of the functions f~k(x, y) solely in terms
of the functions gn,k(ρ, φ) that have the same eigenvalue. In other terms, we should be able
to write

1

4π2
ei
~k·~x =

∑
n

An(~k)Jn(kρ)einφ. (6.240)

This looks stunningly familiar. If we look at the special case of ~k = k~e2 and rewrite the
left-hand side in polar coordinates, we find that

1

4π2
eikρ sin(φ) =

∑
n

An(k~e2)Jn(kρ)einφ. (6.241)

This is nothing but the expansion of the function ei
√
λx2

/4π2 in terms of the polar functions
eiπnφ as given in Eq. (5.138), where we found the expansion coefficients to satisfy Bessel’s
differential equation and giving us the integral representation of the Bessel functions in
Eq. (5.140). We therefore find that An(k~e2) = 1/4π2. The value of An(~k) for a general

vector ~kα = k[cos(α)~e1 + sin(α)~e2] can be found through the relation

~kα · ~x = kρ cos(φ− α) = kρ sin(φ− α+ π/2) (6.242)

leading to

1

4π2
ei
~kα·~x =

1

4π2

∑
n

Jn(kρ)ein(φ−α+π/2) =
1

4π2

∑
n

ine−inαJn(kρ)einφ (6.243a)

and thus

An(~kα) =
in

4π2
e−inα. (6.243b)

The relation may also be inverted in order to express the functions gn,k(ρ, φ) in terms of
the f~k(x, y), see Problem 6.48.

6.8 DISCRETE AND CONTINUOUS SPECTRA
When we consider operators of the Sturm–Liouville form

L̂ = − 1

w(x)
[∂xp(x)∂x − q(x)] , (6.244)
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we have seen that the spectrum depends on the functions p(x), q(x), and w(x). In particular,
we have seen that the spectrum is discrete for regular Sturm–Liouville problems and that it
may be continuous for singular problems, such as the one resulting from studying L̂ = −∂2

x

on the entire real line. However, we have also seen that even if the domain is infinite,
this does not necessarily imply that the spectrum is continuous. An example of this is the
Hermite functions we encountered in Section 5.5.3.

In addition to the cases where the spectrum is discrete and continuous, respectively,
there are some cases in which the spectrum has a continuous as well as a discrete part.
These situations occur when the regularity conditions on the eigenfunctions along with the
differential equation itself imply that the eigenvalues must take a particular form for some
range of eigenvalues.

Example 6.21 The above is best illustrated by an example. We consider the situation
where a substance is diffusing in a medium with diffusivity D and there is a source located
at x = 0. If the source production per time unit is proportional to the concentration of the
substance at the source, then the concentration u(x, t) will satisfy the partial differential
equation

(PDE) : ut(x, t)−Duxx(x, t) = κ0u(x, t)δ(x), (6.245)

where κ0 is a constant and we also impose the regularity condition that the concentration
should be finite at infinity. If we can find the eigenfunctions of the operator

L̂ = −∂2
x −

κ0

D
δ(x), (6.246)

then we may solve this problem using the same methods that we have already discussed
in this chapter. Taking our usual approach, we start searching for the eigenfunctions by
writing down the eigenvalue equation

L̂X(x) = −X ′′(x)− κ0

D
δ(x)X(x) = λX(x). (6.247)

For all x 6= 0, the second term in the middle step equals zero due to the δ function and we
find the solutions

X±(x) = A±e
i
√
λx +B±e

−i
√
λx, (6.248)

where X+(x) is the solution in the region x > 0 and X−(x) is the solution in the region
x < 0. The overall solution may be written as

X(x) = X+(x)θ(x) +X−(x)θ(−x), (6.249)

where θ(x) is the Heaviside step function. Taking the derivatives of the solution, we find
that

X ′(x) = X ′+(x)θ(x) +X ′−(x)θ(−x) + δ(x)[X+(0)−X−(0)], (6.250a)

X ′′(x) = X ′′+(x)θ(x) +X ′′−(x)θ(−x) + δ(x)[X ′+(0)−X ′−(0)]

+ δ′(x)[X+(0)−X−(0)], (6.250b)

where we have used the fact that δ(x)f(x) = δ(x)f(0). Furthermore, we know that X ′′±(x) =
−λX±(x) and therefore

X ′′(x) = −λX(x) + δ(x)[X ′+(0)−X ′−(0)] + δ′(x)[X+(0)−X−(0)]. (6.251)
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Comparing with the original partial differential equation, we must therefore have

X+(0) = X−(0) ≡ X(0), (6.252a)

X ′+(0)−X ′−(0) = −κ0

D
X(0). (6.252b)

For λ = 0, these equations cannot be satisfied simultaneously as both solutions X±(x)
would be constants, while for λ = k2 > 0, we find that

A+ +B+ = A− +B−, (6.253a)

ik
D

κ0
(A+ −A− −B+ +B−) = −A+ −B+. (6.253b)

This system of equations has the non-trivial solutions

A− = A+ −
iκ0

2kD
(A+ +B+), (6.254a)

B− = B+ +
iκ0

2kD
(A+ +B+), (6.254b)

indicating the existence of two independent solutions for each value of k.
So far, the treatment has been analogous to that made for the operator −∂2

x in the
sense that we have studied the case λ > 0 and found a continuous spectrum. The real
difference appears when we try to find solutions for λ = −k2 < 0. In this situation, we
found no eigenfunctions of −∂2

x that were bounded at the infinities. However, in this case,
the solutions are of the form

X±(x) = A±e
kx +B±e

−kx. (6.255)

The condition of X(x) being bounded at the infinities now implies that A+ = B− = 0 and
the conditions we found for satisfying the differential equation at x = 0 become

A− = B+, (6.256a)

−kB+ − kA− = −κ0

D
B+. (6.256b)

This set of equations has a non-trivial solution only if

k =
κ0

2D
(6.257)

and so the only allowed eigenvalue for λ < 0 is

λ0 = − κ2
0

4D2
. (6.258)

This represents a single isolated eigenvalue and therefore a discrete part of the spectrum.
The general solution to the problem may now be written as a linear combination of all

of the eigenfunctions

u(x, t) = A0(t)e−κ0|x|/2D +

∫ ∞
0

[A(k, t)Xk(x) +B(k, t)X−k(x)]dk, (6.259)

where Xk(x) and X−k(x) represent the two independent eigenfunctions with eigenvalue
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X(x)

x

Figure 6.19 The shape of the eigenfunction corresponding to the discrete eigenvalue λ0 = −κ2
0/4D

2

is shown as a solid curve. Two eigenfunctions in the continuous spectrum are also shown, one
symmetric (dotted) and one anti-symmetric (dashed) both corresponding to the same eigenvalue.

λ = k2 > 0. While the amplitudes A(k, t) and B(k, t) correspond to eigenfunctions with
positive eigenvalues and will therefore decay exponentially with time

A(k, t) = A(k, 0)e−Dk
2t, B(k, t) = B(k, 0)e−Dk

2t, (6.260)

the solution with a negative eigenvalue λ0 results in an exponentially increasing solution
for A0(t)

A0(t) = A0(0)eκ
2
0t/4D. (6.261)

As a consequence, we can draw the conclusion that having a point production of a sub-
stance proportional to the concentration of the substance itself will generally lead to the
concentration increasing exponentially and that the distribution of the substance will have
the shape e−κ0|x|/2D. This is illustrated in Fig. 6.19.

In the example above, we found only one eigenfunction in the discrete spectrum, but
generally the discrete part of the spectrum may contain more than one eigenfunction (see
Problem 6.53). Operators with a combination of continuous and discrete spectra are of
high relevance in quantum mechanics, where the discrete spectrum will correspond to bound
states while the continuous part of the spectrum will correspond to free states (or scattering
states).

In general, for an operator with a discrete spectrum with corresponding eigenfunctions
Xn(~x) and a continuous spectrum with corresponding eigenfunctions X~k(~x), any expansion
in terms of the eigenfunctions will include both the discrete and the continuous part of the
spectrum. The expansion of a function f(~x) will in this case be of the form

f(~x) =
∑
n

fnXn(~x) +

∫
K
f̂(k)X~k(~x)dK. (6.262)
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6.9 PROBLEMS
Problem 6.1. A long heat-isolated rod with heat diffusion coefficient a and length ` is
being kept at the temperature T = 0 at x = 0. The end at x = ` is in contact with a
thermal bath with increasing temperature such that T (`, t) = αt2. If the temperature in
the rod is initially given by T (x, 0) = 0, find and expression for the temperature T (x, t) for
an arbitrary position at an arbitrary time t > 0.

Problem 6.2. Consider a string with length ` that is fixed at its endpoints at x = 0 and
x = ` and originally at rest in the stationary state. At time t = 0, a total transversal impulse
p0 is added to the string in a small region around x = x0. Compute the resulting quotient
between the amplitudes of the fundamental angular frequency and the first overtone as a
function of x0.

Problem 6.3. A membrane shaped as a wedge with a circular edge can be described by
the polar coordinates 0 < ρ < r0 and 0 < φ < φ0. Assume that the membrane is fixed at its
borders and placed in an external gravitational field that is orthogonal to the membrane.
Determine the transversal displacement of the membrane in the stationary state if its surface
density is ρA and its surface tension is σ. Your answer may contain a single integral of a
Bessel function.

Problem 6.4. Determine the transversal motion u(x, t) of a string with wave velocity c
that is fixed at its endpoints at x = 0 and x = ` and at time t = 0 satisfies the initial
conditions

(IC) : u(x, 0) =

{
3εx` , (0 < x < `

3 )

3ε `−x2` , ( `3 ≤ x < `)
(6.263a)

ut(x, 0) = 0. (6.263b)

Problem 6.5. In a very long cylindrical conductor, the conductivity σ is related to the
temperature T of the conductor as

σ = σ0 − µT, (6.264)

where σ0 and µ are positive constants of suitable physical dimension. The heat production κ
in the conductor is given by κ = σE2, where E is a constant electric field and the cylinder’s
surface is kept at the constant temperature T = 0. Determine the stationary temperature
in the conductor, which may be assumed to have a radius r0.

Problem 6.6. The electric potential V (r, θ) between two concentric spherical shells of
radius r1 and r2, respectively, where 0 < r1 < r2, with no charge in between them satisfies
the differential equation

(PDE) : ∇2V (r, θ) = 0, (r1 < r < r2) (6.265a)

(BC) : V (r1, θ) = α
3 cos2(θ)− 1

r3
1

, V (r2, θ) = V0 cos(θ), (6.265b)

where we have used the rotational symmetry of the problem to conclude that V cannot
depend on the azimuthal angle ϕ. Determine the physical dimension of the constant α and
compute the potential as a function of r and θ.
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Problem 6.7. A conducting spherical shell of radius r0 is grounded, resulting in a potential
V = 0 on the shell. Inside the shell there is a charge distribution given by the charge density

ρ = ρ0
r(r0 − r)

r2
0

cos(θ). (6.266)

The potential inside the shell satisfies Poisson’s equation

(PDE) : −∇2V =
ρ

ε0
. (6.267)

Find an expression for the potential as a function of the position.

Problem 6.8. On a spherical shell of radius r0 in three dimensions, the electric potential is
kept at V0 when x3 > 0 and at −V0 when x3 < 0. Compute the resulting potential outside
of the shell r > r0. What is the dominating contribution when r → ∞? You may assume
that the potential should go to zero in this limit.

Problem 6.9. A string of length ` is fixed at x = 0 and is attached to a massless ring that
moves freely without friction in the transversal direction at x = `. A force F0 is applied at
the point 0 < x0 < `.

a) Determine the stationary state of the string.

b) At time t = 0 the force ceases to act on the string. Determine the ensuing transversal
movement of the string.

You may assume that the tension in the string S and its linear density ρ` are both constant
along the string and that the force F0 is small enough for the transversal displacement to
be small.

Problem 6.10. A substance is allowed to diffuse in the one-dimensional region 0 < x < `.
The concentration of the substance at x = 0 and x = ` is kept at the concentration c0 and
at the time t = t0 > 0, a source starts producing the substance with a constant rate at the
point x = x0. At time t = 0, the the concentration of the substance is c0 inside the entire
region. This situation can be described by the differential equation

(PDE) : ut(x, t)−Duxx(x, t) = c0ξδ(x− x0)θ(t− t0), (6.268a)

(BC) : u(0, t) = u(`, t) = c0, (6.268b)

(IC) : u(x, 0) = c0, (6.268c)

where u(x, t) is the concentration at the point x at time t, ξ a constant, and θ is the
Heaviside step function. Determine the physical dimension of the constant ξ and compute
the concentration u(x, t) for arbitrary t > 0 and 0 < x < `.

Problem 6.11. A cylindrical glass contains a water solution of a substance with homo-
geneous concentration c0 and depth `0. At the time t = 0, pure water is added on top of
the solution without inducing any relevant convective currents such that the total depth is
now ` > `0. Determine the concentration of the substance as a function of the depth and
time assuming that it satisfies the diffusion equation with diffusivity D and no substance
diffuses out of the glass.

Problem 6.12. The electric potential on a sphere of radius r0 is kept at V (r0, θ) =
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V0 cos(2θ). In addition, the interior of the sphere contains a charge density ρ = ρ0j0(πr/r0)
such that the potential fulfils

(PDE) : −∇2V (r, θ) =
ρ0

ε0
j0

(
πr

r0

)
, (6.269a)

(BC) : V (r0, θ) = V0 cos(2θ). (6.269b)

Use the superposition principle to rewrite this as two problems, where one problem has
inhomogeneous boundary conditions and a homogeneous differential equation, while the
other problem has homogeneous boundary conditions and an inhomogeneous differential
equation. Solve the resulting differential equations in order to to find the electric potential.

Problem 6.13. Consider heat conduction in one dimension where the initial and boundary
conditions are such that the temperature T (x, t) satisfies

(PDE) : Tt(x, t)− aTxx(x, t) = κ0δ(x− x0), (0 < x < `) (6.270a)

(BC) : T (0, t) = T (`, t) = T1, (6.270b)

(IC) : T (x, 0) = T2. (6.270c)

Solve this differential equation to find the temperature T (x, t).

Problem 6.14. In an infinitely extended uranium plate of thickness h, the neutron density
n(~x, t) satisfies the differential equation

(PDE) : nt(~x, t)− a∇2n(~x, t) = λn(~x, t), (0 < x3 < h) (6.271a)

(BC) : n(~x, t) = 0. (x3 = 0, h) (6.271b)

Determine the maximal thickness of the plate such that n(~x, t) does not grow exponentially
with time.

Problem 6.15. A heat source is placed In the middle of a quadratic metal plate with
heat diffusivity a and side length `. The plate is otherwise heat isolated apart from at two
adjacent sides, where it has the temperatures T1 and T2, respectively. The temperature
T (x1, x2, t) then satisfies the partial differential equation problem

(PDE) : Tt(~x, t)− a∇2T (~x, t) = κ0δ
(2)(~x− ~x0), (0 < x1, x2 < `) (6.272a)

(BC) : T (`~e1 + x2~e2, t) = T1, T (x1~e1 + `~e2, t) = T2,

∂1T (x2~e2, t) = ∂2T (x1~e1, t) = 0, (6.272b)

where ~x0 = `(~e1 + ~e2)/2. Find the stationary temperature in the plate.

Problem 6.16. In a rocket in free fall, a metal rod of length ` is attached to one of the walls.
At time t = 0, the rocket engines ignite, resulting in the rocket accelerating with an accel-
eration a in the longitudinal direction of the rod, see Fig. 6.20. The resulting longitudinal
displacement of the rod from the initial position u(x, t) satisfies the wave equation

(PDE) : utt(x, t)− c2uxx(x, t) = 0. (6.273a)

The boundary and initial conditions are given by

(BC) : u(0, t) =
at2

2
, ux(`, t) = 0, (6.273b)

(IC) : u(x, 0) = ut(x, 0) = 0, (6.273c)
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x

u(x, t)

Figure 6.20 A rod inside a rocket originally at rest that starts moving with constant acceleration
a at time t. The displacement of the rod is described by the differential equation to be solved in
Problem 6.16.

where the first boundary condition comes from the acceleration of the rod’s contact point
with the rocket and the second from using that no force acts on the rod’s free end. Find an
expression for u(x, t).

Problem 6.17. On a half-sphere with radius r0, the flat surface is kept at temperature T0

while the spherical surface has temperature T1. Determine the stationary temperature in
the half-sphere under the assumption that it does not contain any heat source. Your final
answer may contain the integral

P̄m` =

∫ 1

−1

Pm` (ξ)dξ (6.274)

but all other integrals should be computed.

Problem 6.18. The wave equation for oscillations on a spherical shell of radius r0 is given
by

(PDE) : utt(θ, ϕ, t) +
c2

r2
0

Λ̂u(θ, ϕ, t) = 0, (6.275)

where c is the wave velocity and Λ̂ is the angular part of −∇2. Determine the resulting
natural angular frequencies and eigenmodes.

Problem 6.19. A substance is allowed to diffuse on a spherical surface with radius r0. The
surface can be parametrised by the spherical coordinates θ and ϕ and the resulting diffusion
can be described by the differential equation

(PDE) : ut(θ, ϕ, t) +
D

r2
0

Λ̂u(θ, ϕ, t) = 0, (6.276a)

where u(θ, ϕ, t) is the concentration of the substance, D is the diffusivity, and Λ̂ is the
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angular part of −∇2. Assuming that an amount Q of the substance is initially located at
the point given by θ = θ0 and ϕ = ϕ0, the initial condition is given by

(IC) : u(θ, ϕ, 0) =
Q

r2
0 sin(θ0)

δ(θ − θ0)δ(ϕ− ϕ0). (6.276b)

Compute the concentration u(θ, ϕ, t).

Problem 6.20. Consider the situation with a circular membrane of radius r0 suspended
orthogonal to the direction of acceleration in the rocket of Problem 6.16 with its boundary
fixed relative to the rocket. If the membrane is initially at rest, its transversal displacement
u(ρ, t) satisfies the partial differential equation

(PDE) : utt(ρ, t)− c2∇2u(ρ, t) = 0, (ρ < r0) (6.277a)

(BC) : u(r0, t) =
at2

2
, (6.277b)

(IC) : u(ρ, 0) = ut(ρ, 0) = 0, (6.277c)

where ρ is the radial polar coordinate. Compute the transversal displacement u(ρ, t). We
have here used the rotational symmetry of the problem to deduce that u(ρ, t) cannot depend
on the polar angle.

Problem 6.21. One end of a string with length ` is kept fixed and the other is allowed to
move freely in the transversal direction, but with a constant applied force F . The resulting
transversal displacement u(x, t) satisfies the differential equation

(PDE) : utt(x, t)− c2uxx(x, t) = 0, (0 < x < `) (6.278a)

(BC) : u(0, t) = 0, ux(`, t) =
F

S
, (6.278b)

(IC) : u(x, 0) = ut(x, 0) = 0, (6.278c)

where we have assumed that the string is initially at rest in a horizontal position. Find an
expression for the transversal displacement of the string at times t > 0.

Problem 6.22. In a heat-isolated metal rod with constant cross-sectional area and length
`, the temperature T (x, t) satisfies the heat equation

(PDE) : Tt(x, t)− aTxx(x, t) = 0, (6.279)

where a is constant. For times t < 0, the ends of the rod are kept at the temperatures
T (0, t) = T1 and T (`, t) = T2, respectively.

a) Find the stationary temperature in the rod for times t < 0.

b) Assuming that the rod has reached the stationary temperature and that the heat bath
keeping the end at x = ` at T2 is removed at t = 0, instead resulting in that end being
heat-isolated, compute the resulting temperature in the rod T (x, t) for t > 0.

Problem 6.23. Under some circumstances, acoustic oscillations in an ideal gas can be
described with a velocity potential φ such that the velocity is given by ~v = −∇φ, which
satisfies the three-dimensional wave equation. At a fixed wall, the potential satisfies the
Neumann boundary condition ~n ·∇φ = 0. If such a gas is enclosed in a cylinder of radius r0

and height h, determine the relation between r0 and h such that the fundamental angular
frequency is degenerate.
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Problem 6.24. A spherical cavity of radius r2 is filled with a gas such that pressure waves
propagate with speed c. Find a condition that the natural angular frequencies have to satisfy
if a small and heavy ball of radius r1 < r2 is suspended in the middle of the cavity. The
ball is heavy enough to assume that it is not significantly displaced by the pressure waves.
Hint: At the boundaries, the pressure can be assumed to satisfy homogeneous Neumann
boundary conditions.

Problem 6.25. A sphere of radius r0 made out of a metal alloy contains a homogeneous
distribution of a radioactive material that decays with decay constant λ. As a result, there is
a homogeneous heat production in the sphere declining exponentially with time. If the sphere
initially has the temperature T0, the temperature in the sphere satisfies the inhomogeneous
heat equation

(PDE) : Tt(r, t)− a∇2T (r, t) = κ0e
−λt, (r < r0) (6.280a)

(BC) : T (r0, t) = T0, (6.280b)

(IC) : T (r, 0) = T0, (6.280c)

where we have assumed that the boundary of the sphere is kept at temperature T0 and
used that the temperature is then rotationally symmetric in order to deduce that it is
independent of the angular spherical coordinates. Compute the temperature T (r, t) at an
arbitrary radius and time.

Problem 6.26. The neutron density n(~x, t) in a homogeneous uranium cylinder can be
assumed to satisfy the diffusion equation with a source term proportional to the neutron
density itself

(PDE) : nt − a∇2n = λn, (6.281)

where λ is the rate at which a neutron reaction with the cylinder creates another neutron.
Determine the condition on the cylinder’s radius r0 and height h such that the neutron
density does not grow exponentially. The neutron density can be assumed to satisfy homo-
geneous Dirichlet boundary condition at the surface of the cylinder.

Problem 6.27. In a homogeneous uranium ball of radius r0, the neutron density n(~x, t)
satisfies the differential equation

(PDE) : nt − a∇2n = λn+ κ(~x, t), (6.282)

as in Problem 6.26 apart from an additional source term κ(~x, t). The neutron density is also
assumed to satisfy homogeneous Dirichlet boundary conditions, indicating that neutrons
reaching the surface are efficiently transported away. Determine the critical radius rc such
that the neutron density will grow exponentially if r0 > rc. In addition, assume that a point
source producing neutrons at a rate K is placed in the middle of the sphere. Determine
the neutron flux out of the sphere in the stationary case when r0 < rc. Hint: For a point
source with rate K at r = 0, it is expected that the neutron density should diverge as
n(r)→ K/(4πar) as r → 0.

Problem 6.28. A certain type of bacteria moves randomly within a spherical cheese (with-
out holes) of radius r0. The bacterial concentration u(~x, t) then satisfies the diffusion equa-
tion with diffusivity D. If we assume that the bacteria undergo binary fission with a rate
k and that they die instantly when in contact with the air, the time evolution of their
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concentration is given by

(PDE) : ut(~x, t)−D∇2u(~x, t) = ku(~x, t), (r < r0) (6.283a)

(BC) : u(~x, t) = 0, (r = r0) (6.283b)

(IC) : u(~x, t) = u0, (r < r0) (6.283c)

where the initial bacterial concentration is u0 everywhere and r is the radial spherical
coordinate. Determine the distribution of bacteria in the cheese at any given time t.

Problem 6.29. The flat ends of a homogeneous metal cylinder with height h and radius
r0 are heat isolated and its bent surface is kept at the temperature

(BC) : T (r0, z) = T0 sin2
(πz
h

)
. (6.284)

Compute the stationary temperature distribution inside the cylinder in the absence of heat
sources in the cylinder itself.

Problem 6.30. Smoke with a temperature T1 is being released from a cylindrical chimney
of inner radius r1, outer radius r2, and height h. Outside of the chimney, the temperature
is constant at T0 and the bottom of the chimney is kept heat isolated. After a long time,
this leads to the stationary problem

(PDE) : ∇2T (ρ, z) = 0, (6.285a)

(BC) : T (r1, z) = T1, Tz(ρ, 0) = 0, T (r2, z) = T (ρ, h) = T0, (6.285b)

for the temperature T (ρ, z) in the chimney walls, where ρ and z are cylinder coordinates and
the solution does not depend on the cylinder coordinate φ due to the rotational symmetry
of the problem. Find an expression for the temperature T (ρ, z).

Problem 6.31. A homogeneous steel cylinder of radius r0 and height h is heated to a
temperature T1. At time t = 0 it is lowered into an oil bath with constant temperature T0.
Assume that the surface of the cylinder immediately takes the temperature of the oil bath
and determine the temperature in the cylinder as a function of position and time. Introduce
any additional physical constants that are relevant to your solution and determine their
physical dimension.

Problem 6.32. In Example 3.31, we considered the stationary flow of an incompressible
fluid inside a cylindrical pipe subjected to a pressure gradient p0/`. The differential equation
we derived was only affected by the assumption of the constant cross section and can
therefore be used also in the case of a rectangular cross section. Adding no-slip conditions
at the boundaries, the velocity v(x1, x2) of the stationary flow then satisfies

(PDE) : ∇2v =
p0

`µ
, (6.286a)

(BC) : v(0, x2) = v(`1, x
2) = v(x1, 0) = v(x1, `2) = 0, (6.286b)

where `1 and `2 are the side lengths of the cross section and µ the viscosity of the fluid.
Compute the velocity of the stationary flow.

Problem 6.33. A solid spherical container of radius r0 contains an ideal gas. Initially, the
entire container and its contents is travelling with velocity v0~e3. At time t = 0, the container
comes to a sudden halt. The resulting velocity potential φ such that ~v = −∇φ of the gas
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satisfies the wave equation with wave velocity c. Assuming that no gas can flow out of the
container, i.e., that the velocity field is parallel to the surface at the boundary, determine
how the velocity field changes with time. Your result may contain an integral over the radial
coordinate r.

Problem 6.34. One end of a string is attached to a mass m and allowed to move freely in
the transversal direction while the other end of the string is subjected to forced oscillations
with amplitude A and angular frequency ω. As long as the transversal oscillations u(x, t)
are small, they can then be described by the partial differential equation

(PDE) : utt(x, t)− c2uxx(x, t) = 0, (0 < x < `) (6.287a)

(BC) : mutt(0, t) = Sux(0, t), u(`, t) = A sin(ωt), (6.287b)

where S is the string tension and c the wave velocity in the string. Determine the steady
state solution that oscillates with the angular frequency ω.

Problem 6.35. A circular membrane of area density ρA and surface tension σ is clamped
into a ring of radius r0 that is undergoing forced periodic motion with amplitude A and
angular frequency ω in the direction perpendicular to the membrane. At time t = 0 the
membrane is at rest, resulting in the problem

(PDE) : utt(ρ, t)− c2∇2u(ρ, t) = 0, (ρ < r0) (6.288a)

(BC) : u(r0, t) = A sin(ωt), (6.288b)

(IC) : u(ρ, 0) = ut(ρ, 0) = 0, (ρ < r0) (6.288c)

for its transversal displacement u(ρ, t), where c2 = σ/ρA. Note that u(ρ, t) does not depend
on the polar coordinate φ due to the rotational symmetry of the problem. Determine the
function u(ρ, t) assuming that ω does not coincide with any of the natural angular fre-
quencies of the membrane. Note that this is a particular realisation of Problem 3.30 with
additional initial conditions

Problem 6.36. The oscillatory pressure from a sound wave of angular frequency ω provides
a spatially homogeneous force density on a circular membrane with wave velocity c such
that the resulting transversal oscillations satisfy the differential equation

(PDE) : utt(ρ, φ, t)− c2∇2u(ρ, φ, t) = f0 sin(ωt), (6.289a)

(BC) : u(r0, φ, t) = 0, |u(0, φ, t)| <∞. (6.289b)

We have here assumed that the membrane radius is r0 and used polar coordinates. Find
the amplitude of the oscillations at r = 0 for the steady state solution. You may assume
that ω does not coincide with any of the membrane’s natural angular frequencies.

Problem 6.37. Inside a spherical shell of radius r0, the excess pressure p(r, θ, ϕ, t) satisfies
the wave equation

(PDE) : ptt − c2∇2p = 0, (6.290a)

where c is the wave velocity. Assume that the shell is vibrating in such a fashion that the
boundary condition is given by

(BC) : p(r0, θ, ϕ, t) = p0 cos3(θ) sin(ωt), (6.290b)

where ω does not coincide with any of the natural angular frequencies of the system. Find
the steady state solution for the resulting oscillations.
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Problem 6.38. A string of length `, linear density ρ`, and tension S is initially at rest
in the equilibrium position. At time t = 0, a periodic force density is applied to the string
such that the transversal displacement satisfies

(PDE) : utt(x, t)− c2uxx(x, t) = A cos(ωt), (0 < x < `) (6.291a)

(BC) : u(0, t) = u(`, t) = 0, (6.291b)

(IC) : u(x, 0) = ut(x, 0) = 0, (0 < x < `) (6.291c)

where c =
√
S/ρ` is the wave velocity. Find an expression for the resulting transversal

displacement assuming that ω does not coincide with any of the natural angular frequencies
of the system. How does the solution for an eigenmode change if ω does coincide with its
natural angular frequency?

Problem 6.39. In the one-dimensional region 0 < x < `, a physical quantity u(x, t) is
determined by the differential equation (see, e.g., Problem 3.24)

(PDE) : utt(x, t)− c2uxx(x, t) +m2c4u(x, t) = 0, (6.292a)

(BC) : ux(0, t) = ux(`, t) = 0, (6.292b)

where m is a constant of appropriate physical dimensions. Determine the possible natural
angular frequencies of the resulting oscillations. What is the fundamental angular frequency
of the system?

Problem 6.40. Consider a long pipe with circular cross section of radius r0. Inside the
pipe, a physical quantity u(ρ, φ, z, t) satisfies the wave equation with homogeneous Dirichlet
boundary conditions. Using cylinder coordinates with the z-coordinate in the pipe direction,
we impose the boundary condition

(BC) : u(ρ, φ, 0, t) = u0 sin(ωt) (6.293)

on one of the cylinder ends. Determine the lowest angular frequency ω such that the steady
state solution is a wave propagating in the z-direction. Hint: Examine what happens to the
steady state solution in the z-direction for low angular frequencies.

Problem 6.41. The transversal displacement of a quadratic membrane with side length `
satisfies the damped wave equation

(PDE) : utt + 2kut − c2∇2u = 0 (6.294)

with homogeneous Dirichlet boundary conditions. Determine the number of overdamped
oscillation modes if the damping constant k is three times larger than the fundamental
angular frequency of the membrane. Repeat the same computation for a circular membrane
of radius r0.

Problem 6.42. For the situations described in Problem 6.41, determine the amplitudes
Anω

2
n/Fn and phase shifts φn for the steady states of the first three lowest natural angular

frequency modes when a driving force with angular frequency ω acts homogeneously over
the entire membrane. Assume that ω is five times the fundamental angular frequency of the
membrane.

Problem 6.43. Assume that the excess pressure in a cylinder satisfies the damped wave
equation

(PDE) : ptt + 2kpt − c2pxx = 0. (6.295a)
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We can find the natural angular frequencies of the system by placing a sinusoidal tone
generator at one of the cylinder ends, leading to the boundary conditions

(BC) : px(0, t) = 0, p(`, t) = A sin(ωt), (6.296)

where we have assumed that the pressure gradient is zero at the other end. Determine the
resulting amplitude of the nth eigenmode when the driving angular frequency ω coincides
with the resonant angular frequency of that eigenmode. Assume that the damping is very
weak, i.e., k � ωn.

Problem 6.44. We have already discussed the Fourier sine transform in detail, resulting in
the transform and inverse transform expressions of Eqs. (6.198). This discussion assumed a
homogeneous Dirichlet boundary condition at x = 0. Derive the corresponding expressions
for the Fourier cosine transform, which results from the same problem with the Dirichlet
condition replaced by a homogeneous Neumann condition. Also show that the Fourier cosine
transform may be used to describe functions that are even under the transformation x →
−x.

Problem 6.45. A circular membrane with radius r0 and wave speed c is elastically bound
to its equilibrium position by a force density f = −κu, where u(ρ, φ, t) is its transversal
displacement that satisfies the wave equation

(PDE) : utt − c2∇2u = − κ

ρA
u, (ρ < r0) (6.297a)

(BC) : u(r0, φ, t) = 0, |u(0, φ, t)| <∞. (6.297b)

We have here assumed that the membrane is fixed at its edge ρ = r0. Find the natural
angular frequencies of the membrane’s oscillations.

Problem 6.46. The end of a very long heat-isolated rod is subjected to a periodically
varying temperature T0(t). The resulting temperature in the rod follows the heat equation

(PDE) : Tt(x, t)− aTxx(x, t) = 0, (x > 0) (6.298a)

(BC) : T (0, t) = T0(t), (6.298b)

and T (x, t)→ 0 when x→∞. The periodicity requirement T0(t+ t0) = T0(t) implies that
the inhomogeneity can be expanded in a Fourier series

T0(t) =

∞∑
n=−∞

τne
iωnt, (6.299)

where ωn = 2πn/t0. Use the superposition principle to find the solution for each term
in this sum separately and thereby find the full solution to the problem. Hint: For the
inhomogeneity proportional to eiωnt, assume that the resulting solution has the same time
dependence and therefore is of the form un(x, t) = Xn(x)eiωnt. You should also require that
the temperature is bounded as x→∞.

Problem 6.47. For a general function f(x), define f̃c(k) and f̃s(k) as the Fourier cosine
and sine transforms of its even and odd parts, respectively. Find the relation between the
Fourier transform f̃(k) and the Fourier cosine and sine transforms.

Problem 6.48. In an infinite two-dimensional plane, we have already seen how the Fourier

transform basis functions f~k(~x) = ei
~k·~x/(4π2) may be expressed in terms of the Hankel

transform basis functions gn,k(ρ, φ) = Jn(kρ)einφ. Invert this relation by finding an expres-
sion for gn,k(ρ, φ) in terms of the functions f~k(~x).
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Problem 6.49. A substance is allowed to diffuse inside an infinite cylinder with radius
r0 and diffusivity a. The substance is initially contained in a thin region around z = 0 in
cylinder coordinates and is efficiently transported away at the cylinder boundary, resulting
in the problem

(PDE) : ut(ρ, φ, z, t)− a∇2u(ρ, φ, z, t) = 0, (0 < ρ < r0) (6.300a)

(BC) : u(r0, φ, z, t) = 0, |u(0, φ, z, t)| <∞, (6.300b)

(IC) : u(ρ, φ, z, 0) = σ0δ(z) (6.300c)

for the concentration u(ρ, φ, z, t) of the substance. Determine the dimensions of the constant
σ0 and solve the partial differential equation using series and transform methods.

Problem 6.50. Consider heat conduction in an infinitely extended thin plate with thick-
ness h. The temperature inside the plate follows the source free three-dimensional heat
equation and the boundary condition is given by Newton’s law of cooling with a surround-
ing temperature T0. Derive a partial differential equation for the average temperature across
the plate thickness and determine this temperature if the temperature at time t = 0 is given
by

(IC) : T (~x, 0) = T0 + κ0δ(x
1)δ(x2), (6.301)

where κ0 is a constant of appropriate dimensions and x1 and x2 are Cartesian coordinates
along the infinite directions of the plate.

Problem 6.51. The temperature in a thin heat-isolated cylindrical shell can be described
by the heat equation

(PDE) : Tt(x, φ, t)− a
[
Txx(x, φ, t) +

1

r2
0

Tφφ(x, φ, t)

]
= κ0δ(x− x0)δ(φ− φ0), (6.302a)

where we have assumed that there is a heat source at the position given by the coordinates
x = x0 and φ = φ0. Due to the cyclicity in the angle φ, the temperature is also 2π periodic,
leading to

(BC) : T (x, φ, t) = T (x, φ+ 2π, t). (6.302b)

Determine the time evolution of the temperature if the temperature at time t = 0 is T0

everywhere on the cylinder. Your final expression may contain a sum and an integral of
quantities that you have computed.

Problem 6.52. In a two-dimensional region given by x1, x2 > 0, a substance is allowed
to diffuse with diffusivity a. At time t = 0, an amount Q is distributed evenly along the
quarter circle ρ = r0 in polar coordinates. Find the resulting concentration if no substance
is allowed to flow through the boundaries x1 = 0 and x2 = 0. Your result may contain a
single variable integral of known functions.

Problem 6.53. Consider the Sturm–Liouville operator

L̂ = − d2

dx2
− 1

x2
0

[θ(x− a)− θ(x+ a)], (6.303)

where a and x0 are constants and we are considering the operator on the entire real line.
Depending on the value of the constants, this operator may have a different number of
discrete eigenvalues in its spectrum. Find how the number of discrete eigenvalues depends
on the ratio a/x0.
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Problem 6.54. In Example 6.21 we concluded that the operator on the form

L̂ = − d2

dx2
− aδ(x), (6.304)

had one discrete eigenvalue λ0 < 0 and computed the corresponding eigenfunction X0(x) =
e−a|x|/2. Use the derived compatibility conditions for the eigenvalues λ > 0 to find explicit
expressions for the eigenfunctions belonging to the continuous part of the spectrum and
verify that these are orthogonal to X0(x).

Problem 6.55. We have already discussed an operator containing a delta distribution in
Example 6.21 and Problem 6.54. Let us now consider an operator containing two delta
distributions

L̂ = − d2

dx2
− a[δ(x− x0) + δ(x+ x0)]. (6.305)

Verify that L̂ commutes with the reflection operator R̂ such that R̂f(x) = f(−x). Use this
result and the results of Problem 5.54 to find the requirement for L̂ having two discrete
eigenvalues.
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C H A P T E R 7

Green’s Functions

Green’s function methods are common occurrences in many areas of physics and engineering.
Sometimes also referred to as an impulse response, they describe how a linear system behaves
when responding to very particular inhomogeneities. In some sense, Green’s functions may
be seen as more physical than partial differential equations when it comes to describing
physical situations as they will tell us directly how the system behaves in response to
inhomogeneities. This being said, there is a close connection between the two and the
Green’s functions will be solutions to linear partial differential equations. One advantage
of using Green’s function methods is that the Green’s function of a system may often be
found by referring to known fundamental solutions to the differential equations in question
by altering the solution in order to account for the particular boundary conditions. This
may be accomplished by using either mirror image or series expansion techniques. Once the
Green’s function is known, the solution to a problem with arbitrary inhomogeneities may
be found by solving an integral.

In addition to solving linear problems, Green’s function methods may also be employed
to solve non-linear systems where the non-linearities may be regarded as small perturbations
to an otherwise linear problem. Looking at this type of perturbative expansions, we will
enter the domain of Feynman diagrams, graphical tools that can be used to represent and
keep track of the different terms in the expansions. For those who wish to study high-
energy particle physics, Feynman diagrams will become an invaluable computational tool
in quantum field theory.

7.1 WHAT ARE GREEN’S FUNCTIONS?
At this level of physics education, even if you have never heard the term Green’s function
you are very likely to have used it extensively when dealing with problems involving gravity
and electrostatics at the high-school level. Let us therefore start our exposition on Green’s
functions with a familiar example.

Example 7.1 The gravitational potential of a point mass is given by

Φ(~x) = −Gm
r
, (7.1)

where m is the mass, r the distance to the mass, and G is Newton’s gravitational constant,
see Fig. 7.1. Since the gravitational potential satisfies Poisson’s equation

∇2Φ(~x) = 4πGρ(~x), (7.2)

401
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Φ(r)r0

GM

r/r0

Figure 7.1 The gravitational potential Φ(r) due to a point source depends only on the distance r
to the source with the well-known 1/r dependence. If we have several sources, the potential can be
found by adding the potential from all of them.

where ρ(~x) is the mass density, which is an inhomogeneous linear differential equation, the
general solution may be written as a sum of the contributions of all small mass elements
dm = ρ(~x) dV . For a continuous mass distribution, the gravitational potential is therefore
given by

Φ(~x) = −G
∫
V

ρ(~x ′)

|~x− ~x ′|
dV ′. (7.3)

In this case, the Green’s function of the problem in question is

g(~x, ~x ′) = − 1

4π |~x− ~x ′|
, (7.4)

which we recognise from Eq. (1.260) as a function satisfying

∇2g(~x, ~x ′) = δ(3)(~x− ~x ′), (7.5)

where the Laplace operator acts on the unprimed coordinates. The solution to Eq. (7.2)
for an arbitrary matter distribution is then the integral over ~x ′ of the Green’s function
multiplied by the inhomogeneity on the right-hand side. That this is the case may be
checked explicitly by applying the Laplace operator to the left-hand side of Eq. (7.3)

∇2Φ(~x) = 4πG

∫
V

ρ(~x ′)∇2g(~x, ~x ′)dV ′ = 4πG

∫
V

ρ(~x ′)δ(3)(~x− ~x ′)dV ′ = 4πGρ(~x). (7.6)

In essence, anyone who finds this example familiar already knows how to apply Green’s
function methods. The same approach is also valid when solving similar problems in elec-
trostatics.

The question we now need to ask ourselves is what property allowed us to just write
down the solution in the above example as an integral involving the Green’s function of the
problem? The answer to this question has two main ingredients. First of all, we were dealing
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with a linear differential operator, in this case in the form of the Laplace operator. This fact
allowed us to construct the solution to a problem involving two different inhomogeneities by
making a superposition of the solutions for the separate inhomogeneities, cf. Section 3.10.
The second key ingredient was that we could find a function that returned a delta function
when the Laplace operator was applied to it, resulting in a very easy integral when we
wished to check that the integral we had written down was really a solution to our problem.

With the above in mind, let us bring these concepts to a more general setting and assume
that we wish to solve an inhomogeneous linear differential equation of the form

(DE) : L̂u(~x) = ρ(~x), (7.7)

where L̂ is a linear differential operator and ρ(~x) the inhomogeneity. For the time being, we
do not specify whether the differential equation is ordinary or partial, as the discussion will
be applicable to both cases, and assume that it is valid in some volume V with a boundary S
on which we assume that the boundary conditions are linear and homogeneous. Later on we
will also have a look at how to deal with inhomogeneities in the boundary conditions. With
the above example in mind, we may look for a Green’s function G(~x, ~x ′) of this problem,
which we define as the solution to the differential equation

(DE) : L̂G(~x, ~x ′) = δ(N)(~x− ~x ′), (7.8)

where N is the dimensionality of V , as well as the homogeneous boundary conditions. Again,
as was the case for our gravity example, the operator L̂ in this equation is taken to act on
the unprimed variable ~x.

Writing down the integral over ~x ′ with an arbitrary function f(~x ′) multiplied by the
Green’s function, we find that

u(~x) =

∫
V

f(~x ′)G(~x, ~x ′)dV ′ (7.9a)

satisfies

L̂u(~x) =

∫
V

f(~x ′)L̂G(~x, ~x ′)dV ′ =

∫
V

f(~x ′)δ(~x− ~x ′)dV ′ = f(~x), (7.9b)

again in complete analogy to the example. By letting f(~x) = ρ(~x), the function u(~x) will
now satisfy the original differential equation in Eq. (7.7). In addition, the homogeneous
boundary conditions will be automatically satisfied by the requirement that the Green’s
function G(~x, ~x ′) satisfies the same homogeneous boundary conditions.

These considerations demonstrate the idea behind Green’s functions. By finding a solu-
tion to a linear differential equation with a delta function inhomogeneity, a Green’s function,
we can construct the solution for any inhomogeneity as an integral involving the Green’s
function and the inhomogeneity itself.

7.2 GREEN’S FUNCTIONS IN ONE DIMENSION
Before applying Green’s function methods to partial differential equations, it is worth look-
ing at their application to ordinary differential equations. There are generally two types
of one-dimensional problems that will concern us, problems in time with a sufficient set of
initial conditions and one-dimensional problems in space, where there will generally be a
set of boundary conditions at the endpoints of an interval. Differential equations in time
often arise as a result of considering movement subject to Newton’s equations of motion,
but are also applicable to solving the ordinary differential equations we ended up with when
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we constructed series solutions to the heat and wave equations. In general, the problem we
are interested in solving will be of the form

(ODE) : L̂u(t) = f(t), (7.10a)

(IC) : u(0) = u′(0) = . . . = u(n−1)(0) = 0, (7.10b)

where L̂ is a linear differential operator in the variable t, u(k)(t) is the k-th derivative of
u(t), and n is the order of L̂. We define the Green’s function of this problem as the function
G(t, t′) satisfying

(ODE) : L̂G(t, t′) = δ(t− t′), (7.11a)

(IC) : G(0, t′) = Gt(0, t
′) = . . . =

dn

dtn
G(t, t′)

∣∣∣∣
t=0

= 0, (7.11b)

where L̂ is acting on the t variable in the differential equation. In the regions where t 6= t′,
this differential equation is homogeneous and can be solved using any method applicable
to homogeneous linear differential equations. The main thing to remember here is that we
need to assign different integration constants for t < t′ and t > t′, respectively, in order to
satisfy the inhomogeneity at t = t′. We can write the solution in the form

G(t, t′) = θ(t′ − t)G−(t, t′) + θ(t− t′)G+(t, t′), (7.12)

where G−(t, t′) is the solution for t < t′, G+(t, t′) the solution for t > t′, and θ is the
Heaviside function. Both G±(t, t′) are solutions to homogeneous differential equations and
G(t, t′) must satisfy the homogeneous initial conditions at t = 0 < t′. The only possible
solution for G−(t, t′) is therefore G−(t, t′) = 0 and we are left with

G(t, t′) = θ(t− t′)G+(t, t′). (7.13)

Inserting this relation into the left-hand side of Eq. (7.11a) and identifying it with the right-
hand side will now provide enough conditions to fix the integration constants to completely
determine G+(t, t′) and we will have found the Green’s function of our problem.

With the Green’s function at hand, we can solve the more general problem of Eqs. (7.10)
by letting

u(t) =

∫ ∞
0

f(t′)G(t, t′)dt′ =

∫ ∞
0

f(t′)θ(t− t′)G+(t, t′)dt′ =

∫ t

0

f(t′)G+(t, t′)dt′. (7.14)

Applying the differential operator L̂ to this function, we will recover the inhomogeneity f(t)
from Eqs. (7.10).

Example 7.2 Let us make the above discussion less abstract by considering Newton’s
equation of motion for a one-dimensional harmonic oscillator originally at rest at the equi-
librium point under the influence of an external force F (t)

(ODE) : ẍ(t) +
k

m
x(t) =

F (t)

m
, (7.15a)

(IC) : x(0) = 0, ẋ(0) = 0, (7.15b)

where kx is the restoring force and m the mass of the oscillator, see Fig. 7.2. Note that
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F (t)

k
2
x

2

V (x)

x(t)

Figure 7.2 The equations of motion for a particle moving in one dimension along the dotted line
while being subjected to a harmonic oscillator potential V (x) and an arbitrary external time-
dependent force F (t) may be solved by the use of Green’s function methods.

exactly this form of ordinary differential equation also appears when we solve the wave
equation using series solutions. For convenience, we introduce the characteristic frequency
ω =

√
k/m. We now search for a Green’s function for this problem that should satisfy

(ODE) : Gtt(t, t
′) + ω2G(t, t′) = δ(t− t′), (7.16a)

(IC) : G(0, t′) = 0, Gt(0, t
′) = 0. (7.16b)

Guided by the discussion above, we directly write the solution on the form

G(t, t′) = θ(t− t′)G+(t, t′), (7.17)

where G+(t, t′) satisfies the homogeneous differential equation

∂2

∂t2
G+(t, t′) + ω2G+(t, t′) = 0, (7.18a)

implying that

G+(t, t′) = A(t′) cos(ωt) +B(t′) sin(ωt) = C(t′) sin(ωt+ φ0(t′)). (7.18b)

We have here noted explicitly that the integration constants C and φ0 may in general
depend on the value of t′. Differentiating G(t, t′) with respect to t, we now obtain

Gt(t, t
′) = δ(t− t′)G+(t′, t′) + θ(t− t′) ∂

∂t
G+(t, t′), (7.19a)

Gtt(t, t
′) = δ′(t− t′)G+(t′, t′) + δ(t− t′) ∂

∂t
G+(t, t′) + θ(t− t′) ∂

2

∂t2
G+(t, t′)

= δ′(t− t′)G+(t′, t′) + δ(t− t′) ∂
∂t
G+(t, t′)− ω2G(t, t′). (7.19b)
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Comparing this with the differential equation for the Green’s function, we must satisfy the
conditions

G+(t′, t′) = C(t′) sin(ωt′ + φ0(t′)) = 0, (7.20a)

d

dt
G+(t, t′)

∣∣∣∣
t=t′

= ωC(t′) cos(ωt+ φ0(t′)) = 1. (7.20b)

The second requirement clearly requires C(t′) 6= 0, implying that sin(ωt′ + φ0(t′)) = 0.
There are several solutions to this equation, but the end results of these are equivalent and
we therefore select the solution

φ0(t′) = −ωt′. (7.21a)

Inserting this into the second equation, we now find that

C(t′) =
1

ω
. (7.21b)

Summarising these results, we now have an explicit expression for the Green’s function

G(t, t′) = θ(t− t′) 1

ω
sin(ω(t− t′)). (7.22)

This is the general form of the Green’s function for any harmonic oscillator and with it we
can directly write down the solution for an arbitrary driving force F (t) as

x(t) =
1

mω

∫ t

0

F (t′) sin(ω(t− t′))dt′. (7.23)

We can check that this is the appropriate solution by differentiating twice with respect to t

ẋ(t) =
1

m

∫ t

0

F (t′) cos(ω(t− t′))dt′, (7.24a)

ẍ(t) =
F (t)

m
− ω

m

∫ t

0

F (t′) sin(ω(t− t′))dt′ =
F (t)

m
− ω2x(t), (7.24b)

where the expression for ẍ is the equation of motion for the driven harmonic oscillator.
It is now worth taking a step back to try and find a physical interpretation of the

Green’s function G(t, t′) for this particular problem. By definition, the Green’s function
is the solution to the harmonic oscillator initially at rest on which we act with a force
F (t) = mδ(t− t′). We may compute the impulse imparted on the oscillator between times
t1 and t2 from the integral

I =

∫ t2

t1

F (t)dt = m

∫ t2

t1

δ(t− t′)dt =

{
m, (t1 < t′ < t2)

0, (otherwise)
. (7.25)

The Green’s function therefore corresponds to the solution where the oscillator is given an
impulse m at time t = t′. Note that the physical dimension of this impulse does not match
our expectation of ML/T. The reason for this is that the delta function in Eq. (7.16a) does
not have the same physical dimension as the inhomogeneity F (t)/m in Eq. (7.15a). Instead
of dimension L/T2, the delta function has dimension 1/T. In order for the dimensions
of the differential equation defining the Green’s function to match, the Green’s function
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therefore has dimension T rather than dimension L as we expect for x(t). This discrepancy
will be remedied once we convolute the Green’s function with the general inhomogeneity as
described in Eq. (7.23). We could also have obtained a Green’s function of the same physical
dimension as x(t) by introducing an arbitrary constant f0 with the appropriate dimensions
in front of the delta function in the Green’s function differential equation. However, this
constant would just be an overall factor in the Green’s function and we would have to divide
the final integral by it to obtain the general solution. The end result would have been the
same. We will therefore be content by calling the Green’s function the harmonic oscillator’s
response to an impulse m at time t. Since the system is linear, the general solution is the
superposition of the movement resulting from all of the impulses imparted on the oscillator,
i.e., the integral given by Eq. (7.23).

A different one-dimensional situation is presented to us by differential equations of spa-
tial variables where we typically have boundary conditions at two different points in space
rather than two different boundary conditions at the same coordinate as in the case of initial
value problems. The problems will be of the form

(ODE) : L̂u(x) = f(x), (7.26a)

(BC) : B̂1u(a) = B̂2u(b) = . . . = 0, (7.26b)

where the B̂i are linear differential operators of at least one order less than L̂ and we have a
sufficient set of independent boundary conditions to fix all of the integration constants. We
will assume that we are solving the problem in the region a < x < b and define the Green’s
function to the problem as the function satisfying

(ODE) : L̂G(x, x′) = δ(x− x′), (7.27a)

(BC) : B̂1G(a, x′) = B̂2G(b, x′) = . . . = 0. (7.27b)

The approach to finding the Green’s function for this type of problems is exactly analogous
to the way we used to find the Green’s function for the initial value problems. We start by
solving the homogeneous problems in the regions a < x < x′ and x′ < x < b separately. This
will result in the homogeneous solutions G−(x, x′) and G+(x, x′), respectively, neither of
which is completely determined since there are not enough boundary conditions at neither
x = a nor x = b to do so. Both these solutions will therefore have a number of undetermined
coefficients and the solution will be of the form

G(x, x′) = θ(x− x′)G+(x, x′) + θ(x′ − x)G−(x, x′). (7.28)

In order to determine the remaining integration constants, we must again differentiate this
expression and compare the result with the differential equation for the full Green’s function.

Example 7.3 In Example 6.8, we looked at the temperature in a one-dimensional rod
with a point heat source and how it changed with time. As has been mentioned on several
occasions, it is often useful to find the stationary solution to a problem, either in order
to find the solution for large times or to expand the solution around it. For the function
u(x, t) = T (x, t)−T0 in that example, the stationary solution ust(x) will satisfy the ordinary
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differential equation

(ODE) : u′′st(x) = −κ0

a
δ(x− x0), (7.29a)

(BC) : ust(0) = ust(`) = 0. (7.29b)

Because of the delta function in the differential equation, the stationary solution is al-
ready the Green’s function of the differential operator d2/dx2 up to a multiplicative con-
stant −κ0/a, letting G(x, x0) = −aust(x)/κ0, we find that

G±(x, x0) = A±x+B±. (7.30a)

Adapting this to the boundary conditions therefore results in

G(x, x0) = A−xθ(x0 − x)−A+(`− x)θ(x− x0). (7.30b)

The second derivative of this expression is given by

∂2

∂x2
G(x, x0) = δ(x− x0)(A+ −A−) + δ′(x− x0)[A+(x0 − `)−A−x0] (7.31)

where identification with the differential equation results in

A+ =
x0

`
, A− =

x0

`
− 1. (7.32)

The resulting Green’s function

G(x, x0) = (x0 − `)
x

`
θ(x0 − x) + (x− `)x0

`
θ(x− x0) (7.33)

may be used to find the stationary solution not only for the inhomogeneity κ0δ(x − x0)
introduced in Example 6.8 but, replacing it with any inhomogeneity κ(x), the solution will
be of the form

ust(x) = −
∫ `

0

G(x, x0)
κ(x0)

a
dx0. (7.34)

If it is possible to perform this integral analytically, it will often result in an expression that
is easier to evaluate than the sum resulting from applying a series expansion method.

7.2.1 Inhomogeneous initial conditions
The problems we have been dealing with so far in this chapter have in common that they
have had homogeneous initial and boundary conditions. However, Green’s function meth-
ods may also be applied to situations where the initial or boundary conditions contain
inhomogeneities. Let us start by considering the first order initial value problem

(ODE) : u′(t) + g(t)u(t) = f(t), (7.35a)

(IC) : u(0) = u0, (7.35b)

where g(t) and f(t) are known functions. In order to take care of the inhomogeneity in the
differential equation, we can write down the requirements on the Green’s function of the
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homogeneous problem

(ODE) :
d

dt
G(t, t′) + g(t)G(t, t′) = δ(t− t′), (7.36a)

(IC) : G(0, t′) = 0. (7.36b)

Once we have found the Green’s function satisfying this, the function

û(t) =

∫ t

0

G(t, t′)f(t′)dt′ (7.37)

satisfies the differential equation in Eq. (7.35a), but not the initial conditions as

û(0) =

∫ 0

0

G(t, t′)f(t′)dt′ = 0 (7.38)

by construction. However, we can introduce v(t) = u(t)− û(t), which will satisfy Eqs. (7.35)
with f(t) = 0. This homogeneous differential equation is exactly the same homogeneous
differential equation that G±(t, t′) had to satisfy away from t = t′. In particular, if we let
t′ = 0, then

G(t, 0) = θ(t)G+(t, 0) + θ(−t)G−(t, 0) = G+(t, 0) (7.39)

satisfies the homogeneous differential equation for all t > 0. Since we are dealing with a first
order differential equation, there is only one linearly independent solution and it follows
that any solution can be written in the form

v(t) = CG+(t, 0), (7.40)

where C is a constant that must be adapted to the initial condition by letting

v(0) = CG+(0, 0) = u0 =⇒ C =
u0

G+(0, 0)
. (7.41)

Summarising, the solution to the general problem will be given by

u(t) = u0
G+(t, 0)

G+(0, 0)
+

∫ t

0

G(t, t′)f(t′)dt′. (7.42)

It should be noted that this solution is a superposition of the contribution from the initial
condition u(0) = u0 and that of the inhomogeneity f(t).

Example 7.4 For an object falling in a homogeneous gravitational field at a velocity low
enough for turbulence to be negligible, the equation of motion for the velocity v(t) can be
written as

(ODE) : F = mg − kv(t) = mv̇(t) ⇐⇒ v̇(t) +
k

m
v(t) = g, (7.43a)

see Fig. 7.3. If the object is given an initial velocity v0 directed in the opposite direction of
the gravitational field, the initial condition will be

(IC) : v(0) = −v0. (7.43b)

The Green’s function for the differential operator d/dt+ k/m is given by

G(t, t′) = θ(t− t′)e− k
m (t−t′) (7.44)
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~v

m

−k~v

~g

Figure 7.3 An object of mass m falling with velocity ~v under the influence of a gravitational field

~g and with air resistance modelled as a force ~F = −k~v. Green’s function methods may be used to
approach this problem.

and, based on the discussion just presented, we may immediately write down the solution
as

v(t) = −v0e
− k
m t +

∫ t

0

e−
k
m (t−t′)g dt′ =

mg

k
− e− k

m t
(
v0 +

mg

k

)
. (7.45)

It is easy to check that this solution satisfies the original differential equation as well as the
initial condition.

In this particular case, it might have been simpler to just rewrite the problem as a
problem for u(t) = v(t) − mg/k, which would be homogeneous. However, this example
demonstrates the possible use of the Green’s function approach to find solutions also for
problems with inhomogeneous initial conditions.

The approach just described apparently works well for first order differential equations.
However, we must ask ourselves what to do if we encounter differential equations of higher
order with inhomogeneous initial conditions. After all, for an nth order differential equation,
we expect that there should be a total of n independent integration constants that must
be fixed by the initial or boundary conditions and so far we have identified only one, the
constant in front of G+(t, 0). Consider the initial value problem

(ODE) : L̂u(t) = f(t), (7.46a)

(IC) : u(0) = u0, u′(0) = u1, . . . , u
(n−1)(0) = un−1, (7.46b)

where u(k)(t) is the kth derivative of u(t) and L̂ is a differential operator of order n. As
for the first order equation, we can find the Green’s function G(t, t′) for homogeneous
initial conditions and use it to take care of the inhomogeneity in the differential equation.
Furthermore, we know that

G(t, 0) = G+(t, 0) and L̂G+(t, 0) = 0 (7.47)

for t > 0 and so G+(t, 0) is again one of the possible independent solutions to the homoge-
neous problem with inhomogeneous initial conditions. We just have to find the other n− 1
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independent solutions and may do so by noting that the function

Gk(t, t′) =
∂k

∂t′k
G(t, t′) (7.48a)

satisfies

L̂Gk(t, t′) =
∂k

∂t′k
L̂G(t, t′) =

∂k

∂t′k
δ(t− t′) = (−1)kδ(k)(t− t′), (7.48b)

where δ(k) here is the kth derivative of the delta distribution and not the k-dimensional δ
distribution. Note that the derivatives in the definition of Gk are with respect to t′ and that
these derivatives commute with L̂, which is a differential operator in the variable t. Since
δ(k)(t− t′) = 0 for all t 6= t′, this immediately implies that

L̂Gk(t, 0) = 0 (7.49)

for all t > 0 and Gk(t, 0) therefore also solves the homogeneous differential equation. The
functions Gk(t, 0) will generally be independent for all k < n. We can therefore write down
the general solution to the problem as

u(t) =

n−1∑
k=0

CkG
k(t, 0) +

∫ t

0

G(t, t′)f(t′)dt′. (7.50)

The constants Ck are integration constants that have to be determined by comparison with
the initial conditions for u(t).

Example 7.5 Returning to the harmonic oscillator of Example 7.2, we found that the
Green’s function was given by

G(t, t′) = θ(t− t′) 1

ω
sin(ω(t− t′)). (7.51)

If we instead of the harmonic oscillator starting at rest with zero displacement wish to
solve the problem where the harmonic oscillator has an initial displacement and velocity,
described by the initial conditions

(IC) : x(0) = x0, ẋ(0) = v0, (7.52)

we may write down the general solution as

x(t) = C0
1

ω
sin(ωt)− C1 cos(ωt) +

1

mω

∫ t

0

F (t′) sin(ω(t− t′))dt′, (7.53)

where we have here used that

G1(t, t′) =
∂

∂t′
G(t, t′) =

1

ω

∂

∂t′
sin(ω(t− t′)) = − cos(ω(t− t′)) (7.54)

for all t > t′. Adapting this general solution to the initial conditions, we find that

C0 = v0 and C1 = −x0. (7.55)

It should be noted that, while the coefficient in front of G1(t, 0) in this solution was only
dependent on the initial condition u(0) and the coefficient in front of G(t, 0) was dependent
only on the initial condition u′(0), this is not generally the case. Instead, the general case
will involve coefficients that depend on all of the initial conditions, giving us a set of n linear
equations to solve.
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7.2.2 Sturm–Liouville operators and inhomogeneities in the boundary conditions
An important special case when dealing with Green’s functions in problems with conditions
on the boundaries of an interval occurs when the differential operator in the problem is a
Sturm–Liouville operator and we have boundary conditions that may generally be inhomo-
geneous

(ODE) : L̂u(x) = − 1

w(x)
[p(x)u′′(x) + p′(x)u′(x)] = f(x), (7.56a)

(BC) : αau(a)− βau′(a) = γa, αbu(b) + βbu
′(b) = γb. (7.56b)

Before we tackle the task of finding an appropriate Green’s function for this problem, let us
derive an identity that will be useful several times in our discussion. For any two functions
g(x) and h(x), let us define the integral

I[g, h] =

∫ b

a

[g(x)L̂h(x)− h(x)L̂g(x)]w(x) dx

= −
∫ b

a

d

dx
[g(x)p(x)h′(x)− h(x)p(x)g′(x)]dx

= p(a)[g(a)h′(a)− g′(a)h(a)]− p(b)[g(b)h′(b)− g′(b)h(b)], (7.57)

where we have used the explicit form of the Sturm–Liouville operator to rewrite the inte-
grand as a total derivative that could be integrated directly. By making different choices
of g(x) and h(x) we will be able to argue for several properties of the Green’s function. To
start with, we will here define the Green’s function as a function satisfying

L̂G(x, x′) = − 1

w(x)
δ(x− x′), (7.58a)

where the Sturm–Liouville operator acts on the unprimed variable. In addition, we will
assume that the Green’s function fulfils homogeneous boundary conditions of the form

αaG(a, x′)− βaGx(a, x′) = αbG(b, x′) + βbGx(b, x′) = 0. (7.58b)

The reasons for selecting these boundary conditions will become apparent shortly.
In our first application of the integral I[g, h], we let g(x) = G(x, x′) and h(x) = G(x, x′′).

From the properties of the Green’s function, we then obtain

I[G(x, x′), G(x, x′′)] =

∫ b

a

[G(x, x′)L̂G(x, x′′)−G(x, x′′)L̂G(x, x′)]w(x) dx

= −
∫ b

a

[G(x, x′)δ(x− x′′)−G(x, x′′)δ(x− x′)]dx

= −G(x′′, x′) +G(x′, x′′). (7.59)

At the same time, the boundary conditions on the Green’s function inserted in the last
expression for I[g, h] in Eq. (7.57) imply that

I[G(x, x′), G(x, x′′)] = 0 =⇒ G(x′, x′′) = G(x′′, x′). (7.60)

In other words, the Green’s function defined as in Eq. (7.58a) must be symmetric under the
exchange of the first and second argument.
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Example 7.6 In Example 7.3, we had a problem of the form described here with L̂ =
−d2/dx2. The resulting Green’s function presented in Eq. (7.33) satisfies the symmetry
condition

G(x, x0) = (x0 − `)
x

`
θ(x0 − x) + (x− `)x0

`
θ(x− x0) = G(x0, x) (7.61)

as expected from our discussion.

While being symmetric might be a neat feature of a Green’s function, we still need to
make sure that we can use the Green’s function as defined above in order to solve the general
differential equation with inhomogeneous boundary conditions. In order to do so, we again
use the integral I[g, h], this time with g(x) = u(x) and h(x) = G(x, x′). The integral can
now be simplified as

I[u(x), G(x, x′)] =

∫ b

a

[u(x)L̂G(x, x′)−G(x, x′)L̂u(x)]w(x) dx

=

∫ b

a

[−u(x)δ(x′ − x)−G(x′, x)f(x)w(x)]dx

= −u(x′)−
∫ b

a

G(x′, x)f(x)w(x) dx, (7.62)

where we have used L̂u = f , the symmetry of the Green’s function, and the differential equa-
tion defining it. Looking at the expression for I[g, h] in terms of the boundary contributions,
the boundary conditions selected for the Green’s function imply that

u(a)Gx(a, x′)− u′(a)G(a, x′) =
1

βa
[αau(a)− βau′(a)]G(a, x′)

=
γa
βa
G(a, x′) =

γa
αa
Gx(a, x′), (7.63)

where we have inserted the boundary conditions for the solution u(x) at x = a. The bound-
ary conditions at x = b result in a similar expression and we find that

I[u(x), G(x, x′)] = p(a)
γa
αa
Gx(a, x′)− p(b) γb

αb
Gx(b, x′). (7.64)

Since this has to be equal to the previous expression we found for the integral we can solve
for u(x′) and, putting all the pieces of the puzzle together, we obtain

u(x′) = p(b)
γb
αb
Gx(b, x′)− p(a)

γa
αa
Gx(a, x′)−

∫ b

a

G(x′, x)f(x)w(x) dx. (7.65)

If we can find a Green’s function satisfying both the required differential equation and
boundary conditions, we may therefore directly write down the solution on this form re-
gardless of the inhomogeneities in the differential equation and in the boundary conditions.

Example 7.7 Reintroducing the inhomogeneous boundary conditions from Example 6.8
such that T (0) = T (`) = T0, we can use the Green’s function from Example 7.3 to write
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down the solution without doing the translation to the homogeneous problem by the ansatz
u(x) = T (x)− T0 first. In this case, we have p(x) = w(x) = αa = αb = 1 and βa = βb = 0,
leading to

p(b)
1

αb
Gx(b, x′)− p(a)

1

αa
Gx(a, x′) = Gx(b, x′)−Gx(a, x′) = 1. (7.66)

With γa = γb = T0, we therefore recover the solution for T (x) as the solution u(x) for the
homogeneous problem plus the constant T0.

A word of warning is required at this point. In the discussion above, we have just assumed
that a Green’s function satisfying the required differential equation and boundary conditions
exists. In the special case of αa = αb = 0, i.e., with homogeneous Neumann conditions on
the Green’s function, this will not be the case. We can see this by again considering the
integral I[g, h], but with g(x) = 1 and h(x) = G(x, x′), we find that

I[1, G(x, x′)] =

∫ b

a

L̂G(x, x′)w(x) dx = −
∫ b

a

δ(x− x′) dx = −1. (7.67)

However, since the derivative of one is zero, the expression in terms of the boundary values
would be of the form

g(a)h′(a)− h(a)g′(a) = Gx(a, x′)− 0 = Gx(a, x′), (7.68)

with a similar expression holding at x = b. This leads to the condition

p(a)Gx(a, x′)− p(b)Gx(b, x′) = −1, (7.69)

which cannot be satisfied if the Green’s function is required to fulfil homogeneous Neumann
conditions. However, when this is the case, the inhomogeneous Neumann conditions also
need to satisfy additional consistency conditions and the solution is only defined up to an
arbitrary integration constant. This can be used to remedy the situation, see Problem 7.12.

7.2.3 The general structure of Green’s function solutions
Before moving on to using Green’s function methods for solving partial differential equa-
tions, let us have a look at the general structure of the solutions we have encountered so
far. This structure will remain valid also when we deal with partial differential equations
and is therefore useful for understanding how a Green’s function solution is constructed.

In general, we are looking to solve a linear differential equation with linear boundary
conditions, both of which may be homogeneous or inhomogeneous. Because of the linearity,
the superposition of two solutions for different inhomogeneities may be added together to
create the solution to the problem where both inhomogeneities are added. In particular, we
are interested in problems of the form

(DE) : L̂u(~x) = f(~x), (~x ∈ V ) (7.70a)

(BC/IC) : B̂u(~x) = g(~x), (~x ∈ S) (7.70b)

where V is the domain in which we wish to solve the differential equation, S the part of
its boundary on which there is a boundary condition, and L̂ and B̂ are linear operators.
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Furthermore, if we denote the solution to this problem by uf,g(~x), then the solution will
satisfy

uf,g(~x) = uf,0(~x) + u0,g(~x). (7.71)

In other words, the contributions from any inhomogeneous boundary conditions may be
decoupled from the contribution from any inhomogeneity in the differential equation. This
is precisely what we have already observed in Eqs. (7.50) and (7.65). Furthermore, the
solution for an inhomogeneous differential equation and the solution for inhomogeneous
boundary conditions are also linear in their respective inhomogeneities

uaf1+bf2,0(~x) = auf1,0(~x) + buf2,0(~x), (7.72a)

u0,ag1+bg2(~x) = au0,g1(~x) + bu0,g2(~x), (7.72b)

where a and b are constants. As such, the solution to the differential equation defines two
linear operators

L̂−1f(~x) = uf,0(~x) and B̂−1g(~x) = u0,g(~x). (7.73)

These are operators mapping the inhomogeneities to the set of functions on V , such that
the differential equations with the corresponding inhomogeneities are satisfied. The operator
L̂−1 is therefore an operator on functions on V to functions on V , while B̂−1 is an operator
on functions on S to functions on V . As we have seen, L̂−1 will in general be given by an
integral operator

L̂−1f(~x) =

∫
V

G(~x, ~x ′)f(~x ′)dV ′, (7.74)

where G(~x, ~x ′) is the Green’s function of the problem with homogeneous boundary condi-
tions. In the one-dimensional case, we have also seen that the operator B̂−1 is a sum over
the boundary conditions at the different boundary points. In more than one dimension, this
sum will turn into an integral over the boundary conditions

B̂−1g(~x) =

∫
S

G̃(~x, ~x ′)g(~x ′)dS′, (7.75)

where G̃ is a function satisfying the homogeneous differential equation for ~x in V and
B̂G̃(~x, ~x ′) is a delta distribution on the boundary S, and therefore also be an integral
operator. That these operators are integral operators should not come as a surprise, after
all, L̂ and B̂ are both differential operators.

In some physics texts, it is common to see the notation

L̂−1 =
1

L̂
, (7.76)

in particular when working with operators on a domain without boundary. Of course, this
notation does not really imply that we are dividing by a differential operator, but rather an
aversion to writing out the entire integral operator. In addition, it is often fine to divide by
the operator after Fourier transforming it, since it will then usually turn into an algebraic
expression in the Fourier transform variable, as we shall see shortly.

7.3 POISSON’S EQUATION
For most partial differential equations, things will turn out to work quite smoothly if we
consider infinite regions without boundaries and instead impose regularity conditions at
infinity. In addition, the Green’s function solutions we can find in this fashion will turn
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r′ = r

∇′G(r′)

Figure 7.4 In order to find the Green’s function for Poisson’s equation, we can integrate Poisson’s
equation with a delta inhomogeneity over a spherical volume with the inhomogeneity at its center.
Due to the symmetry of the problem, the magnitude of the vector field ∇′G(r′) will be constant
on the boundary.

out to be useful in constructing Green’s functions of problems with boundaries if we apply
mirror image techniques, as we shall see later. For now, let us start by considering the
Green’s function for Poisson’s equation in N ≥ 3 dimensions, which by definition should
satisfy the differential equation

(PDE) : ∇2G(~x, ~x ′) = δ(N)(~x− ~x ′), (7.77a)

(BC) : lim
|~x|→∞

G(~x, ~x ′) = 0. (7.77b)

For the time being, we will not consider the case of N = 2, since it provides an additional
complication that we will deal with later. Solving the general problem involving Poisson’s
equation will directly provide us with the solution to several problems in gravitation and
electrostatics. In fact, for N = 3, we already know that the solution must take the form

G(~x, ~x ′) = − 1

4π |~x− ~x ′|
(7.78)

as this is related to the potential around a point charge. Let us see if we can derive this
result by solving the N -dimensional problem.

To start with, the problem of finding the Green’s function is invariant under rotations
around ~x ′. It follows that the Green’s function can only be a function of the distance
between ~x and ~x ′. By making the transformation ~r = ~x− ~x ′, we now find that

∇2G(r) = δ(N)(~r), (7.79)

i.e., we have transformed our problem to an equivalent problem where the inhomogeneity is
placed at the origin. Integrating this differential equation over a spherical volume of radius r,
see Fig. 7.4, we obtain ∫

r′<r

∇′2G(r′)dV ′ =

∮
r′=r

∇′G(r′) · d~S′ = 1 (7.80)
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N AN−1 G(r)

3 4π − 1

4πr

4 2π2 − 1

4π2r2

5
8π2

3
− 1

8π2r3

N
2πN/2

Γ(N/2)
− Γ(N/2)

(N − 2)2πN/2rN−1

Table 7.1 The Green’s function G(r) for Poisson’s equation and the area of an N − 1-dimensional
sphere of radius one AN−1 for a few selected values of the dimensionality of the space N . In the last
row, Γ(x) is the gamma function, which satisfies Γ(x+ 1) = xΓ(x), Γ(1) = 1, and Γ(1/2) =

√
π.

by applying the divergence theorem. SinceG(r′) does not depend on the angular coordinates,
we find that

∇′G(r′) = ~er∂r′G(r′) = ~erG
′(r′). (7.81)

In addition, the surface element of the sphere r′ = r is given by d~S′ = ~erdS
′ and we find

G′(r)AN−1(r) = 1, (7.82)

where we have used that G′(r) is constant on the surface and AN−1(r) is the area of an
N − 1-dimensional sphere of radius r. The r-dependence of AN−1(r) is given by

AN−1(r) = AN−1(1)rN−1 ≡ AN−1r
N−1, (7.83)

i.e., the area of the sphere of radius r is equal to the area of the sphere of radius one
multiplied by rN−1. We now have the first order differential equation

G′(r) =
1

AN−1rN−1
=⇒ G(r) = − 1

(N − 2)AN−1rN−2
+ C, (7.84)

where C is an integration constant. By the requirement that the Green’s function should
go to zero as r →∞, we find C = 0 and the sought Green’s function is given by

G(r) = − 1

(N − 2)AN−1rN−2
. (7.85)

We should check that this result reduces to the one we expected for the special case of
N = 3. The area of the two-dimensional sphere of radius one is given by A2 = 4π and
therefore

G(r) = − 1

4πr
, (7.86)

in agreement with our expectation. For reference, the Green’s functions for a few selected
values of N are shown in Table 7.1.

So what happens in the case of N = 2? We can argue in exactly the same way as we
have done for dimensions N ≥ 3 up to the point where we find the differential equation

G′(r) =
1

2πr
=⇒ G(r) =

1

2π
ln(r) + C. (7.87)

It is here impossible adjust the integration constant C in such a way that the Green’s
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function goes to zero as r → ∞ because of its logarithmic behaviour. As such, we need to
assign a different criterion for finding the constant C, such as the Green’s function being
equal to zero at some fixed distance r0 from the point source, leading to

G(r) =
1

2π
ln

(
r

r0

)
. (7.88)

In general, this will not cause a problem when we study different physical situations. The
Green’s function of Poisson’s equation will represent the potential of a point source and we
already know that the addition of a constant to the potential will not cause any change in
the physics.

Example 7.8 Consider the electric potential V (~x) corresponding to a charge distribution
ρ(~x) in two dimensions. This potential will satisfy Poisson’s equation

∇2V (~x) = −ρ(~x)

ε0
(7.89)

and we can find the solution to this problem by using the Green’s function

V (~x, r0) = −
∫
G(|~x− ~x ′| , r0)

ρ(~x ′)

ε0
dV ′. (7.90)

We have here explicitly written out the dependence of the potential and the Green’s function
on the chosen parameter r0 of the two dimensional Green’s function. We can find the
dependence of the potential on the choice of Green’s function by comparing the potential
resulting from two different choices of r0, e.g., r1 and r2,

V (~x, r2)− V (~x, r1) = −
∫

[G(|~x− ~x ′| , r2)−G(|~x− ~x ′| , r1)]
ρ(~x ′)

ε0
dV ′

= − 1

2πε0
ln

(
r1

r2

)∫
ρ(~x ′)dV ′ = − Q

2πε0
ln

(
r1

r2

)
, (7.91)

where Q is the total charge. This difference does not depend on the position ~x and is
therefore an overall shift in the potential, which does not affect the physical electric field
~E = −∇V .

7.3.1 Hadamard’s method of descent
Although we have already computed the Green’s function for Poisson’s equation, let us
take this opportunity to discuss a useful approach to relating the Green’s function of a
differential equation in a lower number of dimensions to the Green’s function of a similar
differential equation in a higher number of dimensions. This relation will be useful when
finding expressions for lower dimensional Green’s functions that sometimes may be more
difficult to compute by other means than those in higher dimensions. This application is
known as Hadamard’s method of descent .

Let us work with an N + M -dimensional space which contains the vectors ~x = ~y + ~z,
where ~y belongs to an N -dimensional subspace and ~z to its M -dimensional orthogonal
complement. We assume that we have a linear partial differential operator L̂ of the form

L̂ = L̂1 + L̂2, (7.92)
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where L̂1 only contains derivatives with respect to the N coordinates in the first subspace
and L̂2 is assumed to have at least one derivative with respect to the M remaining coor-
dinates and otherwise does not depend on them. We further assume that we can find a
Green’s function G(~x, ~x ′) of L̂ that satisfies the differential equation

L̂G(~x, ~x ′) = δ(N+M)(~x− ~x ′). (7.93)

By using this Green’s function, we can find the solution to a general differential equation

L̂u(~x) = f(~x) =⇒ u(~x) =

∫
G(~x, ~x ′)f(~x ′)dV ′. (7.94)

In particular, we can write down the solution u(~x) = G̃(~y, ~y ′) for f(~x) = δ(N)(~y−~y ′), where
~y is the projection of ~x onto the first N dimensions. The resulting problem is translation
invariant in the M -dimensional subspace and therefore satisfies

L̂G̃(~y, ~y ′) = L̂1G̃(~y, ~y ′) = δ(N)(~y − ~y ′). (7.95)

The solution G̃(~y, ~y ′) must therefore be the Green’s function for the N -dimensional differ-
ential operator L̂1. We find that

G̃(~y, ~y ′) =

∫
G(~y, ~y ′′ + ~z ′′)δ(N)(~y ′′ − ~y ′)dV ′′, (7.96)

where we can now use the delta function to perform the integral over ~y ′′. This results in

G̃(~y, ~y ′) =

∫
G(~y, ~y ′ + ~z ′′)dV ′′z , (7.97)

where the remaining integral is over the M -dimensional subspace only. We thus have an
integral relation for the Green’s function G̃(~y, ~y ′) in the N -dimensional subspace in terms
of the Green’s function G(~x, ~x ′) in the full N +M -dimensional space.

Example 7.9 Consider the four-dimensional Green’s function of Poisson’s equation

G4(~x, ~x ′) = − 1

4π2 |~x− ~x ′|2
. (7.98)

The Laplace operator in four dimensions may be written as

∇2
4 = ∇2

3 + ∂2
4 , (7.99)

where ∇2
3 is the three-dimensional Laplace operator with respect to the coordinates x1, x2,

and x3, and is therefore of the required form to apply the reasoning above. Using spherical
coordinates r, θ, and ϕ in the three first dimensions and naming the fourth coordinate w,
the three-dimensional Green’s function for ~y ′ = 0 is now expressed as

G3(r) =

∫ ∞
−∞

G4(r~er, w~e4)dw = − 1

4π2

∫ ∞
−∞

dw

r2 + w2
. (7.100)

The remaining integral evaluates to π/r and we therefore find

G3(r) = − 1

4πr
(7.101)

as expected.



420 � Mathematical Methods for Physics and Engineering

ρ

z

~x

Figure 7.5 Hadamard’s method can be used to find the two-dimensional Green’s function of Pois-
son’s equation, starting from the Green’s function in three dimensions. We can do this by introduc-
ing an inhomogeneity that is non-zero only along the z-axis and writing down the corresponding
three-dimensional solution.

Example 7.10 A slightly more involved case is trying to go from the three-dimensional
Green’s function for Poisson’s equation to the two-dimensional one. Again, this has to do
with the fact that the three-dimensional Green’s function may be chosen in such a way that
it goes to zero as r → ∞ while the two-dimensional one may not. Following the approach
from the previous example, we would formally have

G2(ρ) = − 1

4π

∫ ∞
−∞

dz√
ρ2 + z2

, (7.102)

where we have introduced cylinder coordinates and put the two-dimensional inhomogeneity
along the z-axis, see Fig. 7.5. As we might have suspected from our earlier findings, this
integral is logarithmically divergent and we must take care of this divergence by introducing
a new zero-level ρ0 and define our new Green’s function as

G̃2(ρ, ρ0) = G2(ρ)−G2(ρ0), (7.103)

which now formally involves the difference between two divergent integrals that may eval-
uate to anything depending on how the limits are taken. In order to find the correct two-
dimensional Green’s function, we need to consider the inhomogeneity δ(2)(x1~e1 + x2~e2) as
a limiting case of an inhomogeneity for which the integrals do converge. A natural choice
here is given by

f(~x) = δ(2)(x1~e1 + x2~e2)[θ(z + Z)− θ(z − Z)]
Z→∞−→ δ(2)(x1~e1 + x2~e2), (7.104)

corresponding to an inhomogeneity of finite length 2Z along the z-axis. We find that

G̃2(ρ, ρ0, Z) = − 1

4π

∫ Z

−Z

(
1√

ρ2 + z2
− 1√

ρ2
0 + z2

)

=
1

2π
ln

(√
ρ2

0 + Z2 + Z√
ρ2 + Z2 + Z

ρ

ρ0

)
. (7.105)
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Taking the limit Z →∞ results in

G̃2(ρ, ρ0) = lim
Z→∞

G̃2(ρ, ρ0, Z) =
1

2π
ln

(
ρ

ρ0

)
, (7.106)

which reproduces the previous result.

The above examples of using Hadamard’s method on the Green’s functions of Poisson’s
equation are to some extent superfluous as we already knew the answers. However, in other
situations, such as for the wave equation, we will need to fall back on this method to compute
Green’s functions that would otherwise be difficult to find.

7.4 HEAT AND DIFFUSION
The one-dimensional inhomogeneous heat equation

∂tu(x, t)− a∂2
xu(x, t) = κ(x, t) (7.107a)

has a Green’s function that we are almost already familiar with from Example 6.18, where
we found that the solution to the homogeneous heat equation with a delta function initial
condition

u(x, 0) = δ(x) (7.107b)

was given by

u(x, t) =
1√

4πat
e−

x2

4at . (7.107c)

As a direct consequence, this u(x, t) satisfies the homogeneous heat equation for all t > 0.
Defining the function

G(x, t) = θ(t)u(x, t) =
θ(t)√
4πat

e−
x2

4at (7.108)

therefore leads to

(∂t − a∂2
x)G(x, t) = δ(t)u(x, t) + θ(t) (∂t − a∂2

x)u(x, t)︸ ︷︷ ︸
=0

= δ(t)u(x, 0) = δ(t)δ(x). (7.109)

Furthermore, this function clearly satisfies G(x, t) = 0 for all t < 0 and therefore satisfies
all of the necessary requirements to be the Green’s function of the one-dimensional heat
equation.

This result should not surprise us. After all, we have already seen that the Green’s
function of the ordinary differential equation

∂tu(t)− λu(t) = κ(t), (7.110)

to which the heat equation reduces for each Fourier mode with λ = ak2, is also related to the
corresponding initial value problem with a homogeneous differential equation, cf. Eq. (7.42).

In addition to already having the Green’s function for the one-dimensional heat equation,
it turns out that we can express the Green’s function for the heat equation in any number
of spatial dimensions N by using the one-dimensional solution. Constructing the function

G(~x, t) = θ(t)
N∏
i=1

u(xi, t) = θ(t)
1

√
4πat

N
e−

~x2

4at (7.111)
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and applying the N -dimensional heat operator to it, we find that

(∂t − a∇2)G(~x, t) = δ(t)

N∏
i=1

u(xi, t) + θ(t)(∂t − a∇2)

N∏
i=1

u(xi, t). (7.112)

Using the delta function, the first term in this expression can be rewritten as

δ(t)

N∏
i=1

u(xi, t) = δ(t)

N∏
i=1

u(xi, 0) = δ(t)

N∏
i=1

δ(xi) = δ(t)δ(N)(~x) (7.113a)

and for the second term we find that

(∂t − a∇2)

N∏
i=1

u(xi, t) =

N∑
j=1

[(∂t − a∂2
j )u(xj , t)︸ ︷︷ ︸

=0

]
∏
i6=j

u(xi, t) = 0. (7.113b)

Consequently, it holds that

(∂t − a∇2)G(~x, t) = δ(t)δ(N)(~x) (7.114)

and the function G(~x, t) is therefore the Green’s function of the N -dimensional heat equa-
tion.

The general solution to an initial value problem of the type

(PDE) : ut(~x, t)− a∇2u(~x, t) = κ(~x, t), (7.115a)

(IC) : u(~x, t) = u0(~x), (7.115b)

can now be written down directly by using the Green’s function

u(~x, t) =

∫
G(~x− ~x ′, t)u0(~x ′)dV ′ +

∫ t

t′=0

∫
G(~x− ~x ′, t− t′)κ(~x ′, t′) dV ′dt′. (7.116)

Just as in the one-dimensional case, the first term in this expression takes care of the
inhomogeneous initial condition whereas the second makes sure that the inhomogeneous
differential equation is satisfied.

Naturally, we could also have found the N -dimensional Green’s function for the heat
equation by other means. By performing an N -dimensional Fourier transform of the defining
differential equation, we would have found

(∂t + a~k2)G̃(~k, t) = δ(t) (7.117)

for the Fourier transform G̃(~k, t). This is the definition of the Green’s function for an ordi-

nary differential equation involving the linear differential operator ∂t + a~k2, which we have
already discussed. Taking the inverse Fourier transform will give the result in Eq. (7.111).

Example 7.11 In a homogeneous three-dimensional medium with heat diffusivity a ini-
tially at temperature T0, a heat source is introduced in the origin at t = 0 such that the
temperature in the medium satisfies the partial differential equation

(PDE) : Tt(~x, t)− a∇2T (~x, t) = κ0δ
(3)(~x), (7.118a)

(IC) : T (~x, 0) = T0, (7.118b)
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for all times t > 0. By direct insertion into the integral expression for the solution in
Eq. (7.116), we find that the contribution from the inhomogeneous initial condition is given
by

T (IC)(~x, t) = T0
1

√
4πat

3

∫
e−~x

2/4atdV = T0, (7.119)

which is hardly surprising. If there were no heat source, the medium would keep its homo-
geneous temperature. In a similar fashion, the contribution from the heat source is given
by

T (PDE)(~x, t) =

∫ t

0

κ0
√

4πat′
3 e
−~x2/4at′dt′, (7.120a)

where we have applied the transformation t′ → t− t′ relative to the usual expression. This
integral evaluates to

T (PDE)(~x, t) =
κ0

4πar
erfc

(
r√
4at

)
, (7.120b)

where erfc is the complementary error function

erfc(ξ) =
2√
π

∫ ∞
ξ

e−ζ
2

dζ (7.121)

and r2 = ~x 2. We can here note that, for a fixed ~x, this solution satisfies

lim
t→∞

T (PDE)(~x, t) =
κ0

4πar
. (7.122)

This corresponds to the stationary solution, which is the solution to Poisson’s equation for
a point source. As such, we should expect to recover the Green’s function for Poisson’s
equation in three dimensions up to a factor −κ0/a, which is precisely what we have done.
This is yet another example of Hadamard’s method of descent, where we have used the
Green’s function of the heat equation to find the Green’s function of Poisson’s equation. In
the other limit, as t→ 0, we find that T (PDE)(~x, t)→ 0 whenever ~x 6= 0, which satisfies the
initial condition. To summarise, we have found that the solution to our problem is given by

T (~x, t) = T (IC)(~x, t) + T (PDE)(~x, t) = T0 +
κ0

4πar
erfc

(
r√
4at

)
. (7.123)

7.5 WAVE PROPAGATION
Unlike in the case of the heat equation, the Green’s function of the wave equation in N
dimensions will not just be a product of the Green’s functions of the one-dimensional wave
equations. The underlying reason for why the heat equation displays this feature was the
fact that it only contains a first derivative with respect to time and therefore splits into
several terms where the time derivative only acts upon one of the factors. In the case of
the wave equation, the second derivative with respect to time acting on such a product
would lead to cross terms where the first derivative of two different factors would appear.
Because of this, we need to seek an alternative way of finding the Green’s functions for the
wave equation and will do so in one, three, and two dimensions. The reason we will do the
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three-dimensional case before the two-dimensional is that the two-dimensional one is rather
complicated to do from scratch and it is simpler to apply Hadamard’s method of descent.

7.5.1 One-dimensional wave propagation
Beginning with the case of the one-dimensional wave equation subjected to an external
source

utt(x, t)− c2uxx(x, t) = f(x, t), (7.124)

we define our Green’s function as the function satisfying

(PDE) : Gtt(x, t)− c2Gxx(x, t) = δ(x)δ(t), (7.125a)

(IC) : G(x, t < 0) = 0. (7.125b)

By Fourier transform, we now find

Ĝtt(k, t) + c2k2Ĝ(k, t) = δ(t) (7.126)

as the ordinary differential equation that the Fourier modes Ĝ(k, t) need to satisfy. This is a
differential equation that we have already solved as it is the Green’s function for a harmonic
oscillator. Taking the result directly from Eq. (7.22), we can immediately write down the
solution

Ĝ(k, t) =
1

ck
sin(ckt)θ(t). (7.127)

Taking the inverse Fourier transform of this expression, we find that

G(x, t) =
θ(t)

2πc

∫ ∞
−∞

eik(x+ct) − eik(x−ct)

2ik
dk, (7.128a)

which satisfies

Gx(x, t) =
θ(t)

4πc

∫ ∞
−∞

(eik(x+ct) − eik(x−ct))dk =
θ(t)

2c
[δ(x+ ct)− δ(x− ct)]. (7.128b)

Integrating while keeping the initial conditions in mind now results in

G(x, t) =
θ(t)

2c
[θ(x+ ct)− θ(x− ct)]. (7.128c)

The behaviour of this Green’s function is shown in Fig. 7.6.
Any initial conditions can be taken care of in precisely the same fashion as for the

one-dimensional harmonic oscillator and the solution to the general inhomogeneous wave
equation in one spatial dimension is given by

u(x, t) =

∫ ∞
−∞

[G(x− x′, t)v0(x′) +Gt(x− x′, t)u0(x′)]dx′

+

∫ t

t′=0

∫ ∞
−∞

G(x− x′, t− t′)f(x′, t′)dx′dt′, (7.129a)

where

Gt(x, t) =
θ(t)

2
[δ(x+ ct) + δ(x− ct)] (7.129b)
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x

G(x, t)

t1 t2 t3

ct3

1

2c

Figure 7.6 The behaviour of the Green’s function of the one-dimensional wave equation for t1 <
t2 < t3. The wave front travels away from the origin at the wave velocity c and once it has passed
the function is constant at a value of 1/2c.

and we have imposed the initial conditions

u(x, 0) = u0(x) and ut(x, 0) = v0(x). (7.129c)

For the special case of the homogeneous wave equation and t > 0, we can use the particular
form of the Green’s function and its derivative to simplify this expression as

u(x, t) =
1

2
[u0(x+ ct) + u0(x− ct)] +

1

2c

∫ x+ct

x−ct
v0(x′)dx′. (7.130)

This particular form of the one-dimensional solution is known as d’Alembert’s formula and
it is easy to explicitly check that it satisfies the correct differential equation and initial
conditions.

An alternative way of arriving at d’Alembert’s formula is to consider that the homoge-
neous wave equation can be written on the form

utt(x, t)− c2uxx(x, t) = (∂t + c∂x)(∂t − c∂x)u(x, t) = 0. (7.131)

This implies that any function on the form

u(x, t) = f−(x− ct) + f+(x+ ct) (7.132)

will be a solution since (∂t ± c∂x)f(x ∓ ct) = 0 for regardless of the function f . Adapting
this to the initial conditions, we find that

u0(x) = u(x, 0) = f−(x) + f+(x), (7.133a)

v0(x) = ut(x, 0) = c[f ′+(x)− f ′−(x)]. (7.133b)

Integrating the last equation, we find that

f+(x)− f−(x) =
1

c

∫ x

x0

v0(x′)dx′, (7.134)

where the lower integration boundary x0 provides an arbitrary integration constant. Solving
for f±(x) gives

f±(x) =
1

2
u0(x)± 1

2c

∫ x

x0

v0(x′)dx′. (7.135)
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Figure 7.7 The time evolution of a string that is released from rest having the shape shown in the
upper diagram. The resulting wave on the string is a superposition of two waves with the same
shape and half the amplitude of the original shape, one travelling to the left (dashed curve) and
one travelling to the right (dotted curve).

Inserted into Eq. (7.132), this implies that

u(x, t) =
1

2

[
u0(x− ct) + u0(x+ ct) +

1

c

∫ x+ct

x−ct
v0(x′)dx′

]
, (7.136)

which is exactly the same expression we found by applying Green’s function methods.

Example 7.12 Consider an infinite string with tension S and linear density ρ`. The
transversal deviation u(x, t) of this string from the equilibrium position then satisfies the
wave equation with c2 = S/ρ`. If the string is released from rest in the position

u(x, 0) = u0(x) (7.137)

at time t = 0, we find that

u(x, t) =
1

2
[u0(x+ ct) + u0(x− ct)] . (7.138)

Both of the terms in this solution have the same shape as the original, but half the amplitude,
and one of them is moving to lower x while the other is moving to larger x, see Fig. 7.7.

7.5.2 Three-dimensional wave propagation
In three spatial dimensions, the Green’s function of the wave equation needs to satisfy

(PDE) : Gtt(~x, t)− c2∇2G(~x, t) = δ(3)(~x)δ(t), (7.139a)

(IC) : G(~x, t < 0) = 0. (7.139b)
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As for the one-dimensional wave equation, we take the Fourier transform of the differential
equation and obtain

Ĝtt(~k, t) + c2~k 2Ĝ(~k, t) = δ(t) (7.140)

and consequently

Ĝ(~k, t) =
θ(t)

ck
sin(ckt), (7.141)

where k = |~k|. The inverse Fourier transform is given by

G(~x, t) =
θ(t)

(2π)3

∫
1

ck
sin(ckt)ei

~k·~xdK, (7.142)

which we can rewrite in terms of spherical coordinates in K, taking the angle θk as the angle
between ~x and ~k, to obtain

G(~x, t) =
θ(t)

(2π)2c

∫ ∞
k=0

∫ π

θk=0

k sin(ckt)eikr cos(θk) sin(θk)dθkdk

=
θ(t)

(2π)2cri

∫ ∞
k=0

sin(ckt)[eikr − e−ikr]dk = − θ(t)

(2π)2cr

∫ ∞
−∞

[eik(r+ct) − eik(r−ct)]dk

= − θ(t)

(2π)cr
[δ(r + ct)− δ(r − ct)], (7.143)

where r = |~x|. From the Heaviside function θ(t), we know that the Green’s function is
non-zero only for t > 0. In addition, r > 0 and therefore r + ct > 0, implying that the first
delta function in this equation is zero for all t > 0 and the Green’s function reduces to

G(~x, t) =
θ(t)

4πcr
δ(r − ct). (7.144)

This expression has several properties that have straightforward physical interpretations.
First of all, it is a spherically expanding delta pulse that expands at the wave velocity c.
This is something which is peculiar for the three dimensional wave propagation and that
did not occur in one dimension. We will discuss this in more detail after looking at the two-
dimensional wave equation. Apart from this, the amplitude of the wave decreases as 1/r,
just as the potential outside a spherically symmetric source distribution when considering
Poisson’s equation. This is in good agreement with the conservation of energy carried by the
wave, as the energy is generally proportional to the square of the amplitude. As the wave
expands, the total area of the wave front grows as r2, but is compensated by the decrease
in amplitude, leading to conservation of the energy in the wave.

When it comes to the wave being an expanding delta function and therefore singular, it
should be remembered that this is a wave generated by a delta impulse in the wave equation.
An actual physical source will generally not have this property. In addition, one effect that
we have not, and will not, look at is dispersion effects. In many physical situations, the wave
velocity c will depend on the wave vector ~k. When this occurs, the Fourier modes will no
longer conspire to form the delta function in the radial direction, but rather an expanding
and dispersing wave front.

Example 7.13 Pressure waves are being created with a frequency ω by a point generator
in an extended medium such that the pressure satisfies the wave equation

(PDE) : ptt(~x, t)− c2∇2p(~x, t) = Aδ(3)(~x) sin(ωt). (7.145)
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Assuming that the generator is the only relevant source and that any waves from the initial
conditions have long since passed, the pressure at a point ~x will be given by

p(~x, t) =
A

4πc

∫ t

−∞

∫
1

|~x− ~x ′|
δ(|~x− ~x ′| − c(t− t′))δ(3)(~x ′) sin(ωt′)dV ′dt′

=
A

4πcr

∫ t

−∞
δ(r − c(t− t′)) sin(ωt′)dt′ =

A

4πc2r
sin
(
ω
(
t− r

c

))
, (7.146)

where r = |~x|. Due to the oscillating source at ~x = 0, the amplitude of the pressure is
constant and proportional to 1/r. Since it takes the wave a time r/c to travel from the
source to ~x, the oscillatory behaviour of the solution is phase shifted with respect to the
source by an amount ωr/c.

7.5.3 Two-dimensional wave propagation
The Green’s function for the two-dimensional wave equation has the same Fourier transform
as its one- and three-dimensional counterparts. However, inverting the Fourier transform
becomes slightly more involved than in the three-dimensional case due to a different power
of k appearing after going to polar coordinates. Instead, the simplest way forward is to
use Hadamard’s method of descent and we find the two-dimensional Green’s function by
writing down the three-dimensional problem

G2
tt(ρ, t)− c2∇2G2(ρ, t) = δ(t)δ(x1)δ(x2), (7.147)

where ρ is the radial cylinder coordinate. Using the three-dimensional Green’s function, we
now immediately find

G2(ρ, t) =
θ(t)

4πc

∫ ∞
−∞

1√
ρ2 + z2

δ(
√
ρ2 + z2 − ct)dz

=
θ(t)

2πc

∫ ∞
0

ctδ(z −
√
c2t2 − ρ2)√

c2t2 − ρ2

dz√
ρ2 + z2

=
θ(t)

2πc

θ(ct− ρ)√
c2t2 − ρ2

=
1

2πc

θ(ct− ρ)√
c2t2 − ρ2

, (7.148)

where, in the last step, we have used that θ(t) = 1 for any value of t for which θ(ct − ρ)
is non-zero. Just as for the one- and three-dimensional Green’s function, we find that the
resulting wave has a wave front moving at the wave speed c. However, each of the Green’s
functions in one, two, and three dimensions display certain features that are unique for each
dimensionality.

7.5.4 Physics discussion
Let us discuss the differences and similarities between the wave equation Green’s functions
in different numbers of spatial dimensions. For reference, we show the behaviour of the
Green’s functions in Fig. 7.8. As can be seen from this figure, the one-dimensional Green’s
function has a wave front that travels at speed c. After the wave front has passed, the
solution remains at the same level as the wave front. As such, applying a delta impulse to a
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G1(x, t) G2(ρ, t)

x

Figure 7.8 The qualitative behaviour of the Green’s function of the wave equation in one (left),
two (right), and three (bottom) dimensions for different times with the solid curve representing a
time t0, the dashed curve a time 2t0, and the dotted curve a time 4t0. The thin gray line represents
the amplitude of the wave as a function of the position of the wave front. Note that the arrows in
the three-dimensional case represent delta distributions, the amplitudes in the corresponding figure
represent the multipliers of these distributions.
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G2(ρ, t)

dz

z0
ct

ρ

Figure 7.9 A one-dimensional line-inhomogeneity in three dimensions. By looking at the contribu-
tions from an interval of length dz around the points z = z0 and z = −z0, we can reason our way
to the behaviour of the two-dimensional Green’s function G2(ρ, t).

system described by the one-dimensional wave equation will lead to the system eventually
changing its reference level to that resulting from the passing wave front.

In contrast to the situation in one dimension, the two dimensional solution has a singular
wave front, since the denominator contains a factor that goes to zero as ct → ρ. Common
with the one-dimensional situation is that the wave front travels at speed c away from
the source in all directions and that the solution does not immediately fall back to the
original reference level once the wave front has passed. Instead, the two-dimensional solution
gradually decreases towards the original zero level, but this will formally take an infinite
time and the decay goes as 1/t for ct� ρ.

When we go to three spatial dimensions, we again have a wave front travelling at speed
c. As in the two-dimensional case, but to an even larger extent, this wave front is singular in
nature as it is described by a delta function. The particular property of the three-dimensional
Green’s function is that, once the wave front has passed, the solution immediately returns
to the original reference level and the wave therefore has a non-zero amplitude only at a
distance ρ = ct from the source. In general, we see that the Green’s function becomes more
and more singular and concentrated to ρ = ct as the number of spatial dimensions increases.
This behaviour can be physically understood from considering the one- and two-dimensional
cases as special cases resulting from particular inhomogeneities according to Hadamard’s
method.

Let us start by considering the two-dimensional Green’s function resulting from a one-
dimensional line-inhomogeneity at time t = 0 in three-dimensions as depicted in Fig. 7.9.
The two-dimensional Green’s function is now given by the integral in Eq. (7.148). If we
consider the contribution to the Green’s function resulting from the inhomogeneity at z = z0,
its distance to the point at z = 0 and an arbitrary ρ is given by

r2 = z2
0 + ρ2. (7.149)

Since the Green’s function of the three-dimensional wave equation is non-zero only when
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r = ct, the contribution from z = z0 is therefore only going to give a contribution when

c2t2 = z2
0 + ρ2. (7.150)

For any time t < ρ/c, none of the contributions will have reached a distance ρ away from
the inhomogeneity and this is the reason for the appearance of the Heaviside function in
the two-dimensional Green’s function. As different contributions to the inhomogeneity are
at different distances from the point of interest, their effects will continue to arrive also for
times later than this. However, as the inhomogeneities come from further and further away,
we will generally expect a decrease in the two-dimensional Green’s function amplitude with
time. To start with, a general decrease proportional to the distance

√
z2

0 + ρ2 = ct will
appear from the three-dimensional Green’s function, this factor is apparent in the first two
lines of Eq. (7.148). In addition, in a certain time interval between t and t + dt, the point
of interest is affected by the inhomogeneities between z0 and z0 + dz, where dz is given by

c2t dt ' z0 dz =⇒ dz

dt
=

c2t√
c2t2 − ρ2

, (7.151)

indicating that this should also be a factor in the two-dimensional Green’s function. Putting
these pieces together, the two-dimensional Green’s function should be given by

G2(ρ, t) =
θ(t)

4πc3t

2c2t√
c2t2 − ρ2

θ(ct− ρ), (7.152a)

where the first factor comes from the three-dimensional Green’s function, the middle factor
is proportional to the total source affecting the point of interest at time t, and the last
factor is the Heaviside function describing the necessity of the wave front of the closest
source to arrive. Note that there is an additional factor of c in the denominator of the
three-dimensional Green’s function appearing from the integration over time of the delta
function. The two in the middle factor arises due to the source being symmetric and having
a contribution from z = −z0 as well as from z = z0. Simplifying this expression, we arrive
at

G2(ρ, t) =
1

2πc

θ(ct− ρ)√
c2t2 − ρ2

, (7.152b)

which is exactly the two-dimensional Green’s function found in Eq. (7.148). Taking the
three factors together therefore accounts exactly for the behaviour of this Green’s function.

The above argument can also be applied to the one-dimensional Green’s function. At a
given time t, the one-dimensional Green’s function at z > 0 is given by the inhomogeneity
at a circular area of radius ρ =

√
c2t2 − z2, see Fig. 7.10, where we have placed the inho-

mogeneity at z = 0 and used polar coordinates in its plane. The area contributing to the
Green’s function between times t and t+ dt is given by

dA = 2πρ dρ = 2πc2t dt (7.153)

by arguments exactly equivalent to those used for the two-dimensional Green’s function
with the roles of z and ρ reversed. Multiplying the factors together, we find

G1(z > 0, t) =
1

4πc3t
2πc2t θ(ct− z) =

1

2c
θ(ct− z). (7.154a)

By reflection symmetry in the plane z = 0, we must therefore have

G1(z, t) =
1

2c
θ(ct− |z|) (7.154b)

for arbitrary z. This may also be rewritten on the exact same form as Eq. (7.128c).
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Figure 7.10 The same as Fig. 7.9, but for the case of using a two-dimensional planar inhomogeneity
in order to find the Green’s function of the one-dimensional wave equation.

7.6 PROBLEMS WITH A BOUNDARY
Up to this point, we have only discussed the Green’s function solutions in several dimensions
for problems where the region of interest has been all of space. However, just as for the case
of one-dimensional Green’s function solutions, we will generally encounter problems where
the region of interest has one or more boundaries as we discussed briefly in Section 7.2.3.
The general Green’s function will be defined as having a delta function inhomogeneity in
the differential equation and homogeneous boundary conditions

(PDE) : L̂G(~x, ~x ′) = δ(~x− ~x ′), (~x ∈ V ) (7.155a)

(BC) : B̂G(~x, ~x ′) = 0. (~x ∈ S) (7.155b)

Solving this differential equation may generally be difficult, but there are some tricks we
can use in order to find Green’s functions for bounded domains using the tools we have
already developed.

7.6.1 Inhomogeneous boundary conditions
As you may have noted above, we will generally demand that the Green’s function satisfies
homogeneous boundary conditions. We have already seen that this is a reasonable require-
ment in the case of a one-dimensional problem involving a Sturm–Liouville operator, but let
us briefly discuss also the cases of Poisson’s equation and the heat equation. For Poisson’s
equation, imagine that we wish to solve the general problem

(PDE) : ∇2u(~x) = f(~x), (~x ∈ V ) (7.156a)

(BC) : α(~x)u(~x) + β(~x)~n · ∇u(~x) = g(~x), (~x ∈ S) (7.156b)

where V is some finite volume and S its boundary. We will work with the case α(~x) 6= 0
as the case α(~x) = 0 runs into exactly the same problems as those encountered for pure
Neumann boundary conditions in Section 7.2.2. By a reasoning similar to that presented
in that section, we can also deduce that the Green’s function for Poisson’s equation is
symmetric as long as it satisfies homogeneous boundary conditions and we will therefore
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work under the assumption that

G(~x, ~x ′) = G(~x ′, ~x), (7.157)

see Problem 7.14. Requiring that the Green’s function satisfies

∇2G(~x, ~x ′) = δ(N)(~x− ~x ′), (7.158)

we can rewrite any function u(~x ′) according to

u(~x ′) =

∫
V

δ(N)(~x− ~x ′)u(~x)dV =

∫
V

u(~x)∇2G(~x, ~x ′)dV. (7.159)

Applying the divergence theorem to this expression twice now results in the relation

u(~x ′) =

∫
V

G(~x, ~x ′)∇2u(~x)dV +

∮
S

[u(~x)∇G(~x, ~x ′)−G(~x, ~x ′)∇u(~x)] · d~S. (7.160)

While this is true for any function u(~x ′), this expression is of particular interest whenever
u(~x ′) satisfies Eqs. (7.156) as it then takes the form

u(~x ′) =

∫
V

G(~x, ~x ′)f(~x)dV +

∮
S

g(~x)

α(~x)
∇G(~x, ~x ′) · d~S

−
∮
S

~n · ∇u(~x)

α(~x)
[β(~x)~n · ∇G(~x, ~x ′) + α(~x)G(~x, ~x ′)]dS, (7.161)

which is true regardless of what boundary conditions we choose to apply to the Green’s
function. However, a wise choice is to let the Green’s function satisfy the homogeneous
boundary condition

β(~x)~n · ∇G(~x, ~x ′) + α(~x)G(~x, ~x ′) = 0 (7.162)

as the entire last line of the preceding expression then vanishes and we are left with

u(~x ′) =

∫
V

G(~x, ~x ′)f(~x)dV +

∮
S

g(~x)

α(~x)
∇G(~x, ~x ′) · d~S, (7.163)

where the dependence of the right-hand side on u(~x) has been removed. Selecting the ho-
mogeneous boundary conditions of Eq. (7.162) for the Green’s function, we have therefore
found an expression for the solution to Eqs. (7.156) in terms of the Green’s function and
the inhomogeneities of the differential equation and boundary conditions. While we here
assumed a finite volume V , the argumentation above holds true also for the case of an
infinite volume with boundaries as long as the functions involved fall off sufficiently fast as
we approach infinity.

For the heat equation, we can follow a similar approach. Starting from the problem

(PDE) : ut(~x, t)− a∇2u(~x, t) = κ(~x, t), (~x ∈ V ) (7.164a)

(BC) : u(~x, t) = f(~x, t), (~x ∈ S) (7.164b)

(IC) : u(~x, 0) = g(~x), (~x ∈ V ) (7.164c)

we consider the relation

u(~x ′, t′) =

∫ ∞
t=0

∫
V

δ(t′ − t)δ(N)(~x ′ − ~x)u(~x, t)dV dt

=

∫ ∞
t′=0

∫
V

[∂t′G(~x ′, ~x, t′ − t)− a∇2G(~x ′, ~x, t′ − t)]u(~x, t)dV dt

= −
∫ ∞
t′=0

∫
V

[∂tG(~x ′, ~x, t′ − t) + a∇2G(~x ′, ~x, t′ − t)]u(~x, t)dV dt. (7.165)
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Performing the partial integrations requiring that G(~x ′, ~x, t) = 0 for all t < 0 and that
u(~x, t) satisfies the heat equation, we find that

u(~x ′, t′) =

∫ ∞
t=0

∫
V

G(~x ′, ~x, t′ − t)κ(~x, t)dV dt+

∫
V

G(~x ′, ~x, t′)u(~x, 0)dV

+ a

∮
S

[G(~x ′, ~x, t′ − t)∇u(~x, t)− u(~x, t)∇G(~x ′, ~x, t′ − t)] · d~S dt. (7.166)

Applying the boundary and initial conditions from Eqs. (7.164) and choosing homogeneous
Dirichlet boundary conditions

G(~x ′, ~x, t) = 0 (7.167)

on S, we obtain the final expression

u(~x ′, t′) =

∫ ∞
t=0

∫
V

G(~x ′, ~x, t′ − t)κ(~x, t)dV dt+

∫
V

G(~x ′, ~x, t′)g(~x)dV

− a
∫ ∞
t=0

∮
S

f(~x, t)∇G(~x ′, ~x, t′ − t) · d~S dt. (7.168)

We here recognise the two first terms from Eq. (7.116), which described the solution to
the heat equation in an infinite domain without boundaries. The last term describes the
influence of the boundary condition.

7.6.2 Method of images
It should be observed that the differential equation for the Green’s function only needs to be
satisfied within the volume V . The method of images makes use of this fact and attempts to
reformulate a given problem with boundaries by considering a problem in a larger domain
that has the same solution as the original problem within V . Let us start by considering
the Green’s function for the one-dimensional heat equation in the region x > 0 subjected
to a homogeneous boundary condition at x = 0

(PDE) : ∂tG(x, x′, t)− a∂2
xG(x, x′, t) = δ(t)δ(x− x′), (7.169a)

(BC) : G(0, x′, t) = 0, (7.169b)

(IC) : G(x, x′, t < 0) = 0. (7.169c)

After seeing how to use a mirror image to solve this problem, we will generalise the result
to more complicated situations. Based on the given boundary condition, we will approach
this situation by first taking the Fourier sine transform of the Green’s function, this is given
by

G̃s(k, x
′, t) =

∫ ∞
0

G(x, x′, t) sin(kx)dx =
1

2i

∫ ∞
0

G(x, x′, t)(eikx − e−ikx)dx

= − 1

2i

∫ ∞
−∞

Ḡ(x, x′, t)e−ikxdx, (7.170)

where we have extended the Green’s function to negative values of x by defining

Ḡ(x, x′, t) =

{
G(x, x′, t), (x > 0)

−G(−x, x′, t), (x < 0)
. (7.171)
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This anti-symmetric extension is compatible with our boundary conditions as all anti-
symmetric functions must be equal to zero at x = 0. The extended Green’s function
Ḡ(x, x′, t) will therefore automatically be equal to the sought Green’s function G(x, x′, t)
in the region x > 0 and satisfy the required boundary condition at x = 0. Looking at
the Fourier sine transform of G(x, x′, t), we can see that it is directly given by the regular
Fourier transform of G̃(x, x′, t) as

G̃s(k, x
′, t) = − 1

2i
˜̄G(k, x′, t). (7.172)

Taking the Fourier sine transform of the partial differential equation, we now obtain

∂tG̃s(k, x
′, t) + ak2G̃s(k, x

′, t) =
1

2i
δ(t)(eikx

′
− e−ikx

′
). (7.173)

Rewriting this in terms of ˜̄G(k, x′, t), we obtain

∂t
˜̄G(k, x′, t) + ak2 ˜̄G(k, x′, t) = δ(t)(e−ikx

′
− eikx

′
). (7.174)

We could go right ahead and solve this ordinary differential equation, but it is much more
illuminating to take its inverse Fourier transform, which leads to

∂tḠ(x, x′, t)− a∂2
xḠ(x, x′) = δ(t)[δ(x− x′)− δ(x+ x′)] (7.175)

as an extended problem for −∞ < x < ∞. The inhomogeneity on the right-hand side is
now the sum of two different contributions, the original one at x = x′ and an additional
one with the same strength, but opposite sign, at x = −x′ < 0. As δ(x + x′) = 0 for all
x > 0, the additional contribution does not affect the differential equation in this region
and the extended function Ḡ(x, x′, t) still satisfies the original differential equation there. In
addition, we also know that this extended function will automatically satisfy the required
boundary conditions and can therefore conclude that solving this new problem will give us
the Green’s function for our problem as

G(x, x′, t) = Ḡ(x, x′, t) (7.176)

for all x > 0. In addition, we already know the solution to the new problem as it must be
the superposition of the solutions for the sink and source terms and we can directly write
it down as

G(x, x′, t) = G0(x, x′, t)−G0(x,−x′, t) =
1√

4πat

(
e−(x−x′)2/4at − e−(x+x′)2/4at

)
, (7.177)

where G0(x, x′, t) is the Green’s function for the heat equation in the full range −∞ < x <
∞.

So what just happened? In the end, we could find the Green’s function of a problem in a
restricted space by rewriting the problem as a problem extended to the full infinite domain
in which we already knew the Green’s function. The final Green’s function was a linear
combination of the Green’s function for an inhomogeneity placed at the same position as
the original inhomogeneity and a mirror image inhomogeneity placed outside of the region
of interest.

The underlying reason why the addition of the mirror image provides the solution is
twofold. First of all, the introduction of any new inhomogeneities outside of the region of
interest is not going to affect the differential equation inside it. We can therefore take the
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−x′
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G(x, x′)
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G(x, x′)

−x′

Figure 7.11 The figure shows the odd (left figure) and even (right figure) mirror image approaches
to solving problems with Dirichlet and Neumann boundary conditions, respectively. The dashed
curves show the Green’s function for the actual inhomogeneity at x = x′, while the dotted curves
show the Green’s function for the mirror image at x = −x′. The thick curves show the sum of the
two, which satisfies the required boundary conditions and have the correct inhomogeneity for the
differential equation in the target region. Placing the mirror image in the gray shaded region does
not change the inhomogeneity in the region of interest (not shaded).

Green’s function of the differential operator in the full space, which will have an inhomo-
geneity in the correct position, and add to this any Green’s function in the full space with
an inhomogeneity that is outside of the actual region of interest and we will still have a
function that satisfies the differential equation, we just have to find the correct combina-
tion to do so while also satisfying the boundary conditions. Second, the addition of the
Green’s function corresponding to a contribution of the opposite sign at the mirror point
makes the new Green’s function anti-symmetric. Since anti-symmetric functions automati-
cally satisfy the homogeneous Dirichlet boundary condition, this new Green’s function will
be the appropriate one.

We could also make the very same argument for a homogeneous Neumann boundary
condition at x = 0. The first line of the argumentation, that we can add any inhomogeneity
outside of the region of interest will still be true. However, we cannot satisfy the Neumann
condition by making the Green’s function anti-symmetric, but instead we must make it
symmetric in order to have a zero derivative at x = 0. The Green’s function for this situation
would therefore instead be given by

G(x, x′, t) = G0(x, x′, t) +G0(x,−x′, t). (7.178)

The odd and even mirror image approaches to problems with Dirichlet and Neumann bound-
ary conditions are illustrated in Fig. 7.11.

The mirror image approach may be applied to any situation where we have homogeneous
boundary conditions on a flat surface also in a lager number of spatial dimensions. A
requirement for this to work is of course that we can find the Green’s function for the
differential operator in the extended domain resulting from the mirroring process. Consider
the search for a Green’s function in N spatial dimensions of either Poisson’s equation, the
heat equation, or the wave equation in the half-infinite space x1 > 0. Constructing the
anti-symmetrised Green’s function, with the possible time-dependence suppressed,

Ga(~x, ~x ′) = G0(|~x− ~x ′|)−G0(|~x− R̂1~x
′|), (7.179)
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where we have introduced the linear reflection operator R̂1 that satisfies

R̂1~ei =

{
−~e1, (i = 1)

~ei, (i 6= 1)
(7.180)

and therefore reflects the vector ~x ′ in the plane x′1 = 0. In addition, we have used that the
Green’s function in the full space only depends on the distance between ~x and ~x ′. Whenever
x1 = 0, we find that

Ga(~x, ~x ′) = 0 (7.181)

due to the distance from ~x to ~x ′ being the same as the distance from ~x to R̂1~x
′, which

follows from

(~x− R̂1~x
′)2 = (−x′1)2 +

N∑
i=2

(xi − x′i)2 = (x′1)2 +

N∑
i=2

(xi − x′i)2 = (~x− ~x ′)2. (7.182)

In other words, the anti-symmetrised Green’s function Ga(~x, ~x ′) is the Green’s function for
the problem involving homogeneous Dirichlet conditions on x1 = 0. In the same fashion,
the symmetrised Green’s function

Gs(~x, ~x
′) = G0(|~x− ~x ′|) +G0(|~x− R̂1~x

′|) (7.183)

will be the Green’s function that satisfies homogeneous Neumann conditions on x1 = 0.

Example 7.14 Let us consider heat diffusion in a three-dimensional space described by
x1 > 0 with the boundary at x1 = 0 being heat isolated. In addition, we assume that there
is a space-dependent heat production that is constant in time such that the stationary
temperature is described by Poisson’s equation

(PDE) : ∇2T (~x) = −κ(~x), (x1 > 0) (7.184)

(BC) : ∂1T (~x) = 0. (x1 = 0) (7.185)

We can construct the Green’s function for this problem by performing an even mirroring in
the plane x1 = 0 and using the Green’s function for Poisson’s equation in three dimensions
without boundary

G(~x, ~x ′) = − 1

4π

(
1

|~x− ~x ′|
+

1

|~x− R̂1~x ′|

)
. (7.186)

Using this Green’s function, we can immediately write down the stationary temperature
distribution as

T (~x) =
1

4π

∫
x′1>0

(
1

|~x− ~x ′|
+

1

|~x− R̂1~x ′|

)
κ(~x ′)dV ′ =

1

4π

∫
R3

κ̄(~x ′)

|~x− ~x ′|
dV ′, (7.187)

where we have rewritten the second term in the original integral as an integral over x′1 < 0
and defined the function

κ̄(~x) =

{
κ(~x), (x1 > 0)

κ(R̂1~x), (x1 < 0)
, (7.188)

which is even with respect to the reflection R̂1. Thus, the solution to the problem with the
boundary is the same as the solution found when extending the problem to all of space by
making an even expansion of the source term. Naturally, this is directly related to the fact
that we can find the Green’s function by performing an even extension.
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Figure 7.12 We are searching for a Green’s function that can be used to solve the diffusion equation
in the region x1, x2 > 0 with homogeneous Dirichlet boundary conditions on the boundary x2 = 0
and homogeneous Neumann boundary conditions on the boundary x1 = 0.

7.6.2.1 Multiple mirrors

In some situations, the region of interest will be such that one image is not sufficient to
account for the boundary conditions. This may occur in several different ways. The first
of these is a rather straightforward generalisation of the case with one mirror image that
we have just seen. Consider a domain which is such that several of the coordinates are
restricted to be positive, e.g., xi > 0 if i ≤ k, where k is some integer smaller than or equal
to the number of dimensions N , and we assume that we have homogeneous Dirichlet or
Neumann conditions on the boundaries. In this situation, we can start by extending the
Green’s function to the full range −∞ < xk <∞ by performing the appropriate extension
in xk = 0

G1(~x, ~x ′) = G0(~x, ~x ′) + skG0(~x, R̂k~x
′), (7.189)

where G0(~x, ~x ′) is the Green’s function for the differential operator in the entire N -
dimensional space and sk = ±1 depending on the boundary conditions at xk = 0. This
Green’s function satisfies the differential equation in the region of interest as well as the
boundary conditions at xk = 0 by construction. We now have a problem that has one
boundary less than the original problem and we can repeat the procedure for xk−1 to re-
duce it further. Doing this type of mirroring for all of the xi with i ≤ k, we obtain a Green’s
function

Gk(~x, ~x ′) =
∑
α

sα1
1 sα2

2 . . . sαkk G(~x, R̂α1
1 R̂α2

2 . . . R̂αkk ~x ′), (7.190)

where α is a multi-index with k entries ranging from zero to one. This Green’s function will
have 2k terms and satisfy all of the boundary conditions as well as the original differential
equation in the region of interest.

Example 7.15 A substance is allowed to diffuse on a two-dimensional surface described by
coordinates x1 > 0 and x2 > 0 with diffusivity D. Furthermore, the conditions are such that
no substance may flow through the boundary at x1 = 0 and that any substance reaching
x2 = 0 is efficiently transported away, see Fig. 7.12. This situation may be described by the
differential equation

(PDE) : ut(~x, t)−D∇2u(~x, t) = 0, (x1, x2, t > 0) (7.191a)
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(BC) : ∂1u(~x, t) = 0, (x1 = 0) (7.191b)

u(~x, t) = 0, (x2 = 0) (7.191c)

(IC) : u(~x, 0) = f(~x), (x1, x2 > 0) (7.191d)

where f(~x) describes the initial distribution of the substance. Even though there is no
inhomogeneity in the differential equation itself, we can use the Green’s function derived
with an impulse in the differential equation in order to express the solution as an integral
over the initial condition as described earlier.

The Green’s function we are looking for should satisfy the homogeneous boundary condi-
tions and in order to accomplish this we make an odd extension in the x2 direction, resulting
in the Green’s function

G1(~x, ~x ′, t) = G0(~x− ~x ′, t)−G0(~x− R̂2~x
′, t), (7.192)

where G0(~x, t) is the Green’s function of the diffusion equation in two infinite spatial dimen-
sions. By construction, this Green’s function evaluates to zero whenever x2 = 0. In order to
also satisfy the boundary condition in the x1 direction, we now make an even extension of
G1(~x, ~x ′, t) to the region x1 < 0 by defining

G2(~x, ~x ′, t) = G1(~x, ~x ′, t) +G1(~x, R̂1~x
′, t)

= G0(~x− ~x ′, t)−G0(~x− R̂2~x
′, t) +G0(~x− R̂1~x

′, t)−G0(~x− R̂1R̂2~x
′, t)

=
θ(t)

4πDt

[
e−

(~x−~x ′)2
4Dt − e−

(~x−R̂2~x
′)2

4Dt + e−
(~x−R̂1~x

′)2
4Dt − e−

(~x−R̂1R̂2~x
′)2

4Dt

]
, (7.193)

where we have inserted the explicit expression for G0(~x− ~x ′, t) from Eq. (7.111) in the last
step. Applying the diffusion operator ∂t −D∇2 to this Green’s function, we find that

(∂t −D∇2)G2(~x, ~x ′, t) = δ(t)[δ(~x− ~x ′)− δ(~x− R̂2~x
′)

+ δ(~x− R̂1~x
′)− δ(~x− R̂1R̂2~x

′)]. (7.194)

Among the delta functions in this expression, only the first one is non-zero in the region
x1, x2 > 0 and this Green’s function therefore satisfies both the differential equation as well
as the necessary boundary conditions. The solution may now be written directly in the form

u(~x, t) =

∫
x′1,x′2>0

G2(~x, ~x ′, t)f(~x ′)dx′1dx′2. (7.195)

The mirroring procedure in this example is illustrated in Fig. 7.13.

In some situations, we may also need to place several image charges even in problems
with boundaries only in one direction. In particular, this will occur if the region of interest
is finite and extending the problem by mirroring it in one of the boundaries will result in
a new problem in a domain that is twice as large. To be specific, let us consider the one-
dimensional heat equation with homogeneous Dirichlet conditions for which the Green’s
function will satisfy

(PDE) : Gt(x, x
′, t)− aGxx(x, x′, t) = δ(t)δ(x− x′), (7.196a)

(BC) : G(0, x′, t) = G(`, x′, t) = 0. (7.196b)
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Figure 7.13 An illustration of the mirroring procedure used in Example 7.15. Starting from the
original domain (light shaded region) and inhomogeneity, an odd mirror image is positioned at the
mirror point with respect to the x1-axis followed by an even mirror image at the mirror points with
respect to the x2-axis results in a problem that has the same solution in the original domain and
that automatically satisfies the required boundary conditions.
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Figure 7.14 For a one-dimensional finite region with homogeneous Dirichlet boundary conditions,
we may find the Green’s function of the heat equation by repeatedly using odd extensions. For every
step, the inhomogeneity in the original domain (shaded) remains the same while the boundary
conditions are automatically satisfied due to the imposed symmetry conditions. We end up with
an infinite set of periodically placed mirror images.

By extending the Green’s function anti-symmetrically around x = `, see Fig. 7.14, we find
that the solution to the problem

(PDE) : G1
t (x, x

′, t)− aG1
xx(x, x′, t) = δ(t)[δ(x− x′)− δ(x− 2`+ x′)], (7.197a)

(BC) : G1(0, x′, t) = G(2`, x′, t) = 0, (7.197b)

where the differential equation holds for 0 < x < 2`, must coincide with the solution to
Eqs. (7.196) in the region 0 < x < `. Repeating the procedure to extend the solution to
0 < x < 4`, and continuing on in the same fashion to larger and larger intervals, the problem
is found to be equivalent to

(PDE) : G∞t (x, x′, t)− aG∞xx(x, x′, t) = δ(t)D(x, x′) (7.198a)

(BC) : G∞(0, x′, t) = 0, (7.198b)

where the function D(x, x′) in the inhomogeneity is given by an infinite sum of delta func-
tions

D(x, x′) =
∞∑
k=0

[δ(x− x′ − 2k`)− δ(x+ x′ − 2(k + 1)`)] . (7.198c)

Finally, we can perform an extension that is odd with respect to x = 0 and obtain a problem
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on the entire interval −∞ < x <∞

(PDE) : (∂t − a∂2
x)Ḡt(x, x

′, t) = δ(t)D̄(x, x′), (7.199a)

where

D̄(x, x′) =
∞∑

k=−∞

[δ(x− x′ − 2k`)− δ(x+ x′ − 2k`)]. (7.199b)

Since this is a problem on the entire real line, we can write down the solution in terms of
the Green’s function for the heat equation

Ḡ(x, x′, t) =
θ(t)√
4πat

∞∑
k=−∞

[
e−

(x−x′−2k`)2

4at − e−
(x+x′−2k`)2

4at

]
. (7.200)

Note that only one of the terms in this sum will contribute to the inhomogeneity in the
original domain 0 < x < `. Methods similar to the one described here may be applied to
problems in several dimensions as well.

7.6.3 Spherical boundaries and Poisson’s equation
There is a trick when it comes to the method of images that only works for Poisson’s
equation with Dirichlet boundary conditions. We will here go through the argument for three
dimensions and leave the corresponding two-dimensional argumentation as Problem 7.37.
The entire argument in the method of images when we search for a Green’s function that
satisfies homogeneous Dirichlet boundary conditions was to extend the problem to a problem
without boundaries by placing images of the inhomogeneity at strategic locations outside
the region of interest in order to automatically satisfy the boundary conditions. In the case
of flat mirror surfaces, the image inhomogeneities turned out to be of the same magnitude
and displaced by the same distance from the surface. It now makes sense to ask the question
whether we can encounter situations where the image charges are of different magnitude
or displaced by a different distance from the boundary surface. We can investigate this
by considering two charges of different magnitude and opposite sign Q and −q placed as
shown in Fig. 7.15. If we can find a surface on which the resulting potential is zero, we can
consider Poisson’s equation either within it or outside of it by using the method of images.
In the case when the charge Q is within the region of interest, the charge −q will be the
corresponding mirror charge and vice versa.

Based on the argumentation above, we wish to find out where the differential equation

(PDE) : ∇2V (~x) = − [Qδ(~x− d~e1)− qδ(~x)] (7.201)

results in V (~x) = 0. Before we do this, we start by concluding that there must exist a
surface where this holds. In particular, close to the positive inhomogeneity Q, the solution
will tend to positive infinity, while close to the negative inhomogeneity −q, the solution will
tend to negative infinity. In between, the function is continuous and must therefore have a
level surface where V (~x) = 0. Since we know the Green’s function of Poisson’s equation in
three dimensions, we can immediately write down the solution for V (~x) in the form

V (~x) =
q

4π

(
ξ

|~x− d~e1|
− 1

|~x|

)
≡ q

4π

(
ξ

r1
− 1

r2

)
, (7.202)

where ξ = Q/q. This is zero only if r2
1 = ξ2r2

2, which can be explicitly written out as

ξ2(z2 + ρ2) = (z − d)2 + ρ2. (7.203a)
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Figure 7.15 For two charges Q and −q of different magnitude and sign we can look for the set of
points for which the overall potential is equal to zero. This will turn out to be a spherical surface
and we can use the result for using mirror image techniques when solving problems with spherical
symmetry.

After some rewriting, this expression becomes(
z +

d

ξ2 − 1

)2

+ ρ2 =
ξ2d2

(ξ2 − 1)2
, (7.203b)

which is the equation for a sphere of radius R = ξd/
∣∣ξ2 − 1

∣∣ centred on z = −d/(ξ2−1) and
ρ = 0. For the sake of the argument, we can assume that ξ > 1 and perform a translation
along the z-axis such that the sphere is centred at the origin. We can also eliminate the
distance d from the problem in favour of the distance

R1 =
d

ξ2 − 1
, (7.204)

which is the distance of the charge −q from the new origin. With this in mind, the distance
of the charge Q from the origin will be

R2(R,R1) = d+
d

ξ2 − 1
=
R2

R1
(7.205)

as shown in Fig. 7.16. In addition, by comparing the expressions for R and R1, we can
compute the ratio ξ as

ξ =
R

R1
. (7.206)

Thus, if we have a situation where we are looking to find a Green’s function to Poisson’s
equation with Dirichlet boundary conditions on a sphere

(PDE) : −∇2G(~x, ~x ′) = δ(3)(~x− ~x ′), (|~x| < R) (7.207a)

(BC) : G(~x, ~x ′) = 0, (|~x| = R) (7.207b)
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Figure 7.16 The relations between the positions and magnitudes for a charge and its mirror charge
when using a mirror image such that the resulting Green’s function of Poisson’s equation satisfies
homogeneous Dirichlet boundary conditions on the sphere with radius R.

we may extend this problem to a problem in the entire three-dimensional space by intro-
ducing a mirror inhomogeneity of magnitude −ξ = −R/ |~x ′| at the mirror point

R̂R~x
′ =

R2

|~x ′|2
~x ′ = ξ2~x ′. (7.208)

By construction, the solution G̃(~x, ~x ′) to the extended problem

(PDE) : −∇2G̃(~x, ~x ′) = δ(3)(~x− ~x ′)− R

|~x ′|
δ(3)(~x− R̂R~x ′) (7.209)

will be equal to the original Green’s function in the region |~x| < R and we can therefore
directly write down the Green’s function on the form

G(~x, ~x ′) =
1

4π

(
1

|~x− ~x ′|
− R

r′
1

|~x− R̂R~x ′|

)
=

1

4π

(
1

|~x− ~x ′|
− Rr′

|~xr′2 −R2~x ′|

)
, (7.210)

where r′ = |~x ′|. By construction, this Green’s function is automatically equal to zero on
the sphere ~x 2 = R2. The exact same argument may be applied to a situation where we are
studying Poisson’s equation in the region outside of a spherical boundary with Dirichlet
conditions. We can also use this type of image when dealing with multiple images due to
several different boundaries.

Example 7.16 Consider the electric potential inside a half-sphere with a spherical coor-
dinate system in place such that r < R and θ < π/2, see Fig. 7.17. Let us assume that
there are no charges inside the half-sphere and that the spherical surface is being kept at
potential V0, while the plane θ = π/2 is kept grounded with potential zero. By the rota-
tional symmetry of the problem about the x3-axis, the potential can only be a function
of the spherical coordinates r and θ and is independent of ϕ. This can be mathematically
described by the differential equation

(PDE) : −∇2V (r, θ) = 0, (7.211a)

(BC) : V (R, θ) = V0, V (r, π/2) = 0. (7.211b)
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Figure 7.17 We are looking for the Green’s function for Poisson’s equation in a half-sphere of
radius R with Dirichlet boundary conditions. Once found, we will apply it to the problem where
the spherical surface is being kept at a potential V0 while the plane x3 = 0 is grounded.

The Green’s function of this problem is the function that satisfies Poisson’s equation with
homogeneous boundary conditions

(PDE) : −∇2G(~x, ~x ′) = δ(~x− ~x ′), (7.212a)

(BC) : G(~x, ~x ′) = 0. (r = R or θ = π/2) (7.212b)

The final solution for V (r, θ) will then be given by Eq. (7.163) as

V (~x) = −V0

∫
r=R,θ<π/2

∇′G(~x, ~x ′) · d~S′. (7.213)

In order to find the Green’s function, we first extend the problem to a full sphere r < R
by making an odd extension to the domain θ > π/2, see Fig. 7.18, resulting in the problem

(PDE) : −∇2G1(~x, ~x ′) = δ(~x− ~x ′)− δ(~x− R̂3~x
′), (7.214a)

(BC) : G1(~x, ~x ′) = 0, (|~x| = R) (7.214b)

where R̂3 is the reflection operator in the plane θ = π/2 (or, equivalently, x3 = 0). This
new problem is a problem inside a sphere of radius R and we can extend it to the full
three-dimensional space it by introducing the spherical mirror images of both of the inho-
mogeneities

(PDE) : −∇2G2(~x, ~x ′) = δ(~x− ~x ′)− δ(~x− R̂3~x
′)

− R

r′
δ(~x− R̂R~x ′) +

R

r′
δ(~x− R̂RR̂3~x

′). (7.215)

The solution to this problem is directly given by

G2(~x, ~x ′) =
1

4π

(
1

|~x− ~x ′|
− 1

|~x− R̂3~x ′|
− Rr′

|~xr′2 −R2~x ′|
+

Rr′

|~xr′2 −R2R̂3~x ′|

)
. (7.216)

Inserted into Eq. (7.213), this gives the solution to the problem in integral form.
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Figure 7.18 In order to find the Green’s function for Poisson’s equation on the half-sphere with
Dirichlet boundary conditions, we first extend the domain to a spherical domain by mirroring in
the plane and after that mirroring in the spherical surface.

7.6.4 Series expansions
In some situations, we will encounter problems where the domain and differential operator
are such that the solution to the problem may be expressed in the eigenfunctions of Sturm–
Liouville operators. We have discussed these cases extensively in Chapter 6 and it therefore
makes sense to ask the question of whether or not we can apply that framework to find the
Green’s function of a given problem. The answer is that not only can we do this, but the
resulting Green’s function takes a very particular and illuminating form.

Let us start by assuming that we are searching for a Green’s function satisfying

(PDE) : L̂G(~x, ~x ′) = −δ
(N)(~x− ~x ′)
w(~x)

, (~x ∈ V ) (7.217)

where the operator L̂ is a linear differential operator for which there exists a complete
orthonormal eigenbasis of functions un(~x) under the inner product with weight function
w(~x). We take the eigenvalue of un(~x) to be λn such that L̂un(~x) = λnun(~x). Expanding
the Green’s function G(~x, ~x ′) in terms of the eigenbasis we know that

G(~x, ~x ′) =
∑
n

Gn(~x ′)un(~x), (7.218)

where Gn(~x ′) is the expansion coefficient of un(~x) for a fixed ~x ′. Inserting this expression
into the differential equation for the Green’s function, we find∑

n

Gn(~x ′)λnun(~x) = −δ(~x− ~x
′)

w(~x)
. (7.219)

Since the inner product is of the form

〈f, g〉 =

∫
V

f(~x)g(~x)w(~x) dV (7.220)

we can take the inner product between Eq. (7.219) and um(~x) to obtain

Gm(~x ′)λm = −
∫
V

δ(~x− ~x ′)
w(~x)

um(~x)w(~x) dV = −um(~x ′). (7.221)
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Solving for the expansion coefficients, we can therefore express the Green’s function as

G(~x, ~x ′) = −
∑
n

1

λn
un(~x ′)un(~x). (7.222)

Note that the symmetry G(~x, ~x ′) = G(~x ′, ~x) is obvious from this expression. We should not
be very surprised by the form of this equation. If we take a general problem

(PDE) : L̂u(~x) = f(~x) (7.223)

subject to the same homogeneous boundary conditions, the solution will be given by

u(~x) = −
∫
V

G(~x, ~x ′)f(~x ′)w(~x ′)dV ′ =
∑
n

un(~x)

λn

∫
V

un(~x ′)f(~x ′)w(~x ′) dV ′

=
∑
n

un(~x)

λn
〈un, f〉 . (7.224)

This result is exactly the same as that obtained when expanding the functions u(~x) and
f(~x) as sums over the eigenfunction basis. Writing

u(~x) =
∑
n

Unun(~x) (7.225)

and taking the inner product between Eq. (7.223) and um(~x), we would find

λnUn = 〈un, f〉 =⇒ u(~x) =
∑
n

un(~x)

λn
〈un, f〉 . (7.226)

The solution of the differential equation by series expansion of the Green’s function and the
solution found by directly using series expansions of the solution and inhomogeneities are
therefore equivalent.

Example 7.17 Let us look at an example where we can find an exact solution relatively easy
just in order to exemplify the approach described above. If we wish to find the stationary
temperature in a long heat-isolated rod with constant heat diffusivity a where the ends at
x = 0 and x = ` are held at temperatures zero and T0, respectively, this can be described
by the second order differential equation

(ODE) : − T ′′(x) = 0, (7.227a)

(BC) : T (0) = 0, T (`) = T0. (7.227b)

The normalised eigenfunctions of the differential operator −d2/dx2 under the inner product

〈f, g〉 =
2

`

∫ `

0

f(x)g(x) dx (7.228)

are given by
un(x) = sin(knx), (7.229)

where kn = πn/`. With w(x) = 2/`, we can immediately write down the corresponding
Green’s function as

G(x, x′) = −
∞∑
n=1

2

`k2
n

sin(knx
′) sin(knx) (7.230a)
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and its derivative with respect to the first argument is therefore

Gx(x, x′) = −
∞∑
n=1

2

`kn
sin(knx

′) cos(knx). (7.230b)

According to the discussion in Section 7.2.2, and by using the fact that the differential
equation as well as the boundary condition at x = 0 are homogeneous, we can now write
down the solution for the temperature T (x) directly as

T (x′) = T0Gx(`, x′) = −
∞∑
n=1

2T0

πn
(−1)n sin(knx

′). (7.231)

Naturally, this is exactly the Fourier series expansion of the function

T (x) = T0
x

`
, (7.232)

which is the solution to the given problem.

7.7 PERTURBATION THEORY
We have so far dealt with differential equations that are linear or linearisable around some
stationary or steady state solution. However, physics is a descriptive science and it is not
always possible to describe nature using only linear equations. Unfortunately, non-linear
equations are often difficult to solve and must sometimes be dealt with numerically. As we
shall see in this section, the Green’s function formalism can help us go beyond the purely
linear regime to solve non-linear differential equations perturbatively. Although it will not
give us an exact solution, including just the first terms of a perturbative expansion is going
to give us the leading non-linear effects as long as they are relatively small. Perturbation
theory and Green’s functions plays a leading role in the study of high-energy particle physics
and we will end this section by introducing the concept of Feynman diagrams, which are
graphical representations of terms in a perturbation series.

The idea behind perturbation theory is to consider a differential equation of the form

(PDE) : L̂u(~x) = λf(u(~x), ~x), (7.233)

where L̂ is a linear differential operator and the function f(u(~x), ~x) in general is a non-
linear function of u(~x). In addition, a condition for perturbation theory to work is that the
non-linearities may be considered as small in comparison to the linear terms, which may
be emphasised by considering λ to be small. With this assumption, we can write down the
solution u(~x) as a power series in the small parameter λ according to

u(~x) =
∞∑
n=0

λnun(~x). (7.234)

By computing the first few terms of this sum and neglecting the rest with the argument
that λn becomes smaller and smaller with increasing n, we can find an approximate solution
to our non-linear problem.

In order to find the different functions un(~x), we start by inserting the expression for
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u(~x) into the non-linear right-hand side of the differential equation and expand the result
around u0(~x)

λf(u(~x), ~x) = λ
∞∑
k=0

1

k!

∂kf

∂un

∣∣∣∣
u=u0(~x)

[u(~x)− u0(~x)]k. (7.235)

Collecting terms of the same order in λ, we find that [u(~x)− u0(~x)]k is at least of order λk

and the leading term on the right-hand side is therefore at least of order λ, resulting from
the k = 0 term due to the λ multiplying f(u(~x), ~x). We now identify the terms of the same
order in λ on both sides of the differential equation. In particular, for the term proportional
to λ0, we will find

L̂u0(~x) = 0. (7.236)

This is a linear problem that may be solved using the framework we have already discussed
and so we can find u0(~x). From the term proportional to λ, we obtain the relation

L̂u1(~x) = f(u0(~x), ~x). (7.237)

Here, the right-hand side is a known function, since u0(~x) is known. If we can find the
Green’s function G(~x, ~x ′) for the linear differential operator L̂, we can therefore write down
the solution for u1(~x) on the form

u1(~x) =

∫
V

G(~x, ~x ′)f(u0(~x ′), ~x ′) dV ′. (7.238)

In the same fashion, the term proportional to λ2 will result in a linear differential equation
for u2(~x) where the inhomogeneity will be expressed in terms of the lower order solutions
u0(~x) and u1(~x). We can continue in this fashion also to higher orders of perturbation theory
and for the term proportional to λn, we will obtain an inhomogeneous differential equation
for un(~x) with an inhomogeneity that only depends on the expansion terms up to un−1(~x),
which we can compute from the lower orders.

Example 7.18 Consider an anharmonic oscillator described by the equation of motion

(ODE) : ẍ(t) + ω2x(t) = λx(t)2 (7.239a)

and assume that we release it from rest at X0 at time t = 0, which can be described by the
initial conditions

(IC) : x(0) = X0, ẋ(0) = 0. (7.239b)

An anharmonic oscillator generally results when corrections to the quadratic behaviour of
a potential around the potential minimum have to be taken into account, see Fig. 7.19. If
we assume that the anharmonic term is small, we can write the solution as a power series
in λ

x(t) = x0(t) + λx1(t) + λ2x2(t) + . . . . (7.240)

Inserted into the differential equation, we find that

[ẍ0(t) + ω2x0(t)] + λ[ẍ1(t) + ω2x1(t)] +O(λ2) = λx0(t)2 +O(λ2). (7.241)

Identifying the terms independent of λ on both sides results in

ẍ0(t) + ω2x0(t) = 0. (7.242)
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V (x)

x

∝ x2

Figure 7.19 The potential of an anharmonic oscillator (dashed curve) does not follow the x2 be-
haviour of a harmonic oscillator (solid curve) around its minimum. For this to play a significant
role in the motion, the amplitude of the oscillations needs to be large enough for the anharmonic
terms to be noticeable.

Since the initial conditions are independent of λ, we find that

x0(t) = X0 cos(ωt). (7.243)

For the first correction term x1(t), the terms proportional to λ in the differential equation
result in

ẍ1(t) + ω2x1(t) = x0(t)2 = X2
0 cos2(ωt). (7.244)

From our previous discussion on Green’s functions, we know that the Green’s function to
the differential operator ∂2

t + ω2 is given by

G(t) =
θ(t)

ω
sin(ωt), (7.245)

see Eq. (7.22), and we can therefore write down the integral expression

x1(t) =

∫ ∞
0

G(t− t′)x0(t′)2dt′ =
X2

0

ω

∫ t

0

sin(ω(t− t′)) cos2(ωt′) dt′

=
2X2

0

3ω2
sin2

(
ωt

2

)
[2 + cos(ωt)]. (7.246)

The solution x(t) is therefore given by

x(t) ' X0 cos(ωt) + λ
2X2

0

3ω2
sin2

(
ωt

2

)
[2 + cos(ωt)] (7.247)

to first order in λ. This solution is shown together with the solution x0(t) to the corre-
sponding harmonic oscillator as well as the numerical solution and the solution including
the second order corrections in Fig. 7.20. Note that, by construction, the perturbation so-
lution x1(t) satisfies homogeneous initial conditions, which therefore do not interfere with
the function x0(t) satisfying the same initial conditions as x(t).

Some properties of perturbation theory will become clearer if we work with a specific
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Figure 7.20 The numerical solution (black) to the anharmonic oscillator of Example 7.18 along with
the approximative solutions (grey) to zeroth (solid line), first (dashed line), and second (dotted
line) order in perturbation theory for λ = 0.3ω2/X0. Note that the first order perturbation is not
able to account for the phase shift of the extreme values, while this is corrected by the second order
perturbation.

f(u(~x), ~x) that is a monomial in u(~x). For definiteness, let us take

f(u(~x), ~x) = u(~x)2, (7.248)

as was the case in the preceding example. Performing the expansion of this monomial in λ,
we find that

u(~x)2 = u0(~x)2 + λ2u0(~x)u1(~x) + λ2[2u0(~x)u2(~x) + u1(~x)2] +O(λ3). (7.249)

The first of these terms is the term that appears as the inhomogeneity in the differential
equation for u1(~x) and we can immediately write down

u1(~x) =

∫
G(~x, ~x ′)u0(~x ′)2dV ′. (7.250)

When it comes to the second term, the solutions for u0(~x) and u1(~x) are going to appear
in the inhomogeneity in the differential equation for u2(~x)

L̂u2(~x) = 2u0(~x)u1(~x), (7.251)

resulting in the solution

u2(~x) = 2

∫
G(~x, ~x ′)u0(~x ′)u1(~x ′)dV ′

= 2

∫
~x ′

∫
~x ′′
G(~x, ~x ′)G(~x ′, ~x ′′)u0(~x ′)u0(~x ′′)2dV ′dV ′′, (7.252)

where we have been able to express u2(~x) only in terms of the Green’s function G(~x, ~x ′)
and the solution u0(~x) to the linear problem by inserting the expression already found for
u1(~x). In fact, for any differential equation of this type, it will be possible to express the
perturbation order λn using only the Green’s function and u0(~x) and n integrals.
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Example 7.19 Consider the one-dimensional diffusion equation with a source term pro-
portional to the square of the concentration of the diffusing substance

(PDE) : (∂t −D∇2)u(x, t) = λu(x, t)2. (7.253)

If the initial condition is taken such that

(IC) : u(x, 0) = U0θ(`− |x|), (7.254)

i.e., the initial concentration is U0 for all |x| < ` and zero otherwise, the solution to zeroth
order in perturbation theory is given by

u0(x, t) =
U0√
4πDt

∫ `

−`
e−

(x−x′)2
4Dt dx′, (7.255)

where we have used that the Green’s function is given by

G(x− x′, t) =
θ(t)√
4πDt

e−
(x−x′)2

4Dt . (7.256)

The differential equation for the first order correction has an inhomogeneity λu0(x, t)2 and
is therefore given by

u1(x, t) =

∫ t

t′=0

∫ ∞
x′=−∞

G(x− x′, t− t′)u0(x′, t′)2dx′ dt′

=

∫ t

t′=0

∫ ∞
x′=−∞

u0(x′, t′)2√
4πD(t− t′)

e
− (x−x′)

4D(t−t′) dx′ dt′. (7.257)

In the same way, with the inhomogeneity λ22u0(x, t)u1(x, t), the second order correction
can be written down as

u2(x, t) =

∫ t

t′=0

∫ ∞
x′=−∞

∫ t′

t′′=0

∫ ∞
x′′=−∞

u0(x′, t′)u0(x′′, t′′)2

4πD
√

(t− t′)(t′ − t′′)

× e−
(x−x′)2
4D(t−t′) e

− (x′−x′′)2

4D(t′−t′′) dx′′dt′′dx′dt′. (7.258)

The higher order corrections can be written down by using similar arguments.

7.7.1 Feynman diagrams
For the non-linearities and at the orders in perturbation theory we have dealt with so far,
there has only appeared a single term in the inhomogeneity. In general, the inhomogeneity
will contain several terms. As an example, the differential equation for u3(~x) will be of the
form

L̂u3(~x) = 2u0(~x)u2(~x) + u1(~x)2 (7.259)

in the case when f(u(~x), ~x) = u(~x)2. Of course, due to the linearity of the left-hand side
in u3(~x), we can still construct it in terms of the basic building blocks we have found, the
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Green’s function G(~x, ~x ′), the zeroth order solution u0(~x), and a number of integrals. At
higher orders in perturbation theory, or for more involved inhomogeneities, the number
of terms can become very large. In order to keep track of all the terms, there is a nice
pictorial representation of the different terms in the perturbative expansion called Feynman
diagrams. In order to construct this representation, let us first consider the zeroth order
term u0(~x). We will represent this term as

u0(~x) =
~x
, (7.260)

where the cross represents any inhomogeneity in the zeroth order differential equation or
in the boundary conditions, the line represents its propagation to the point ~x through the
Green’s function, and the point ~x is represented by the black dot. In the same fashion, we
can represent u0(~x)2 as

u0(~x)2 =
~x
. (7.261)

The value of this diagram is given by the multiplication of the lines entering the point ~x.
We have two lines, each representing one power of u0(~x) as given by the inhomogeneities
propagated by the Green’s function.

If we look at the product of two factors of u0(~x), we note that it is exactly the inho-
mogeneity appearing in Eq. (7.250) for the first order perturbative correction u1(~x) for the
problem with f(u, ~x) = u2, which is therefore pictorially given by

u1(~x) =

∫
G(~x, ~x ′)

~x ′
dV ′. (7.262)

Of course, this looks rather ugly and we would like to include the Green’s function as well
as the integral over ~x ′ in the pictorial framework. The Green’s function is a function of two
different points ~x and ~x ′ and we can therefore represent it as a line between the them

G(~x, ~x ′) = ~x ′ ~x . (7.263)

At the same time, we can represent the integral over ~x ′ by using a different kind of point,
for example a white circle instead of a black one∫

. . . dV ′ = ~x ′ . (7.264)

With these ingredients, the pictorial representation of u1(~x) becomes

u1(~x) =
~x
. (7.265)

In this diagram, we have also suppressed the ~x ′ coordinate as it is a dummy coordinate
that is anyway integrated over.

So we have found a way of graphically representing the integrals that are going to appear
when we do perturbation theory, but, apart from being a more compact form than writing
out all of the Green’s functions and integrals, how does this help us to actually perform any
computations and keep track of the different terms that are going to appear? To this point,
we have only worried about finding a pictorial representation of a mathematical object, but
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we need to find a set of rules describing what terms we are allowed to write down for a given
differential equation. This set of rules will be called the Feynman rules for the differential
equation and let us discuss how we can find them in the special case of the differential
equation

L̂u(~x) = λu(~x)2. (7.266)

When we consider the λn term in the perturbative expansion of the solution we will obtain

L̂un(~x) =
n−1∑
k=0

uk(~x)un−1−k(~x). (7.267)

Solving for un(~x), we will therefore use a Green’s function G(~x, ~x ′) and sum over all of
the possible inhomogeneities that contain two functions uk(~x) and un−1−k(~x) such that
the sum of their orders in perturbation theory equals n − 1. These two functions will be
represented by two separate Green’s function lines going into the vertex at ~x ′, which is
integrated over. In addition, the propagation of the inhomogeneity by the Green’s function
will be represented by a line going out of the vertex. Since no inhomogeneity contains a
product of three or more functions, there will be no vertices with more than two incoming
Green’s function lines. Therefore, the only vertex which we will be allowed is the vertex

with two lines coming in from the left and one exiting to the right. Since each order of
perturbation theory is adding a Green’s function integral and u0(~x) does not contain any
vertices that are integrated over, the λn term in perturbation theory will be given by all
diagrams containing n vertices.

Looking at second order in perturbation theory, we can write u2(~x) as

u2(~x) =
~x

+
~x
, (7.268)

where the diagrams result from the two contributing terms in Eq. (7.267). However, in this
case the inhomogeneities are u0(~x)u1(~x) and u1(~x)u0(~x), respectively, and are therefore
equivalent. Indeed, it is easy to see that both of the diagrams in the above expression will
be mathematically equivalent. This is a general feature at any order in perturbation theory
and topologically equivalent diagrams, i.e., diagrams that can be transformed into each
other by moving the vertices and edges around, will always be equal to each other. As such,
we only need to write down one of these diagrams and multiply them by a symmetry factor.
This symmetry factor can be deduced for each vertex as the number of possible inequivalent
ways the incoming legs can be attached. In the example above, there are two possible cases
for the right vertex, since we can choose to attach the u1(~x) as the upper or as the lower
leg. For the left vertex, which connects two incoming u0(~x), the symmetry factor is equal
to one as the diagram will be the same regardless of which u0(~x) is connected to which
line. Ultimately, this symmetry factor comes from the binomial theorem as the number of
possible ways to select one term from each factor in u(~x)2 and combine them to a term on
the form uk(~x)un−1−k(~x). Thus, taking symmetry into account, we may write

u2(~x) = 2×
~x
. (7.269)
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The computation of the correction at order λn in perturbation theory can now be per-
formed by following just a few basic rules:

1. Deduce the Green’s function of the linear operator L̂.

2. Deduce the allowed vertex or vertices from the non-linearity (if there are several terms
in the inhomogeneity f(u, ~x), there may be several different vertices).

3. Draw all possible topologically inequivalent Feynman diagrams with n internal vertices
and multiply them with the correct symmetry factor.

4. Compute the sum of all of the diagrams computed in the previous step.

Since we will generally be interested in the solution up to a certain accuracy, we want to
compute all the contributions in perturbation theory up to some given order in λ. In this
case, we can compute u(~x) to nth order by replacing the third step in the process above by
drawing all possible topologically inequivalent Feynman diagrams with at most n internal
vertices and multiplying them with the correct symmetry factor. In this case, each diagram
should also be multiplied by λk, where k is the number of vertices in the diagram, in order
to account for the order in perturbation theory at which the diagram enters.

Example 7.20 Let us write down the third order contribution to u(~x) in the case when the
differential equation is that given in Eq. (7.266). We are already aware of the allowed vertex
based on our previous discussion and we just need to draw all of the possible topologically
inequivalent diagrams with three vertices. There are two such diagrams, and we obtain

u3(~x) = S1 ×
~x

+ S2 ×
~x
, (7.270a)

where the Si are the symmetry factors of their respective diagrams. For the first diagram,
there is a symmetry factor of two for the right-most and the middle internal vertices as the
legs connecting to them from the left are not equivalent and we therefore obtain S1 = 22 = 4.
In the case of the second diagram, the right vertex has two equivalent legs connecting
from the left, each representing one factor of u1(~x), while the vertices to the left also have
equivalent legs, representing factors of u0(~x). Because of this, the symmetry factor of the
right diagram is given by S2 = 1 and therefore

u3(~x) = 4×
~x

+
~x
. (7.270b)

Collecting all terms up to third order in perturbation theory, the solution u(~x) is now given
by

u(~x) =
~x

+ λ×
~x

+ 2λ2 ×
~x

+ 4λ3 ×
~x

+ λ3 ×
~x

+O(λ4). (7.271)
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V (t)
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Figure 7.21 An RC circuit with a varying driving voltage V (t). Finding the behaviour of this circuit
using Green’s function methods is the subject of Problem 7.3.

7.8 PROBLEMS
Problem 7.1. Consider the Green’s function of a one-dimensional linear differential oper-
ator L̂ of order n with constant coefficients where the initial conditions are given by letting
all of the derivatives of order n− 1 or lower be equal to zero at t = 0. This Green’s function
must satisfy the differential equation

(ODE) : L̂G(t, t′) = δ(t− t′) (7.272)

for all t, t′ > 0.

a) Extend the Green’s function domain to the entire real line by defining G(t, t′) = 0
whenever t < t′. Show that the resulting Green’s function still satisfies the same
differential equation for all t.

b) By making the translations t→ t+ s and t′ → t′ + s, verify that the Greens function
can be written in terms of a function of only one argument G(t, t′) = G(t− t′).

Problem 7.2. The equation of motion for the damped harmonic oscillator is given by

mẍ(t) + 2αẋ(t) + kx(t) = F (t). (7.273)

Find the Green’s function for this equation. You may assume that the oscillator is under-
damped, i.e, that α2 < mk.

Problem 7.3. An RC circuit consists of a single resistor of resistance R, a capacitor with
capacitance C, and a variable voltage source V (t), see Fig. 7.21. The voltage across the
resistance is given by Ohm’s law VR = RI = RdQ/dt and the voltage across the capacitor
by VC = Q/C, where Q is the charge stored in the capacitor.

a) Find a differential equation for the charge Q by using the fact that the net change in
the potential when going around the circuit should be zero.

b) Construct the Green’s function of this differential equation and write down the general
solution for an arbitrary initial condition Q(0) = Q0 and driving voltage V (t).

c) Using the result from (b), find the charge Q as a function of time when there is no
driving voltage V (t) = 0.
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d) In the same fashion, find the solution when there is a driving voltage V (t) = V0 sin(ωt)
and the capacitor is initially uncharged Q0 = 0.

Problem 7.4. For an RCL circuit, an inductance L is added to the circuit in Problem 7.3.
The voltage across the inductance is given by VL = Ld2Q/dt2. In this case, it is not
sufficient to know the charge Q at t = 0 and an additional initial condition Q̇(0) = I0 is
necessary. Show that the differential equation for Q(t) is now that of a damped harmonic
oscillator, find its Green’s function in the overdamped case (R2C > 4L), and write down
the general solution for arbitrary Q0, I0, and V (t). What is the resonant frequency of the
oscillator? Discuss what happens in the limit where L→ 0 and compare with the results of
Problem 7.3.

Problem 7.5. Green’s function methods can also be used to solve coupled linear differential
equations. In nuclear medicine, radioisotopes are often administered to patients and the
concentration in different parts of the body can be modelled by coupled linear differential
equations. Consider the rudimentary model where a patient is administered a radioisotope
with a mean-life of τ = 1/λ0 at a rate r(t). The isotope is modelled to be instantly taken up
by the patient’s blood stream from which it can either leave the body with decay constant
λ1 or transfer to the patient’s thyroid with decay constant λT . From the thyroid, the isotope
leaves the body with decay constant λ2 and transfers to the blood with decay constant λB .
The number of atoms in the blood NB and thyroid NT then follow the coupled differential
equations

ṄB = r(t) + λBNT − λ̃BNB , (7.274a)

ṄT = λTNB − λ̃TNT , (7.274b)

where we have defined λ̃B = λ0 + λ1 + λT and λ̃T = λ0 + λ2 + λB .

a) Write this linear differential equation on the matrix form

Ṅ + ΛN = R(t), (7.275)

where N = (NB , NT )T and find an explicit expressions for the 2×2 matrix Λ and the
column vector R(t).

b) Define the Green’s function matrix

G(t) =

(
GBB GTB
GBT GTT

)
(7.276)

of the system as the time-dependent matrix such that

Ġ+ ΛG = δ(t)

(
1 0
0 1

)
. (7.277)

Find an explicit expression for this Green’s function matrix with the initial condition
that G = 0 for t < 0.

c) Show that the original differential equation is solved by

N(t) =

∫ ∞
0

G(t− t′)R(t′)dt′. (7.278)
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d) Given that the rate of radioactive decays in the thyroid is Γ = λ0NT , compute the
number of atoms of a total administered dose of N0 atoms that end up decaying in
the thyroid.

Problem 7.6. Define and find the Green’s function of the differential equation

(ODE) : u′(t) + g(t)u(t) = h(t), (7.279a)

(IC) : u(0) = u0, (7.279b)

where g(t) is an arbitrary function.

Problem 7.7. Consider the two linear differential operators L̂1 and L̂2 with corresponding
Green’s functions G1(t, t′) and G2(t, t′), respectively. Assume that the Green’s functions
satisfy Gi(t, t

′) = 0 for t < t′.

a) Show that the Green’s function composition

G(t, t′) =

∫ ∞
−∞

G2(t, t′′)G1(t′′, t′)dt′′ (7.280)

is the Green’s function of the operator L̂ = L̂1L̂2 that satisfies G(t, t′) = 0 for t < t′.

b) For the case of L̂1 = L̂2 = d/dt, compute the Green’s function of L̂1L̂2 = d2/dt2 in the
manner described above. Verify that your result is the appropriate Green’s function.

Problem 7.8. Consider the function F (x) = f(x)θ(x) and find expressions for the first
and second derivatives F ′(x) and F ′′(x). Use your result to find the conditions that must be
imposed on the functionsG+(x, x′) andG−(x, x′) in order forG(x, x′) = θ(x−x′)G+(x, x′)+
θ(x′ − x)G−(x, x′) to be a solution to the differential equation

∂2
xG(x, x′) + h(x)∂xG(x, x′) + w(x)G(x, x′) = δ(x− x′). (7.281)

Problem 7.9. For the differential equation

(ODE) : −u′′(x) = κ(x) (7.282)

in the region 0 < x < `, consistency in the Neumann boundary conditions require that

u′(`) = u′(0)−
∫ `

0

κ(x)dx. (7.283)

We can still solve this problem using Green’s function methods up to an arbitrary constant.
Perform the following steps:

a) Write down the differential equation that the Green’s function G(x, x′) must satisfy
and the corresponding consistency condition.

b) Assume that Gx(0, x′) = h0 and G(0, x) = g0 and find an explicit expression for the
Green’s function. Verify that your result satisfies the consistency condition.

c) Make the ansatz

u(x) = v(x) +

∫ `

0

G(x, x′)κ(x′)dx′ (7.284)

and find the differential equation and boundary conditions that v(x) must satisfy.
Solve the resulting homogeneous differential equation. Note that you should get one
arbitrary integration constant that cannot be fixed by the Neumann boundary con-
ditions. Verify that the solution is unique up to an arbitrary shift u(x) → u(x) + D,
where D is a constant.
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Problem 7.10. Consider the differential equation

(∂t + γ)2x(t) = f(t), (t > 0)

where γ is a constant of appropriate dimension. Assume the initial conditions

x(0) = x0, ẋ(0) = v0.

a) Compute the Green’s function for this system and use it to write down the solution
for arbitrary x0, v0, and f(t).

b) Find the solution to the problem x(0) = 0, ẋ(0) = 0, f(t) = f0e
iγt, using your result

from (a).

Problem 7.11. The position of a particle moving in one dimension is described by the
coordinate x(t). If the particle motion is damped and in addition subjected to a time-
dependent force F (t), the motion satisfies the differential equation

ẍ(t) +
k

m
ẋ(t) =

F (t)

m
, (7.285)

where k is the damping constant and m the particle’s mass. Find the Green’s function of this
differential equation and write down the general solution for the case where x(0) = ẋ(0) = 0.

Problem 7.12. For the Sturm–Liouville problem

(ODE) : L̂u(x) = − 1

w(x)
[p(x)u′′(x) + p′(x)u′(x)] = f(x), (7.286a)

(BC) : u′(a) = γa, u′(b) = γb, (7.286b)

show that the constants γa and γb must satisfy the consistency condition

p(a)γa − p(b)γb =

∫ b

a

f(x)w(x)dx (7.287)

in order for the problem to be solvable. Verify that the condition on the Green’s function
boundary conditions given in Eq. (7.69) are sufficient for

u(x) = −
∫ b

a

G(x, x′)f(x′)w(x′)dx′ (7.288)

to automatically satisfy the consistency condition.

Problem 7.13. Find the Green’s function G(x, x′) of the one-dimensional Sturm–Liouville
operator L̂ = −d2/dx2 on the interval 0 < x < ` with the boundary conditions

G(0, x′) = 0 and Gx(`, x′) = 0. (7.289)

Use your result to find the stationary solution to the heat equation

(PDE) : Tt(x, t)− aTxx(x, t) = κ0, (7.290a)

(BC) : T (0, t) = 0, Tx(`, t) = 0, (7.290b)

describing one-dimensional heat conduction with a constant source where one boundary is
kept at a temperature T = 0 and the other is heat isolated.
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Problem 7.14. In an arbitrary number of dimensions, use Green’s second identity to show
that the Green’s function of Poisson’s equation, which satisfies

(PDE) : ∇2G(~x, ~x ′) = δ(N)(~x− ~x ′), (7.291a)

with the homogeneous boundary condition

(BC) : α(~x)G(~x) + β(~x)~n · ∇u(~x) = 0 (7.291b)

is symmetric, i.e., that G(~x, ~x ′) = G(~x ′, ~x).

Problem 7.15. Consider a very long heat isolated rod that can be approximated as infinite
in both directions. At the time t = 0, the rod has the constant temperature T0 everywhere.
For times t > 0, a point-like heat source at x = 0 produces heat in a time-dependent fashion
such that the temperature T (x, t) satisfies

(PDE) : Tt(x, t)− aTxx(x, t) =
α√
t
δ(x). (7.292)

Write down an integral expression for the temperature at an arbitrary position at any time.
In particular, evaluate the temperature at x = 0 explicitly by performing the integrals.

Problem 7.16. A string of length ` with linear density ρ` and tension S is hanging in
a gravitational field g. One end of the string is kept fixed while the other is allowed to
move transversally under a linear restoring force. The transversal displacement u(x, t) of
the string then satisfies the differential equation

(PDE) : utt − c2uxx = −g, (0 < x < `) (7.293a)

(BC) : u(0, t) = 0, Sux(`, t) + ku(`, t) = 0, (7.293b)

where k is the spring constant of the restoring force. Find the Green’s function for the
stationary state equation and use it to find the stationary state. Verify that you get the
same result as you would get if you solved the stationary state differential equation directly.

Problem 7.17. An infinite string with tension S and linear density ρ` is at rest at times
t < 0. At t = 0, the string is given a transversal impulse density p0(x) and the resulting
transversal oscillations are described by

(PDE) : utt(x, t)−
S

ρ`
uxx(x, t) = δ(t)

p0(x)

ρ`
. (7.294)

Show the quantity

K(t) =

∫ ∞
−∞

ρ`u(x, t)dx (7.295a)

grows linearly with time for times t > 0, resulting in its time derivative

P (t) = K ′(t) =

∫ ∞
−∞

ρ`ut(x, t)dx, (7.295b)

i.e., the total transversal momentum of the string, being constant.

Problem 7.18. The results of Problem 7.17 can be generalised to the wave equation in
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more than one dimension. Starting from a state with u(~x, t) = 0 for all times t < 0 and the
differential equation

(PDE) : utt(~x, t)− c2∇2u(~x, t) = δ(t)v0(~x) (7.296)

in two and three dimensions, show that

X(t) =

∫
u(~x, t)dV (7.297a)

grows linearly with time and therefore

V (t) = X ′(t)

∫
ut(~x, t)dV (7.297b)

is a constant.

Problem 7.19. We wish to study the sourced diffusion of a substance on the disc x2 +y2 ≤
R2. We assume that substance escapes the disc as it reaches the border, leading to the
problem

(PDE) : (∂t −D∇2)u(~x, t) = g(~x, t), (7.298a)

(BC) : u(~x, t)|ρ=R = 0, (7.298b)

(IC) : u(~x, 0) = f(~x). (7.298c)

Find an expression for the Green’s function of this problem and write down the general
solution.

Problem 7.20. A total electric charge Q is evenly spread out over a spherical shell of
radius R. The electrostatic potential V (~x) due to this charge distribution satisfies the partial
differential equation

(PDE) : −∇2V (~x) =
Q

4πε0R2
δ(R− r), (7.299a)

(BC) : lim
r→∞

V (~x) = 0, (7.299b)

in spherical coordinates with the origin at the shell’s center. Compute the electric potential
for an arbitrary value of the radius r using Green’s function methods.

Problem 7.21. A total mass m of a substance is released at time t = 0 at the coordinates
x1 = x2 = 0 and x3 = x3

0 and is allowed to diffuse within the region x3 > 0. Any substance
that reaches the boundary at x3 = 0 is immediately adsorbed and the concentration u(~x, t)
can therefore be assumed to satisfy a homogeneous Dirichlet boundary condition at this
boundary. Let σ(x1, x2, t) be the total area density of mass of the substance that has been
adsorbed at the coordinates x1 and x2 after time t and compute the limit

Σ(x1, x2) = lim
t→∞

σ(x1, x2, t). (7.300)

Problem 7.22. The inhomogeneous Helmholtz equation is given by

∇2u(~x) + k2u(~x) = f(~x), (7.301)

where k2 > 0. Write down the partial differential equation that the Green’s function of
the Helmholtz equation has to satisfy and find a Green’s function in the one- and three-
dimensional cases. For the three-dimensional case, verify that you recover the Green’s func-
tion of the Poisson equation in the limit k2 → 0.
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Problem 7.23. For a diffusing substance that decays with decay constant λ > 0, the
concentration u(~x, t) follows the differential equation

(PDE) : ut − a∇2u+ λu = κ(~x, t), (7.302a)

where κ(~x, t) is a source term. Find the Green’s function of this problem in an arbitrary
number of spatial dimensions.

Problem 7.24. A long heat isolated rod originally at temperature T0 at t = 0 is subjected
to a temperature variation T1 sin(ωt) +T0 at one end. The resulting temperature in the rod
satisfies the heat equation

(PDE) : Tt(x, t)− aTxx(x, t) = 0, (7.303a)

(BC) : T (0, t) = T1 sin(ωt) + T0, lim
x→∞

T (x, t) = T0, (7.303b)

(IC) : T (x, 0) = T0. (7.303c)

Express the temperature T (x, t) in terms of an integral.

Problem 7.25. A half-infinite three-dimensional region given by x3 > 0 is filled with a
material of heat conductivity a and the boundary at x3 = 0 is heat isolated. The stationary
temperature T (~x) then satisfies the differential equation

(PDE) : ∇2T (~x) = −κ(~x), (x3 > 0) (7.304a)

(BC) : ∂3T (~x) = 0, (x3 = 0) (7.304b)

where κ(~x) is a stationary source term. Write down the solution to this problem in terms
of an integral and solve the integral for the source term

κ(~x) =

{
κ0, (r < R)

0, (r ≥ R)
, (7.305)

where r is the radius in spherical coordinates.

Problem 7.26. In order to determine the diffusivity of silver in copper, a thin film of a
radioactive silver isotope is placed on one end of a long copper rod with cross-sectional area
A. Let u(x, t) be the concentration of the silver isotope and assume that it satisfies the
one-dimensional diffusion equation with a sink proportional to u(x, t) due to the decays of
the isotope. At the time t = 0 of the application of the silver film on the rod, the initial
condition for the diffusion is given by

(IC) : u(x, 0) =

{
m
δA , (x < δ)

0, (x ≥ δ)
, (7.306)

where m is the total mass of the silver isotope and δ the thickness of the film. Determine
u(x, t), in particular in the case where δ can be considered small, and estimate the diffusivity
if the concentration after a time t0 at the distance `2 from the rod’s end is 10 % of the
concentration a distance `1 < `2 from the end at the same time.

Problem 7.27. Hadamard’s method of descent can also be used on a finite region if the
solution to the higher-dimensional problem is independent of the additional coordinate.
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a) Find the Green’s function of the Laplace operator in two dimensions on a square of
side length ` with homogeneous Dirichlet boundary conditions in the x1 direction and
homogeneous Neumann boundary conditions in the x2 direction.

b) Verify that the solution to the two-dimensional problem with the inhomogeneity given
by δ(x1 − x′1) is the Green’s function of the one-dimensional operator ∂2

1 with homo-
geneous Dirichlet boundary conditions on an interval with length `.

Problem 7.28. In the discussion around Eq. (7.117), it was claimed that the Green’s func-
tion of the N -dimensional heat equation can be found by performing a Fourier transform,
solving the ordinary differential equation for the Fourier modes, and then performing the
inverse Fourier transform. Perform this computation and verify that you recover the correct
Green’s function.

Problem 7.29. Verify that Hadamard’s method of descent applied to the Green’s function
of the N -dimensional heat equation can be used to find the Green’s function of the heat
equation in any lower-dimensional space.

Problem 7.30. Explicitly verify that d’Alembert’s formula, see Eq. (7.130), is a solution
to the one-dimensional wave equation with the appropriate initial conditions.

Problem 7.31. In the case of the one-dimensional wave equation in a half-infinite region
x > 0, use mirror image techniques to find the appropriate Green’s functions in the case of
homogeneous Dirichlet and Neumann boundary conditions at x = 0, respectively.

Problem 7.32. Consider an infinite string with wave speed c for the transversal displace-
ment. At time t = 0, the string satisfies the initial conditions

(IC) : u(x, 0) = u0e
−x2/a2 and ut(x, 0) = −αδ(x). (7.307)

Find the physical dimension of the constant α and determine the resulting transversal
displacement u(x, t) by using the Green’s function of the one-dimensional wave equation.
Determine the shape of the string when ct� x and ct� a.

Problem 7.33. Find the solution to the one-dimensional wave equation with an oscillating
point source

(PDE) : utt(x, t)− c2uxx(x, t) = Aδ(x) sin(ωt) (7.308)

when the initial conditions at t = 0 are homogeneous.

Problem 7.34. For a quantity u(x, t) that satisfies the one-dimensional wave-equation,
consider the initial conditions

(IC) : u(x, 0) = 0 and ut(x, 0) = v0 sin (kx) , (7.309)

where k is a constant. Show that the resulting solution is a standing wave of the form
u(x, t) = X(x)T (t) by using Green’s function methods and determine the function T (t).
Determine where the amplitude is equal to zero.

Problem 7.35. Use an expansion in terms of the eigenfunctions of the Laplace operator
in the three-dimensional region given by r < r0 with homogeneous Dirichlet boundary
conditions to write down a series that represents the Green’s function of the problem

(PDE) : −∇2u(~x) = f(~x), (r < r0) (7.310a)

(BC) : u(~x) = 0, (r = r0) (7.310b)

where r is the radial spherical coordinate.
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Problem 7.36. In Problem 7.11, we considered the damped motion of a particle in one
dimension under the influence of an external force F (t). In a model for Brownian motion, a
particle subjected to collisions with the smaller molecules in a suspending medium is under
the influence of a random external force with zero expectation value that is also uncorrelated
between different times. This is described through the expectation values

〈F (t)〉 = 0 and 〈F (t)F (t′)〉 = F 2
0 δ(t− t′). (7.311)

a) Using your solution from Problem 7.11 and assuming that x(0) = ẋ(0) = 0, write
down the solution x(t) for the position of the particle.

b) Since F (t) is a stochastic function, x(t) will be a stochastic variable. Compute the

expectation value 〈x(t)〉 and the variance
〈
x(t)2

〉
−〈x(t)〉2 of the position as a function

of t.

c) For large t, the probability distribution of x(t) will be Gaussian, i.e., its probability
density function will be given by

p(x, t) =
1√

2πσ2(t)
e
− (x−µ(t))2

2σ2(t) , (7.312)

where µ(t) is the expectation value and σ2(t) the variance at time t. Identifying with
your result from (b), find expressions for µ and σ2.

d) By definition, the probability density function gives the probability density of the
particle moving a distance x in time t. If we have several particles undergoing the same
type of motion, their concentration will have the form u(x, t) = N0p(x, t), where N0

is the number of particles. Show that this distribution satisfies the diffusion equation
with initial condition u(x, 0) = N0δ(x). Find an expression for the diffusivity in terms
of the parameters of the original differential equation for x(t).

Problem 7.37. Let us consider the method of mirror images for Poisson’s equation in a
circular domain in two dimensions.

a) For two point sources with unit magnitude and opposite sign that are separated by
a distance d in two dimensions, find the set of points for which the solution takes a
particular value u0. Show that the expressions are mathematically equivalent to those
obtained for the surface of zero potential in the three-dimensional case and, therefore,
that the region where the solution is equal to u0 in the two-dimensional case is a circle.

b) Shifting the entire solution by −u0, we will obtain a new solution to Poisson’s equation
that is identically zero for the set of points considered in (a). Write down an expression
for the new solution.

c) Use your result to write down the Green’s function for Poisson’s equation inside a
circular domain with homogeneous Dirichlet boundary conditions by applying the
method of images.

Problem 7.38. A half-cylindrical shell is kept at a potential of V = 0 on the cylindrical
surface and closed off by a flat surface with potential V = V0. The inside of the shell is free
from any charges. This results in the following two-dimensional problem

(PDE) : ∇2V = 0, (ρ < r0) (7.313a)

(BC) : V (~x) = 0, (ρ = r0) (7.313b)

V (~x) = V0. (x1 = 0) (7.313c)
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Write down the formal solution to this problem using a Green’s function. Your answer may
contain an integral and derivatives of known functions, i.e., you should write down the
Green’s function explicitly.

Problem 7.39. We wish to study the sourced diffusion of a substance on the disc of radius
r0. We assume that substance escapes the disc as it reaches the border, leading to the
problem

(PDE) : (∂t − a∇2)u(~x, t) = g(~x, t), (ρ < r0) (7.314a)

(BC) : u(~x, t) = 0, (ρ = r0) (7.314b)

(IC) : u(~x, 0) = f(~x). (ρ < r0) (7.314c)

Find an expression for the Green’s function of this problem in terms of a series expansion
and write down the general solution.

Problem 7.40. A two-dimensional region Ω is described by ρ > 0 and 0 < φ < π/4 in
polar coordinates. Determine the Green’s function of Poisson’s equation on Ω that satisfies
homogeneous Dirichlet boundary conditions, i.e., solve the differential equation

(PDE) : ∇2G(~x, ~x ′) = δ(2)(~x− ~x ′), (~x ∈ Ω) (7.315a)

(BC) : G(~x, ~x ′) = 0, (~x ∈ ∂Ω) (7.315b)

where ∂Ω is the boundary of Ω.

Problem 7.41. Consider the four-dimensional Laplace operator ∇2
4 = ∇2

3 + ∂2
w, where the

dimension corresponding to the coordinate w is cyclic, i.e., any function f(~x,w) satisfies
f(~x,w) = f(~x,w + L), where L is the size of the fourth dimension.

a) Find the Green’s function of this operator by solving the differential equation

∇2
4G(~x,w) =

∞∑
n=−∞

δ(w − nL)δ(3)(~x) (7.316)

in an infinite four-dimensional space.

b) Use your result from (a) to find an expression for the Green’s function G(~x, 0).

c) When r � L, where r is the radial spherical coordinate in three dimensions, we expect
to recover the Green’s function of the three-dimensional Laplace operator. Starting
from your result from (b), show that this is the case and that the corresponding charge
is proportional to 1/L. Also verify that G(~x, 0) behaves as the Green’s function of the
four-dimensional Laplace operator when r � L.

Hint: You may find the identity

∞∑
n=−∞

1

n2 + k2
=
π

k
coth(πk) (7.317)

useful.

Problem 7.42. A substance is allowed to diffuse in the two-dimensional region x1, x2 > 0
with diffusivity a. At the time t = 0, a total mass M of the substance is evenly distributed
in a quarter circle with radius r0 and it is assumed that no substance can diffuse through
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the boundaries at x1 = 0 and x2 = 0, respectively. This can be modelled by the differential
equation

(PDE) : ut(x
1, x2, t)− a∇2u(x1, x2, t) = 0, (x1, x2, t > 0) (7.318a)

(BC) : u1(0, x2, t) = u2(x1, 0, t) = 0, (7.318b)

(IC) : u(x1, x2, 0) = ξ0δ(ρ− r0), (x1, x2 > 0) (7.318c)

where ρ is the radial polar coordinate and u(x1, x2, t) is the concentration of the substance
at the point with coordinates x1 and x2 at time t. Determine the physical dimension of
the constant ξ0 and relate it to the total amount M of the substance and then solve the
differential equation.

Problem 7.43. The potential φ(~x) satisfies the Laplace equation in the half-infinite region
x3 > 0 and additionally assumes the boundary values

(BC) : φ(~x) =

{
V0, (r < r0)

0, (r ≥ r0)
. (x3 = 0) (7.319)

In addition φ(~x)→ 0 when r →∞. Use Green’s function methods in order to compute the
potential along the positive x3-axis.

Problem 7.44. Find the stationary temperature Tst(x
1, x2) in the half-plane x2 > 0 if the

temperature on the x1-axis is given by

(BC) : T (x1, 0, t) =

{
T0, (|x| < `)

0, (|x| ≥ `)
. (7.320)

The temperature T (x1, x2, t) may be assumed to satisfy the heat-equation.

Problem 7.45. A thin half-infinite rod without heat-isolation is losing heat proportionally
to the temperature difference to the environment. If its end is additionally held at the
environmental temperature T0, the temperature T (x, t) in the rod will satisfy the differential
equation

(PDE) : Tt(x, t)− aTxx(x, t) = −α[T (x, t)− T0], (x > 0) (7.321a)

(BC) : T (0, t) = T0, (7.321b)

(IC) : T (x, 0) = T0 + T1e
−µx, (7.321c)

where we have also assumed that the temperature difference relative to the environment at
t = 0 is given by T1e

−µx. Compute the temperature in the rod for an arbitrary position x
and time t.

Problem 7.46. In Example 7.4, we discussed the behaviour of an object falling under the
influence of gravitation and a force proportional to the velocity v. For larger velocities, the
force is no longer proportional to the velocity but receives a contribution proportional to
v2, resulting in the differential equation

(PDE) : mv̇ = mg − kv − λv2, (7.322)

where λ is a constant of suitable physical dimension. For small λ, use perturbation theory
to find the effect of this new contribution on the terminal velocity of the object to first
order in λ. Verify your result by finding an exact expression for the terminal velocity and
Taylor expanding it around λ = 0. You may assume that the initial velocity is v(0) = 0.
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Problem 7.47. While the equation of motion for the harmonic oscillator

ẍ(t) + ω2x(t) = 0 (7.323)

is linear, it may still be treated by perturbation theory, assuming that ω2 is a small number
or, more precisely, that ωt is small.

a) Considering the linear differential operator d2/dt2, find the Green’s function that
satisfies G(t) = θ(t)g(t).

b) With ω2 being a small number, write the general solution as an expansion in ω2

according to

x(t) =

∞∑
n=0

ω2nxn(t). (7.324)

Inserting this ansatz into the harmonic oscillator equation of motion, find the differ-
ential equations that must be satisfied for each power of ω2.

c) Solve the differential equation for the leading order (n = 0) contribution with the
initial conditions x(0) = x0 and ẋ(0) = v0.

d) Using the Green’s function found in (a), compute the solution to all orders, i.e., find
xn(t) for all n. Verify that your solution is equivalent to the analytical solution

x(t) = x0 cos(ωt) +
v0

ω
sin(ωt). (7.325)

Problem 7.48. For small values of α, the damping term for the damped harmonic oscillator
may be considered as a perturbation

(ODE) : mẍ(t) + kx(t) = −2αẋ. (7.326a)

Assume that the oscillator is subjected to the initial conditions

(IC) : x(0) = 0 and ẋ(0) = v0 (7.326b)

and that the solution can be written as a series in α

x(t) =

∞∑
n=0

αnxn(t). (7.327)

Find the differential equation each xn(t) must satisfy. Construct the exact solution for the
given initial conditions using your result from Problem 7.2, find the first order correction
x1(t) by expanding it to first order in α, and verify that the x1(t) you find satisfies the
corresponding differential equation.

Problem 7.49. The non-linear differential equation

(ODE) : u̇(t) = µu(t)− λu(t)2 (7.328)

can be solved exactly by integration of u̇/(µu− λu2) = 1 with respect to time. Considering
λ to be a small parameter, find the first order correction to the zeroth order approximation
u(t) = u(0)eµt and verify that it coincides with the first order contribution in λ in the
Taylor expansion of the exact solution.
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Problem 7.50. Consider the non-linear differential equation

L̂u(~x) = λu(~x)3 (7.329)

where L̂ is a linear differential operator. Derive the Feynman rules of this differential equa-
tion and write down the solution in terms of Feynman diagrams to third order in pertur-
bation theory.



C H A P T E R 8

Variational Calculus

Many physical concepts may be formulated as variational principles, which are conditions
on the functions describing a physical system such that some given quantity is stationary,
i.e., small changes in the functions do not change the quantity. Examples of such principles
are Fermat’s principle of light propagation, the principle that a system out of which energy
dissipates will eventually end up in the state with lowest energy, and Hamilton’s principle in
classical mechanics. In this chapter, we will eventually introduce and work with all of these
principles as we study the language in which they are formulated. In order to do this, we
will work with functionals, a concept that we briefly encountered in Chapter 5, and discuss
how to find their extreme values.

8.1 FUNCTIONALS
When we were discussing different function spaces and distributions, we mentioned func-
tionals as mappings from a function space to the real or the complex numbers. In that
discussion, the functionals we were considering were all linear such that

F [a1ϕ1 + a2ϕ2] = a1F [ϕ1] + a2F [ϕ2], (8.1)

where F is the functional and the ϕi are functions. In this chapter, we will consider more
general functionals that do not necessarily satisfy the requirement of being linear. Our
task will be to develop the calculus of variations, which is based on finding the stationary
functions of a given functional, i.e., the functions for which the change of the functional is
zero when the function is varied. The number of different physical properties that may be
described using functionals is large and although not all of them are in integral form, many
of them can be expressed in terms of integrals of the form

F [ϕ] =

∫
f(x, ϕ(x), ϕ′(x), . . .)dx, (8.2)

where f(x, ϕ(x), ϕ′(x), . . .) is some function of x, ϕ(x), and its derivatives. Let us start by
giving just a couple of examples of functionals that are of physical relevance.

Example 8.1 Consider a general curve ~x(t) in two dimensions as shown in Fig. 8.1, where
t is a curve parameter. The curve may be parametrised by the two coordinate functions
x1(t) and x2(t). We can always choose the curve parameter such that ~x(0) and ~x(1) are two

469
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x1

t

x2
B

A

Figure 8.1 A general curve in two dimensions may be described by giving its x1 and x2 coordinates
as functions of a curve parameter t, which may be chosen such that ~x(0) = ~xA and ~x(1) = ~xB are
the position vectors of the curve endpoints A and B, respectively. The length of the curve may be
described as a functional `[x1, x2].

given points A and B on the curve and we can compute the distance `[x1, x2] between A
and B along the curve by evaluating the integral

`[x1, x2] =

∫ 1

0

√
ẋ1(t)2 + ẋ2(t)2 dt. (8.3)

This is a functional mapping two functions x1(t) and x2(t) to the real numbers. Using
this expression, we can compute the length of any curve as long as we are given these two
functions.

Example 8.2 Given a rope of linear density ρ` in a homogeneous gravitational field
~g = −g~e3, see Fig. 8.2, we can express its gravitational potential energy as a functional. For
a small part of the rope of mass dm, the gravitational potential is given by

dV = gh(x) dm = gh(x)ρ`d`, (8.4)

where d` is the length of the part and h(x) is the vertical distance from the reference level.
As long as the part is small enough, its length is given by

d` =
√
dx2 + dh2 =

√
1 + h′(x)2 dx. (8.5)

Summing the contributions to the gravitational potential from all parts of the rope, we find
that the potential energy is given by the functional

V [h] =

∫ x0

0

ρ`gh(x)
√

1 + h′(x)2 dx. (8.6)

Note that x0 is the horizontal distance between the rope endpoints and not the length of
the rope, which is given as a functional by summing the lengths of all of the parts as

L[h] =

∫
d` =

∫ x0

0

√
1 + h′(x)2 dx. (8.7)

Note that this length is the same expression as that found in Example 8.1, but using the
horizontal coordinate x as the curve parameter.
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x0

x

h(x)

ρ`
~g

Figure 8.2 The potential energy of a rope of a fixed linear density ρ` in a gravitational field may
be described as a functional by summing the contributions from each small part of the rope.

Both of the examples above have the common property of being non-linear functionals
and are of the form given in Eq. (8.2). In a similar fashion to these examples, functionals
can often be used to describe other physical quantities of interest.

8.2 FUNCTIONAL OPTIMISATION
A large number of physics problems deal with the optimisation of different functions and
functionals, i.e., the search for extreme values. While we are already familiar with how this
works for functions in single- and multi-variable calculus, we need to develop a framework
for finding the extrema of functionals. This may seem like a daunting task, but it turns out
to be very similar to the approach used in ordinary calculus.

Let us start by making the observation that the functional F [ϕ] is a mapping from a
functional space to the real numbers. As such, we can always make a small change in the
argument of the functional and we define

F (ε) = F [ϕ+ εη], (8.8)

where η is some function in the function space and ε is a small number such that εη is a small
change in the function ϕ. If we keep the functions ϕ and η fixed, then F (ε) is a function
of ε and we can find its stationary points in the usual fashion in single-variable calculus,
by differentiating it with respect to the argument and setting the derivative equal to zero.
Naturally, the exact form of this derivative is generally going to depend on the form of the
functional F [ϕ]. If we can find a function ϕ such that F (0) is stationary regardless of the
function η, then it corresponds to a stationary value of the functional F [ϕ]. In particular,
if F (ε) has a minimum at ε = 0 regardless of η, then ϕ corresponds to a minimum of the
functional.

Example 8.3 Consider the problem of finding the shortest path between two points in
a two-dimensional Euclidean space, see Fig. 8.3. We can introduce coordinates such that
point A corresponds to the origin and point B corresponds to x = x0 and y = y0. Based on
our intuition, the shortest path should be given by the straight line

y(x) = y0
x

x0
≡ kx (8.9)
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y(
x)

=
kx

y0

y(
x)

=
kx

+
εη

(x
)

x

y

A

B
x0

Figure 8.3 There are several possible curves starting at A and ending at B. Here we show the
straight line described by the function y(x) = kx, with k = y0/x0, and an arbitrary small variation
y(x) = kx + εη(x). We wish to show that the straight line gives a stationary value for the curve
length regardless of the variation η(x).

between the points, a fact we can use the argumentation above to verify. In general, the
length of any curve y(x) between A and B can be written as

L[y] =

∫ x0

0

√
1 + y′(x)2 dx, (8.10)

where we require that y(0) = 0 and y(x0) = y0 in order for the curve to be a curve between
the given points. We now define the function

L(ε) = L[kx+ εη] =

∫ x0

0

√
1 + [k + εη′(x)]2 dx, (8.11)

which gives the length of the curve y(x) = kx+ εη(x). Differentiating with respect to ε, we
find that

L′(ε) =

∫ x0

0

[k + εη′(x)]η′(x)√
1 + [k + εη′(x)]2

dx, (8.12a)

which for ε = 0 evaluates to

L′(0) =
k√

1 + k2

∫ x0

0

η′(x)dx =
k√

1 + k2
[η(x0)− η(0)] = 0 (8.12b)

as η(x0) = η(0) = 0 must hold for the curve kx + εη(x) to start at A and end at B. From
this follows that y(x) = kx is a stationary function for the curve length between A and B.
Computing the second derivative L′′(0), we can also verify that this curve is a minimum,
see Problem 8.1.

The example above shows that the straight line between two points indeed gives a
stationary function for the path length. However, we already had a pretty good idea about
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what the solution should be and it does not really bring us any closer to a general method
for finding the stationary functions.

8.2.1 Euler–Lagrange equations
In order to find the stationary functions, let us for now specialise to functionals acting on
functions of one variable x in the interval a < x < b of the form

F [ϕ] =

∫ b

a

L(ϕ(x), ϕ′(x), x)dx, (8.13)

where L(ϕ,ϕ′, x) is some function of three variables. For the time being, let us assume that
the function ϕ is required to take a particular value at the boundaries, as in Example 8.3,
where the endpoint values were necessary for the curve to start and end at the correct
points. As before, we introduce the function

F (ε) = F [ϕ+ εη] =

∫ b

a

L(ϕ(x) + εη(x), ϕ′(x) + εη′(x), x)dx (8.14)

and take the derivative with respect to ε, leading to

F ′(ε) =

∫ b

a

d

dε
L(ϕ(x) + εη(x), ϕ′(x) + εη′(x), x)dx

=

∫ b

a

[
∂L
∂ϕ

η(x) +
∂L
∂ϕ′

η′(x)

]
dx, (8.15a)

where ∂L/∂ϕ is the derivative of L with respect to its first argument and ∂L/∂ϕ′ is the
derivative with respect to its second argument. Using partial integration on the second term,
we find that

F ′(ε) = η(b)
∂L
∂ϕ′

∣∣∣∣
x=b

− η(a)
∂L
∂ϕ′

∣∣∣∣
x=a

+

∫ b

a

[
∂L
∂ϕ
− d

dx

∂L
∂ϕ′

]
η(x)dx

=

∫ b

a

[
∂L
∂ϕ
− d

dx

∂L
∂ϕ′

]
η(x)dx, (8.15b)

where we have used that the variation εη(x) must vanish at the endpoints. In order for ϕ
to be a stationary function of F [ϕ], this derivative must vanish when evaluated at ε = 0 for
all variations η(x). For this to hold, the other factor in the integrand must be identically
equal to zero and ϕ(x) therefore must satisfy the differential equation

∂L
∂ϕ
− d

dx

∂L
∂ϕ′

= 0. (8.16)

Again, it needs to be stressed that the partial derivatives with respect to ϕ and ϕ′ are the
partial derivatives of L with respect to the first and second arguments, respectively. In both
cases, they should be evaluated for ε = 0. This equation is known as the Euler–Lagrange
equation.
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Example 8.4 Again consider the problem of finding the shortest path between two points
studied in Example 8.3. Since the length of a curve y(x) is given by

L[y] =

∫ x0

0

√
1 + y′(x)2 dx, (8.17a)

we find that
L(y, y′, x) =

√
1 + y′2, (8.17b)

which is only a function of y′. Computing the partial derivatives now leads to

∂L
∂y

= 0 and
d

dx

∂L
∂y′

=
d

dx

y′

L
. (8.18)

Insertion into the Euler–Lagrange equation results in the differential equation

y′′(x) = 0 (8.19a)

with the general solution
y(x) = kx+m. (8.19b)

Using the same boundary conditions as in Example 8.3, we find that m = 0 and k = y0/x0,
which is exactly the straight line from A to B that we earlier could only verify as being the
solution after taking it as an ansatz.

It is common that the small number ε is considered part of the variation η. Naturally, if
this is done, we would instead consider the limit η → 0 rather than ε→ 0. The number ε is
usually reintroduced when considering very particular shapes of the perturbation in order
to give a well defined limit.

In some situations, the functional will depend not only on one, but on several different
functions ϕi(x). When this occurs, the functions should be varied independently by assigning
different variations to each of the functions

ϕi(x)→ ϕi(x) + εηi(x). (8.20)

In particular, we can consider variations ηi(x) = 0 for all i 6= j, where j is some fixed value.
This results in the Euler–Lagrange equation for ϕj

∂L
∂ϕj

− d

dx

∂L
∂ϕ′j

= 0. (8.21)

Repeating this for all possible j results in one Euler–Lagrange equation for each function
ϕj(x).

8.2.1.1 Natural boundary conditions

In the derivation of the Euler-Lagrange equation, we considered the endpoint values of
the function ϕ(x) to be fixed such that the partial integration could be carried out without
caring about the boundary conditions. As we shall see, this is a rather constraining situation
and many times it will not be the case that the endpoint values can be fixed by some
underlying principle. In fact, keeping the general boundary term will actually provide us
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with a boundary condition that the stationary functions of the functional must satisfy.
Since these boundary conditions are not imposed, this type of boundary condition is called
a natural boundary condition. Looking back at Eq. (8.15b), we found that

F ′(ε) = η(b)
∂L
∂ϕ′

∣∣∣∣
x=b

− η(a)
∂L
∂ϕ′

∣∣∣∣
x=a

+

∫ b

a

[
∂L
∂ϕ
− d

dx

∂L
∂ϕ′

]
η(x)dx. (8.22)

We argued that in order for ϕ to be a local stationary function of the functional, F ′(0)
necessarily had to be equal to zero regardless of the variation η(x). In particular, this must
hold for all perturbations such that η(a) = η(b) = 0, which again leads us back to the
Euler–Lagrange equation. As such, the absence of the fixed boundary conditions really does
not affect the derivation of the Euler–Lagrange equation, but will instead impose additional
constraints on ϕ(x) in order for F ′(0) to be identically equal zero for all perturbations.

If we assume that ϕ(x) does satisfy the Euler–Lagrange equation, the requirement that
F ′(0) = 0 reduces to the identity

η(b)
∂L
∂ϕ′

∣∣∣∣
x=b

− η(a)
∂L
∂ϕ′

∣∣∣∣
x=a

= 0, (8.23)

where all the relevant quantities are evaluated for ε = 0. In the case where the endpoints
were fixed, this requirement was trivially fulfilled. However, in the case where the endpoints
are not fixed, the perturbations η(a) and η(b) may take any independent values and for the
equation to hold for any perturbation, we must therefore have

∂L
∂ϕ′

∣∣∣∣
x=b

=
∂L
∂ϕ′

∣∣∣∣
x=a

= 0. (8.24)

These requirements are equations in terms of the value of ϕ(x) and its derivative at the
boundary points and therefore constitute the sought natural boundary conditions. Naturally,
we may also encounter the situation where ϕ(x) is fixed at one of the boundaries and free
at the other. In such a situation, only the free boundary will be subjected to the natural
boundary condition.

Example 8.5 Consider a string with tension S in a gravitational field. Working under the
assumption that the deviation of the string is mainly in the vertical direction, the mass of
the string between x and x+ dx is given by

dm = ρ`dx, (8.25)

where ρ` is the linear density of the string when it has a length ` (due to stretching, the
actual linear density will vary). The potential energy of the string now has two contributions,
one coming from the gravitational potential and one resulting from stretching the string.
The first of these is given by

Vg[y] =

∫ `

0

gy(x)ρ`dx (8.26)

while the second is proportional to the length of the string and the string tension

Vt[y] =

∫ `

0

S
√

1 + y′(x)2 dx. (8.27)
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We here assume that the deviation from y = 0 will not be large enough to significantly
affect the tension S. The total potential energy is now given by

V [y] =

∫ `

0

[
gy(x)ρ` + S

√
1 + y′(x)2

]
︸ ︷︷ ︸

≡L

dx. (8.28)

In order to minimise the potential energy, we perform the derivatives needed for the Euler–
Lagrange equation

∂L
∂y

= gρ` and
d

dx

∂L
∂y′

= S
d

dx

y′√
1 + y′2

=
Sy′′

(1 + y′2)3/2
, (8.29)

resulting in the differential equation

Sy′′(x) = gρ`
√

1 + y′(x)2
3
, (8.30)

which may be linearised to
Sy′′(x) = gρ` (8.31)

for deviations such that |y′(x)| � 1. If we fix the string at x = 0 but allow its end at x = `
to move freely in the vertical direction, the boundary condition at x = ` will be a natural
boundary condition given by

∂L
∂y′

∣∣∣∣
x=`

=
Sy′(`)√
1 + y′(`)2

= 0 =⇒ y′(`) = 0. (8.32)

Note that whereas the fixed boundary at x = 0 has the boundary condition y(0) = y0,
the condition at x = ` is exactly the same boundary condition that we found from force
considerations on the free end of an oscillating string in Example 3.14.

8.2.2 Higher order derivatives
So far we have only considered functionals in integral form where the integrand’s dependence
on the function was restricted to an expression in terms of the function itself and its first
derivative. In general, the integrand may also depend on higher derivatives and we will have
a functional of the form

F [ϕ] =

∫ b

a

L(ϕ(x), ϕ′(x), ϕ′′(x), . . . , x) dx. (8.33)

In such a situation, we can still follow the same procedure as above but the derivative of
F (ε) will be given by

F ′(ε) =

n∑
k=0

∫ b

a

∂L
∂y(k)

η(k)(x) dx, (8.34)

where y(k) and η(k) are the kth derivatives of y(x) and η(x), respectively, and n is the
highest order of the derivatives on which L depends. Partially integrating the kth term k
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y(x)
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Figure 8.4 The potential energy of a beam with its own weight as a load may be described by
a functional including second derivatives of the deflection y(x). It also depends on the Young’s
modulus E of the beam material and on the area moment of inertia of the beam cross section. A
common beam cross section, that of a so-called I-beam, is shown in the upper right. This type of
cross section gives a large area moment of inertia while requiring a low amount of material.

times now results in

F ′(ε) =

∫ b

a

η(x)
n∑
k=0

(−1)k
dk

dxk
∂L
∂y(k)

dx, (8.35)

where we have ignored the boundary terms that are assumed to vanish either due to con-
straints on the variation η(x) or due to imposed natural boundary conditions. As before, in
order for ϕ(x) to be a stationary function of the functional F [ϕ], we must have F ′(0) = 0
independent of the variation η(x), implying that

n∑
k=0

(−1)k
dk

dxk
∂L
∂y(k)

= 0. (8.36)

As a special case, when n = 2, we find that

∂L
∂y
− d

dx

∂L
∂y′

+
d2

dx2

∂L
∂y′′

= 0. (8.37)

Example 8.6 In solid mechanics, the elastic bending of a beam, see Fig. 8.4, gives rise to
a potential energy per unit length that is inversely proportional to the radius of curvature
squared. In the limit of small vertical deformations, the potential energy due to the bending
is therefore given by

Vb[y] =
1

2

∫ `

0

EIy′′(x)2dx, (8.38)

where E is Young’s modulus of the beam material and I is the area moment of inertia for
the cross section of the beam in the direction of bending, given by

I =

∫
S

z2dS − 1

A

(∫
S

z dS

)2

(8.39)

with z being the vertical coordinate, S the cross sectional surface of the beam, and A the
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total area of this surface. Adding a gravitational potential of the same form as that in
Eq. (8.26), the total potential energy of the beam is found to be

V [y] =

∫ b

a

[
EI

2
y′′(x)2 + ρ`gy(x)

]
︸ ︷︷ ︸

≡L

dx. (8.40)

Performing the derivatives of L with respect to y(x) and its derivatives, we find that

∂L
∂y

= ρ`g and
d2

dx2

∂L
∂y′′

=
d2

dx2
EIy′′ = EIy′′′′(x). (8.41)

In order to minimise the potential energy V [y], the beam displacement must therefore satisfy
the fourth order differential equation

EIy′′′′(x) = −ρ`g. (8.42)

Note that, in order to solve this differential equation, we need four different boundary
conditions. These can come either from imposing conditions on the displacements at the
endpoints or from natural boundary conditions, see Problem 8.12.

A relevant comment with regards to the appearance of higher order derivatives is that
some functionals with different integrands may result in the same Euler–Lagrange equation.
For example, if we consider the functionals

F1[ϕ] =

∫ b

a

ϕ(x)ϕ′′(x) dx and F2[ϕ] = −
∫ b

a

ϕ′(x)2dx (8.43)

the functions minimising them must satisfy the same differential equation

ϕ′′(x) = 0. (8.44)

The underlying reason for this is that the difference between the functionals is given by

F1[ϕ]− F2[ϕ] =

∫ b

a

[ϕ(x)ϕ′′(x) + ϕ′(x)2] dx =

∫ b

a

d

dx
[ϕ(x)ϕ′(x)] dx

= ϕ(b)ϕ′(b)− ϕ(a)ϕ′(a), (8.45)

which is independent of any variation of ϕ apart from variations at the boundary. The same
argument can be applied to any functional for which the integrand may be written as a
total derivative

L =
dI
dx
, (8.46)

where I is some function of ϕ(x) and its derivatives. Any total derivative can therefore be
added to the integrand without affecting the resulting Euler–Lagrange equation.

8.2.3 Comparison to finite spaces
Just as we can introduce the concept of derivatives of functions, we can introduce the
notion of functional derivatives when dealing with functionals. The functional derivative of
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the functional F [ϕ] with respect to the function ϕ(x) is defined as the function δF/δϕ(x)
satisfying

d

dε
F [ϕ+ εη]

∣∣∣∣
ε=0

=

∫
δF

δϕ(x)
η(x) dx (8.47)

for all variations η(x). In particular, we can use the variation η(x) = δx0(x) = δ(x− x0) to
formally obtain

δF

δϕ(x0)
=

d

dε
F [ϕ+ εδx0

]

∣∣∣∣
ε=0

. (8.48)

Going through the same exercise as we did when deriving the Euler–Lagrange equation, we
find that the functional derivative of a functional on the form given in Eq. (8.33) will be
given by

δF

δϕ(x)
=

n∑
k=0

(−1)k
dk

dxk
∂L
∂y(k)

, (8.49)

implying that the Euler–Lagrange equation may be written as

δF

δϕ(x)
= 0. (8.50)

This looks surprisingly similar to the requirement of finding local stationary points of func-
tions, for which all partial derivatives, and therefore the gradient, must be equal to zero
and thus

∇φ(~x) = 0 (8.51)

holds for any local stationary points of φ(~x).
The analogue between the functional derivative and the gradient goes deeper than the

mere appearance described above. Consider the situation where we discretise the functional

F [ϕ] =

∫ `

0

L(ϕ,ϕ′, x) dx (8.52)

by introducing a grid xk = k`/N ≡ k∆, where N is some large number. The functional is
now approximated by

F [ϕ] ' ∆

N−1∑
k=1

L(ϕ(xk), ϕ′(xk), xk), (8.53)

where the original integral has been replaced by a sum. Note that we have only included
internal points xk in this sum, i.e., no boundary points, in order to be able to use the
symmetric discrete approximation of the derivative. Introducing the notation ϕk = ϕ(xk)
this approximation is given by the finite difference

ϕ′(xk) ' ϕk+1 − ϕk−1

2∆
. (8.54)

In addition we also introduce the notation

fk = f(ϕk,
ϕk+1−ϕk−1

2∆ ) (8.55)

as a short-hand for any function f(ϕ,ϕ′) evaluated at xk approximated using the finite
difference approximation for the derivative ϕ′(xk). The functional F [ϕ] is now approximated
by

F [ϕ] ' F (~ϕ) = ∆

N−1∑
k=1

Lk (8.56)
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which is no longer a functional but a function of the N + 1-dimensional space spanned by
vectors of the form ~ϕ = ϕk~ek. As usual, the stationary points of F (~ϕ) are found by taking
its gradient and equating it to zero. In particular, taking the partial derivative with respect
to ϕm results in

∂F (~ϕ)

∂ϕm
= ∆

N−1∑
k=1

[
∂Lk
∂ϕ

∂ϕk
∂ϕm

+
1

2∆

∂Lk
∂ϕ′

∂(ϕk+1 − ϕk−1)

∂ϕm

]

= ∆
N−1∑
k=1

[
∂Lk
∂ϕ

δmk +
1

2∆

∂Lk
∂ϕ′

ϕm(δm,k+1 − δm,k−1)

]
= ∆

[
∂Lm
∂ϕ
− 1

2∆

(
∂Lm+1

∂ϕ′
− ∂Lm−1

∂ϕ′

)]
. (8.57)

Comparing with our results from the functional minimisation, we can see that this is nothing
but the discrete approximation of the functional derivative at xm. Equating all partial
derivatives to zero therefore results in a discretised version of the Euler–Lagrange equation,
which may be thought of as the continuum limit as N →∞.

8.3 CONSTANTS OF MOTION
There are few things in physics that are as important as constants of motion and conser-
vation laws. In the setting when we consider a functional F [ϕ], constants of motion will
generally be expressions in terms of x, ϕ(x), and its derivatives, that for an arbitrary func-
tion ϕ(x) will depend on x, but are constant for any stationary functions of the functional.
Such constants of motion often take the form of first integrals, which are differential equa-
tions of one order lower than the Euler–Lagrange equation and for which the value of the
constant of motion is a parameter representing an integration constant.

Example 8.7 The perhaps most iconic constant of motion is the total energy in a con-
servative system. Consider the trajectory ~x(t) of a particle of mass m moving in three
dimensions with a potential V (~x). The equations of motion for the particle are given by
Newton’s second law

m~̈x = −∇V (~x) (8.58)

and the total energy of the particle is given by

E =
m

2
~̇x 2 + V (~x). (8.59)

Using the equations of motion results in

dE

dt
= m~̇x · ~̈x+ ~̇x · ∇V = ~̇x · (m~̈x+∇V ) = 0. (8.60)

Naturally, this is nothing other than a statement about the conservation of the total energy
of the conservative system. However, the expression for the total energy in Eq. (8.59) is
only constant for particle trajectories ~x(t) that satisfy Newton’s second law. We note that
if the total energy is known, then Eq. (8.59) is a first order differential equation for ~x(t),
while Newton’s second law is of second order.
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Assuming a functional of the form given in Eq. (8.13), there are a few special cases
in which there are easily accessible constants of motion. A more systematic approach to
finding the constants of motion for a given functional is supplied by Noether’s theorem,
which relates constants of motion to continuous symmetries of the functional and is one of
the more important contributions in the mathematical development of theoretical physics.
We postpone the treatment of constants of motion in the framework of Noether’s theorem
to Section 10.2.4 and instead quench our curiosity by considering two very important special
cases.

8.3.1 Integrand independent of the function
We have already seen a few situations where the actual integrand L does not depend ex-
plicitly on the function ϕ(x) itself, but only on its derivative and the independent variable
x

L = L(ϕ′(x), x). (8.61)

This is equivalent to finding that the partial derivative of the integrand with respect to the
function is given by

∂L
∂ϕ

= 0 (8.62)

and consequently the Euler–Lagrange equation reduces to

d

dx

∂L
∂ϕ′

= 0 =⇒ ∂L
∂ϕ′

= C, (8.63)

where C is an integration constant and hence ∂L/∂ϕ′ is a first integral of the equations of
motion.

Example 8.8 Consider again the minimisation of the distance between the points A and
B as described in Example 8.3. The functional describing the length of a curve between
these two points resulted in an integrand

L =
√

1 + y′(x)2 (8.64)

that is not explicitly dependent on y(x). By the discussion we have just had, this means
that

∂L
∂y′

=
y′(x)√

1 + y′(x)2
= C =⇒ y′(x) =

C√
1− C2

= k, (8.65)

where the constants C and k can be used interchangeably. In this case, we find that the
derivative y′(x) is a constant of motion and will therefore be the same along the entire curve
whenever the curve is a stationary function of the curve length. Solving the resulting first
order differential equation directly gives

y(x) = kx+m. (8.66)

In other words, we again find that such curves must be straight lines.
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8.3.2 Integrand independent of the variable
Another special case of importance appears when the integrand does not depend explicitly
on the variable x, but only on the function ϕ(x) and its derivative

L = L(ϕ(x), ϕ′(x)). (8.67)

By differentiating the integrand with respect to x, we find that

dL
dx

=
∂L
∂x

+
∂L
∂ϕ

ϕ′(x) +
∂L
∂ϕ′

ϕ′′(x) =
∂L
∂ϕ

ϕ′(x) +
∂L
∂ϕ′

ϕ′′(x) (8.68)

since ∂L/∂x = 0. If ϕ(x) is a solution to the Euler–Lagrange equation, we can rewrite this
as

dL
dx

= ϕ′(x)
d

dx

∂L
∂ϕ′

+ ϕ′′(x)
∂L
∂ϕ′

=
d

dx

[
ϕ′(x)

∂L
∂ϕ′

]
(8.69)

and it follows that

d

dx

[
ϕ′(x)

∂L
∂ϕ′
− L

]
= 0 =⇒ ϕ′(x)

∂L
∂ϕ′
− L = C, (8.70)

where C is an integration constant and the expression on the left-hand side is therefore
a constant of motion. This relation is known as the Beltrami identity . Note that if the
integrand L depends on several functions ϕi(x), then the corresponding argumentation
leads to the conserved quantity

ϕ′i(x)
∂L
∂ϕ′i
− L = C, (8.71)

where a sum over i is implicit in the first term. In other words, we will only have one
Beltrami identity involving all of the functions ϕi, not one Beltrami identity per function.

Example 8.9 Coincidentally, the path length minimisation of Example 8.3 also satisfies
the criterion required for this special case, since the integrand is not only independent of
y(x), but also independent of x. We now find that

y′(x)
∂L
∂y′
− L =

y′(x)2√
1 + y′(x)2

−
√

1 + y′(x)2 = C, (8.72)

from which we can deduce

y′(x)2 =
1

C2
− 1. (8.73)

Again, this indicates that y′(x) is a constant of motion. It should be noted that the constant
of motion due to the independence of x being equivalent to that due to the independence of
ϕ(x) is a coincidence in this special case and not a general feature. Indeed, there are many
cases where this will no longer be true and, in particular, there are also many cases where
the integrand is independent only of one of the two.
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h

z

ρ(z)

Figure 8.5 The potential energy of a soap film suspended between two rings will be directly pro-
portional to its surface area. A smaller radius ρ(z) implies less area per z coordinate, but at the
same time a changing ρ(z) leads to a larger area. These two effects are competing to give the soap
film its shape. The right image shows the experimental result.

Example 8.10 The potential energy of soap film due to the surface tension S can be
written as

VT = 2SA, (8.74)

where A is the total area of the film. The factor of two arises due to the film having
two sides, thus implying a contribution from each side of the film. If other effects such
as gravitation are ignored, which is often a good approximation, the shape of a soap film
suspended between two circular frames that lie in planes parallel to the x1-x2-plane and are
centred on the x3-axis, see Fig. 8.5, will therefore take the shape that minimises the surface
area A, which may be expressed as the functional

A[ρ] =

∫ h

0

2πρ(z)
√

1 + ρ′(z)2 dz. (8.75)

Here, ρ(z) is the radial coordinate in cylinder coordinates, which can be described as a
function of the z-coordinate. The rotational symmetry of the problem implies that this
radius does not depend on the angular coordinate.

Searching for the function ρ(z) that minimises the surface area, the Euler–Lagrange
equation becomes rather cumbersome, but we can use the fact that the integrand does not
depend explicitly on z and apply the Beltrami identity, leading to

C =
ρ(z)√

1 + ρ′(z)2
. (8.76)

This differential equation is separable and performing the integration we end up with the
relation

ρ(z) = C cosh

(
z − z0

C

)
, (8.77)

where z0 is an integration constant. The constants C and z0 need to be fixed by satisfying
the boundary conditions

ρ(0) = r1 and ρ(h) = r2 (8.78)
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where r1 and r2 are the radii of the frames. However, this case actually results in several
possible solutions and care must be taken to select the one that actually minimises the
surface area as the others are, at best, local minima or, more likely, saddle points.

8.4 OPTIMISATION WITH CONSTRAINTS
In many optimisation problems for functions and functionals, the arguments are not arbi-
trary but subjected to constraints of different types. In fact, we have already seen examples
of this in the form of different boundary conditions that may be imposed on a solution
and that the solutions behave differently if those boundary conditions are relaxed and the
boundaries are free. When considering constraints in the optimisation of functions, we gen-
erally wish to find the extreme values of some function f(~x) subjected to one or more
constraints on the coordinates xi of the form

g(~x) = g0. (8.79)

Such constraints restrict the possible extrema ~x to lie on a particular level surface of g(~x),
given by the constant g0. As long as the constraints are independent, every constraint
will result in constraining the argument ~x to a space of one dimension lower than if the
constraint was not present. Therefore, if we are looking for the extrema of a function in N
dimensions and we have k constraints, we are generally searching for the extrema within a
N−k-dimensional subspace. In addition, it should be noted that the function f(~x) does not
need to have local or global extrema in the full N -dimensional space in order for extrema
to exist within the subspace, the constrained problem is a problem in its own right and
generally very different from the problem of finding extrema in the full space.

Example 8.11 Consider the case of the function

f(~x) = x1 + x2 (8.80)

in R2. Clearly, this function does not have any local extrema since the gradient is given by

∇f(~x) = ~e1 + ~e2 6= 0 (8.81)

everywhere. In addition, the function is also not bounded from below or above. However, if
we impose the constraint

g(~x) = ~x 2 = R2, (8.82)

i.e., if we restrict the argument ~x to be on the circle of radius R, then the function f(~x) has
two extreme values at ~x± = ±R(~e1 +~e2)/

√
2, corresponding to a maximum and a minimum

with the function values f(~x±) = ±
√

2R as illustrated in Fig. 8.6. Although there are
several ways of finding these extreme values, we will use this example to demonstrate the
application of Lagrange multipliers to function optimisation, a method we will later carry
over by analogue to the case of functional optimisation.

Just as we can look for stationary points of functions whose arguments are subject
to constraints, we can look for stationary functions of functionals whose arguments are
constrained. The basic idea is the same as in the function case, we assume that we have some
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f(~x) =
x 1

+
x 2

=
C

x2

~x 2
=
R 2

∇
f

x1

Figure 8.6 A graphical representation of the problem of finding the extreme values of the function
f(~x) = x1 + x2 subjected to the constraint ~x 2 = R2. The light lines represent the level surfaces of
f(x) while the dark circle is the constraint curve on which we wish to find the extreme values. The
gradient ∇f indicates the direction in which f(~x) grows.

functional F [ϕ] for which we wish to find the stationary functions under some constraints
on the solution ϕ(x). There are two different types of constraints that we will consider, the
first of which are isoperimetric constraints of the form

G[ϕ] = G0, (8.83)

where G[ϕ] is some functional and G0 a constant. This is the exact analogue of Eq. (8.79)
in the case of functional minimisation. The nomenclature here comes from the fact that
constraints of this type often correspond to having a variational problem in which some
physical quantity, such as the length of a bounding curve, is kept fixed.

The second type of constraints that we will consider when finding extreme values of
functionals is holonomic constraints. These constraints arise when we wish to find the
stationary functions of a functional that takes several functions ϕi(x) as an argument and
there is some relation among these that must be satisfied for all x

g(ϕ1(x), ϕ2(x), . . . , x) = g0. (8.84)

In many cases, these constraints can be satisfied by introducing a smaller set of functions as
relations of this form will generally make one function dependent on the others. However,
in other cases it will be simpler to find a different approach and there will also be some
physical insights that can be gained by doing so.

Example 8.12 We have earlier expressed the gravitational potential of a rope in Exam-
ple 8.2 as

V [h] =

∫ b

a

ρ`gh(x)
√

1 + h′(x)2 dx. (8.85)

Just as the function f(~x) in Example 8.11, this functional does not have any extrema unless
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~g

Figure 8.7 If no constraint is put on the length of the rope, its gravitational potential can be made
arbitrarily small by extending the rope downwards. When the length is constrained, this is no
longer possible.

we impose additional constraints on the allowed stationary functions h(x). In particular, we
can always lower the potential by just extending the rope downwards, see Fig. 8.7.

If we have an actual rope that is inelastic such that its length ` is constant and we
attach its ends at given heights at h(a) = ha and h(b) = hb, then we find the isoperimetric
requirement that the rope length L[h] = `, where the functional L[h] is given by

L[h] =

∫ b

a

√
1 + h′(x)2 dx. (8.86)

This constraint will be sufficient to guarantee that the rope has a minimal (and a maximal)
potential energy given that its endpoints are fixed.

Example 8.13 Let us imagine that we again want to find the shortest path between two
points A and B, but this time we are restricted to move on a two-dimensional spherical
surface ~x 2 = R2 embedded in a three dimensional space. Using a parametrisation such that
~x(0) = ~xA and ~x(1) = ~xB , the length of an arbitrary path is given by

L[~x] =

∫ B

A

ds =

∫ 1

0

√
~̇x 2 dt =

∫ 1

0

√
ṙ(t)2 + r(t)2θ̇(t)2 + r(t)2 sin2(θ(t))ϕ̇(t)2 dt, (8.87)

where the last expression is written in spherical coordinates. The requirement that the path
should be restricted to the two-dimensional sphere of radius R can be expressed as the
holonomic constraint

g(~x(t)) = ~x(t)2 = R2 (8.88)

or, in spherical coordinates, r(t) = R.

8.4.1 Lagrange multipliers
The method we will use to find extrema of functionals under different constraints is based
on the method of Lagrange multipliers. In order to make the analogy to finding the extrema
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∇g

d~x

∇g
d~x

Figure 8.8 In order to be within a given level surface of the function g(~x), and so to satisfy the
given constraint g(~x) = g0, any variation d~x must necessarily be orthogonal to the gradient ∇g(~x)
as the change in g(~x) under the variation is given by d~x · ∇g(~x). These examples illustrate this for
constraints in two and three dimensions, respectively.

of functions with constraints, we will first review how Lagrange multipliers arise in regular
multi-variable calculus and introduce the application to functionals by analogy. Let us start
by considering the problem of finding the minima of the function f(~x) under the constraint

g(~x) = g0. (8.89)

This constraint represents an N − 1-dimensional level surface in the N -dimensional space.
For any small deviations d~x, the function g(~x) will change as

g(~x+ d~x) ' g(~x) + d~x · ∇g(~x), (8.90)

where we have neglected terms of second order in the deviation and higher. If the deviation
is within the level surface, then g(~x+ d~x) = g(~x) = g0 and we find that

d~x · ∇g(~x) = 0 (8.91)

or, in other words, the gradient ∇g(~x) is orthogonal to all perturbations d~x within the level
surface, see Fig. 8.8.

In the same fashion as we expressed the change in the function g(~x) under small per-
turbations, we can express the change in the function f(~x) as

f(~x+ d~x)− f(~x) ' d~x · ∇f(~x). (8.92)

In order for the point ~x to be an extremum of f(~x) under the given constraints, this change
needs to be equal to zero as long as d~x is within the level surface determined by g(~x),
implying that

d~x · ∇f(~x) = 0 (8.93)

for such perturbations. If this is not the case, small deviations within the level surface will
lead to changes in f(~x), which will therefore not be an extreme value. This can be satisfied
only if ∇f(~x) is parallel to ∇g(~x), i.e., if ∇f(~x) is also a normal of the constraint level
surface. This can generally be written as

∇f(~x) = λ∇g(~x), (8.94a)

which results in
d~x · ∇f(~x) = λ d~x · ∇g(~x) = 0 (8.94b)
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f(~x) = f0

~v

g(~x) = g0

∇f

∇g

Figure 8.9 The gradient ∇f(~x) can always be decomposed into a part parallel to ∇g(~x) and a part
~v orthogonal to ∇g(~x). As long as ~v 6= 0, the variation d~x = ~v dx is allowed and results in a change
in the function f(~x), since ~v dx is not a variation within the level surface f(~x) = f0. In order for ~x
to be a stationary point, we must therefore have ∇f(~x) = λ∇g(~x) for some constant λ.

for all small perturbations within the level surface. If ∇f(~x) would not be parallel to ∇g(~x),
then we could always write

∇f(~x) = λ∇g(~x) + ~v(~x), (8.95)

where ~v(~x) is a non-zero vector orthogonal to ∇g(~x). Taking a perturbation d~x = ~v(~x) dx
would then lead to

d~x · ∇g(~x) = 0 while d~x · ∇f(~x) = ~v(~x)2dx 6= 0, (8.96)

implying that ~x is not an extremum. This is illustrated in Fig. 8.9.
Using the fact that∇f(~x) needs to be parallel to∇g(~x), we can write down the condition

for an extremum of f(~x) under the given constraint as

∇f(~x)− λ∇g(~x) = 0 =⇒ ∇hλ(~x) ≡ ∇[f(~x)− λg(~x)] = 0, (8.97)

where we have defined the new function hλ(~x) = f(~x) − λg(~x). This is nothing but the
requirement for a stationary point of hλ(~x) and so the problem of finding points where
∇f(~x) is parallel to∇g(~x) is equivalent to finding the global stationary points of the function
hλ(~x). In general, the locations of these extreme values will depend on λ and in order to
solve our original problem, we need to fix λ in such a way that the solution actually satisfies
the constraint g(~x) = g0.

Example 8.14 Let us apply the above framework to the problem described in Exam-
ple 8.11. Constructing the function

hλ(~x) = f(~x)− λg(~x) = x1 + x2 − λ~x 2, (8.98)

we find that it has a stationary point when

∇hλ(~x) = ~e1 + ~e2 − 2λ~x = 0 =⇒ ~x =
1

2λ
(~e1 + ~e2). (8.99)
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CB

A

Figure 8.10 The same as Fig. 8.6 but without the coordinate axes and with the gradient vectors
∇f(~x) (light) and ∇g(~x) (dark) shown at the global maximum A, the global minimum B, and at
C, which is not a stationary point. The gradients are proportional at both A and B while at C the
allowed variation is parallel to ∇f(~x).

This solution implies that

g(~x) = ~x 2 =
1

2λ2
, (8.100a)

which satisfies the constraint g(~x) = g0 only if

λ = ± 1√
2R

. (8.100b)

The stationary points of f(~x) subject to the given constraint are therefore given by

~x± = ± R√
2

(~e1 + ~e2), (8.101)

corresponding to the extreme values f(~x±) = ±
√

2R as expected. This is illustrated in
Fig. 8.10.

8.4.1.1 Several constraints

It sometimes happens that we need to find the extrema of a function f(~x) that is subject to
more than one constraint. Let us therefore consider the changes that occur when we have
several constraints that need to be satisfied and that are of the form

gi(~x) = gi,0, (8.102)

where 1 ≤ i ≤ k and k is the number of constraints. Just as we did when we had only
one constraint, we can write down the necessary conditions for ~x + d~x to satisfy the ith



490 � Mathematical Methods for Physics and Engineering

constraint if ~x does as

dgi ≡ gi(~x+ d~x)− gi(~x) ' d~x · ∇gi(~x) = 0 (8.103)

and we have k constraints on this form that the allowed perturbations d~x must satisfy. The
change in f(~x) for any deviation is again given by

df ≡ f(~x+ d~x)− f(~x) ' d~x · ∇f(~x) (8.104)

and in order for ~x to be an extremum given the constraints, this must be equal to zero for
all allowed deviations. Let us now construct the vector

~v(~x) = ∇f(~x)−
k∑
i=1

λi∇gi(~x) (8.105)

and adjust the λi parameters in such a way that ~v(~x) · ∇gi(~x) = 0, implying that the
variation d~x = ~v(~x) dx satisfies all of the constraints given by Eq. (8.103). Just as when we
had only one constraint, this leads to

df = ~v(~x) · ∇f(~x) dx = ~v(~x)2dx, (8.106)

which is zero only if ~v(~x) = 0. It follows that if ~x is a stationary point of f(~x), then we
must have

∇hλ(~x) = 0, where hλ(~x) = f(~x)−
k∑
i=1

λigi(~x). (8.107)

As in the case with only one constraint, we can find the extreme values of f(~x) under several
constraints by constructing hλ(~x) in this manner, finding its stationary points, and then
adjusting the parameters λi such that all of the constraints are satisfied.

8.4.2 Isoperimetric constraints
When we deal with finding the stationary functions of functionals under isoperimetric con-
straints of the form

G[ϕ] = G0, (8.108)

the situation is essentially analogous to that encountered when finding the stationary points
of functions, replacing the gradient with the functional derivative and having the inner
product as the integral of two functions. In order to vary the function ϕ(x) within the
constraints, we can only allow variations δϕ(x) such that

G[ϕ+ δϕ] = G[ϕ] = G0. (8.109)

To leading order in δϕ(x), we find that

δG ≡ G[ϕ+ δϕ]−G[ϕ] =

∫ b

a

δG

δϕ(x)
δϕ(x) dx = 0, (8.110)

which is the direct analogue of Eq. (8.91). In order to find the stationary functions of the
functional F [ϕ] under the given isoperimetric constraint, it is necessary that

δF = F [ϕ+ δϕ]− F [ϕ] =

∫ b

a

δF

δϕ(x)
δϕ(x) dx = 0 (8.111)
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for all allowed variations δϕ(x). Just as for the gradients in Eq. (8.95), we can define

v(x) =
δF

δϕ(x)
− λ δG

δϕ(x)
(8.112a)

and adjust the constant λ such that∫ b

a

δG

δϕ(x)
v(x) dx = 0. (8.112b)

Taking a variation δϕ(x) = εv(x), we can now express the change in the functional F [ϕ] as

δF = ε

∫ b

a

[
λ

δG

δϕ(x)
+ v(x)

]
v(x) dx = ε

∫ b

a

v(x)2dx, (8.113)

which is zero only if v(x) = 0. As a result ϕ(x) is only a stationary function of F [ϕ] under
the constraint if

δF

δϕ(x)
− λ δG

δϕ(x)
=
δ (F − λG)

δϕ(x)
= 0 (8.114)

for some λ or, in other words, if δF/δϕ(x) is directly proportional to δG/δϕ(x). Just as for
the stationary points of the constrained functions, this condition is exactly equivalent to
finding the stationary functions of the new functional

Hλ[ϕ] = F [ϕ]− λG[ϕ]. (8.115)

This does not actually incorporate the constraint G[ϕ] = G0 and again we must adjust the
value of the parameter λ in such a way that the constraint is satisfied in order to find the
extreme values of F [ϕ] subject to the constraint.

Example 8.15 Let us attempt to solve the problem of minimising the potential energy of
a rope of a fixed length hanging between two points as described in Example 8.12. We start
by constructing the new functional

Hλ[h] = V [h]− λL[h] =

∫ b

a

√
1 + h′(x)2 [ρ`gh(x)− λ]︸ ︷︷ ︸

≡L(h,h′)

dx, (8.116)

which is what we will need to find the stationary functions of in order to find the stationary
functions of our actual constrained problem. The integrand L(h, h′) here does not depend
explicitly on x and so the Beltrami identity must be satisfied and we have a first integral
given by

λ− ρ`gh(x) = C
√

1 + h′(x)2. (8.117)

This first order differential equation is separable and we can integrate it to find the solution

h(x) =
C

ρ`g
cosh

(ρ`g
C

(x− x0)
)

+
λ

ρ`g
, (8.118)

where x0 is an integration constant. The requirement that the rope length should be ` is
now of the form

L[h] =

∫ b

a

√
1 + h′(x)2 dx =

∫ b

a

cosh
(ρ`g
C

(x− x0)
)
dx

=
C

ρ`g

[
sinh

(ρ`g
C

(b− x0)
)
− sinh

(ρ`g
C

(a− x0)
)]

= `. (8.119)
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Figure 8.11 A chain hanging under its own weight and fixed at each of its two ends. An idealised
chain would form a perfect catenary. Actual chains, such as the one shown here, are rather well
described by this approximation.

Although this equation does not depend explicitly on λ, it does fix the values of λ as well
as the constants C and x0 together with the two boundary conditions that will be given by
the heights at which the ends of the rope are fixed.

The form of the solution in Eq. (8.118) is known as a catenary and, as shown in this
example, describes the shape of an idealised rope, chain, or wire, hanging under its own
weight and supported at its ends, see Fig. 8.11.

Just as we can subject a function to several constraints, we can also subject a functional
to several isoperimetric constraints. The way to handle this is also exactly analogous to the
function case and we can do this by finding the extrema of the new functional

Hλ[ϕ] = F [ϕ]−
k∑
i=1

λiGi[ϕ], (8.120)

where the k constraints are given by Gi[ϕ] = Gi,0. Adapting the constants λi to the con-
straints will then ensure that the found stationary functions actually satisfy the constraints.

8.4.3 Holonomic constraints
When considering holonomic constraints, we again need to figure out what the different
allowed variations are. In general, we will be working with a functional depending on a
number of different functions ϕi(x), which we will commonly denote as ~ϕ(x). A holonomic
constraint given by

g(~ϕ(x), x) = g0 (8.121)

implies that

g(~ϕ(x) + δ~ϕ(x), x)− g0 '
∑
i

∂g

∂ϕi
δϕi(x) = 0 (8.122)

for all variations around ~ϕ(x) that satisfy it. In particular, we may look at variations such
that δϕi(x) = 0 unless i = 1 or 2, which leads to the relation

∂g

∂ϕ1
δϕ1(x) = − ∂g

∂ϕ2
δϕ2(x). (8.123)
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Looking at the variation of a functional F [~ϕ] under such variations, we find that

δF =

∫ b

a

[
δF

δϕ1(x)
δϕ1(x) +

δF

δϕ2(x)
δϕ2(x)

]
dx = 0 (8.124a)

if ~ϕ(x) is an extremum of F [~ϕ]. Using the constraint on the allowed variation, this can be
rewritten as∫ b

a

[
− δF

δϕ1(x)

(
∂g

∂ϕ1

)−1

+
δF

δϕ2(x)

(
∂g

∂ϕ2

)−1
]
∂g

∂ϕ2
δϕ2(x)dx = 0. (8.124b)

In order for this relation to hold regardless of the variation δϕ2(x), we can conclude that

δF

δϕ1(x)

(
∂g

∂ϕ1

)−1

=
δF

δϕ2(x)

(
∂g

∂ϕ2

)−1

= λ(x), (8.125)

where λ(x) is some function that is independent of the actual variation. Naturally, there
is nothing special with the choice of δϕ1(x) and δϕ2(x) in the variation and selecting any
other pair will lead to the corresponding result for that pair. This leads to the fact that

δF

δϕi(x)
= λ(x)

∂g

∂ϕi
⇐⇒ δF

δϕi(x)
− λ(x)

∂g

∂ϕi
= 0 (8.126)

regardless of the value of i. This is exactly the Euler–Lagrange equation resulting from the
variation δϕi(x) of the functional

H[~ϕ, λ] = F [~ϕ]−
∫ b

a

λ(x)[g(~ϕ(x))− C]dx, (8.127)

where C is an integration constant. We can also find the Euler–Lagrange equation corre-
sponding to the variation of λ(x), which is trivially found to be

δH

δλ(x)
= C − g(~ϕ(x)) = 0. (8.128)

Letting C = g0, this reproduces the original holonomic constraint and therefore the require-
ments that ~ϕ(x) has to satisfy in order for it to be a stationary function of F [~ϕ] subjected
to the holonomic constraint are equivalent the Euler–Lagrange equations for H[~ϕ, λ].

It should be noted that holonomic constraints may be implemented by using coordinates
such that the constraint restricts the solutions to a coordinate surface. In these cases, the
function λ(x) will drop out of the solution for the remaining coordinates as will be discussed
in the next section. However, the λ(x) that will result from applying the above procedure
will sometimes have a relevant physical interpretation, see, e.g., Problem 8.39, and it may
therefore be relevant to compute it.

8.5 CHOICE OF VARIABLES
When we deal with functionals that depend on several functions, the problem at hand may
be simpler if it can be reformulated in a different way by using a different set of functions.
Typically, such reformulations are in the form of changes of variables, where we define a
new set of functions

φi(x) = Φi(~ϕ(x), x), (8.129a)
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where the functions Φi(~ϕ(x), x) are invertible for each value of x, i.e., there are also functions

Φ−1
i (~φ(x), x) such that

ϕi(x) = Φ−1
i (~φ(x), x). (8.129b)

For convenience, we will refer to these functions using φi and ϕi and not explicitly write
out the transformations Φi.

Given a functional of the form

F [~ϕ] =

∫ b

a

L(~ϕ(x), ~ϕ ′(x), x)dx, (8.130)

we can make a transformation such that

L′(~φ(x), ~φ′(x), x) = L(~ϕ(~φ, x), ddx ~ϕ(~φ, x), x). (8.131)

Note that, with ~ϕ being a function of ~φ(x) and x, the derivative d~ϕ/dx is generally a function

of ~φ(x), ~φ′(x), and x, given by

dϕi
dx

=
∂ϕi
∂φj

φ′j(x) +
∂ϕi
∂x

. (8.132)

This defines a new functional, now of the ~φ(x), as

F̃ [~φ] =

∫ b

a

L′(~φ(x), ~φ′(x), x)dx = F [~ϕ], (8.133)

where ~φ(x) and ~ϕ(x) are related through the transformation ~ϕ = ~ϕ(~φ, x). The Euler–

Lagrange equations for the functional F̃ [~φ] are given by

∂L′

∂φi
− d

dx

∂L′

∂φ′i
= 0. (8.134)

Applying the chain rule and using L′ = L, we find that

∂L′

∂φi
=

∂L
∂ϕj

∂ϕj
∂φi

+
∂L
∂ϕ′j

∂ϕ′j
∂φi

=
∂L
∂ϕj

∂ϕj
∂φi

+
∂L
∂ϕ′j

(
∂2ϕj
∂φi∂φk

φ′k +
∂2ϕj
∂φi∂x

)
. (8.135a)

Similarly, we can express the second term in Eq. (8.134) as

d

dx

∂L′

∂φ′i
=

d

dx

∂L
∂ϕ′j

∂ϕ′j
∂φ′i

=
d

dx

∂L
∂ϕ′j

∂ϕj
∂φi

=
∂ϕj
∂φi

d

dx

∂L
∂ϕ′j

+
∂L
∂ϕ′j

d

dx

∂ϕj
∂φi

=
∂ϕj
∂φi

d

dx

∂L
∂ϕ′j

+
∂L
∂ϕ′j

(
∂2ϕj
∂φk∂φi

φ′k +
∂2ϕj
∂x∂φi

)
. (8.135b)

Finally, collecting our results, we arrive at the relation

∂ϕj
∂φi

(
∂L
∂ϕj

− d

dx

∂L
∂ϕ′j

)
= 0. (8.136a)

Since the transformation is invertible, this directly implies that

∂L
∂ϕj

− d

dx

∂L
∂ϕ′j

= 0 (8.136b)

and therefore the Euler–Lagrange equations for the functional F [~ϕ] must be satisfied if the

Euler–Lagrange equations for F̃ [~φ] are. This should not come as a surprise. After all, the
functionals are really the same functional with the only difference being how the functions
they depend on are represented.
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Example 8.16 One way of handling the holonomic constraint when minimising the path
along the surface of a sphere, see Example 8.13, is to directly express the path in spherical
coordinates such that

x1(t) = r(t) sin(θ(t)) cos(ϕ(t)), (8.137a)

x2(t) = r(t) sin(θ(t)) cos(ϕ(t)), (8.137b)

x3(t) = r(t) cos(θ(t)). (8.137c)

In the original Cartesian coordinate system, the holonomic constraints result in four Euler–
Lagrange equations, three for the functions xi(t) and one for the Lagrange multiplier λ(t),
which are rather complicated. However, in the spherical coordinate system, the holonomic
constraint is of the form r(t) = R, directly implying that r(t) is equal to the radius. Making
the change of variables in the integrand, we find that

L[r, θ, ϕ] =

∫ 1

0

√
ṙ2 + r2θ̇2 + r2 sin2(θ)ϕ̇2︸ ︷︷ ︸

≡L

dt. (8.138)

From our discussion on holonomic constraints, we know that the path length will be min-
imised whenever the Euler–Lagrange equations

∂L
∂r
− d

dt

∂L
∂ṙ

= λ(t)
∂r

∂r
= λ(t), (8.139a)

∂L
∂θ
− d

dt

∂L
∂θ̇

= λ(t)
∂r

∂θ
= 0, (8.139b)

∂L
∂ϕ
− d

dt

∂L
∂ϕ̇

= λ(t)
∂r

∂ϕ
= 0, (8.139c)

r(t) = R, (8.139d)

are satisfied. The zeros on the right-hand side of the Euler–Lagrange equations for the angu-
lar coordinates are a direct result of the constraint not being affected by these coordinates.
As such, these equations are just the regular Euler–Lagrange equations that we would find
from inserting the constraint r(t) = R into the original functional. Doing so we end up with
two coupled differential equations for two unknown functions and this is all the information
required to solve the problem. The path length is therefore given by

L[θ, ϕ] = R

∫ 1

0

√
θ̇2 + sin2(θ)ϕ̇2 dt, (8.140)

which can be minimised without reference to the Lagrange multiplier λ(t). By selecting a
set of coordinates such that the holonomic constraint is a coordinate level surface, we can
therefore just ignore the Lagrange multiplier and solve the problem directly. Should the
form of λ(t) be of interest, it can be read off directly from the Euler–Lagrange equation
resulting from radial variations.

The above example illustrates a general idea that can be used to handle holonomic
constraints. Imagine a setting in which a functional depends on N functions subject to a
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holonomic constraint. Choosing variables ϕi such that the functional is given by

F [~ϕ] =

∫
L(~ϕ, ~ϕ ′, x) dx (8.141)

and the holonomic constraint takes the form

ϕN (x) = C, (8.142)

where C is a constant, we can apply the approach developed in Section 8.4.3 and find the
stationary functions of

H[~ϕ, λ] = F [~ϕ]−
∫
λ(x)[ϕN (x)− C]dx. (8.143)

The Euler–Lagrange equations for H[~ϕ, λ] now take the form

∂L
∂ϕi
− d

dx

∂L
∂ϕ′i

= 0, (i < N) (8.144a)

∂L
∂ϕN

− d

dx

∂L
∂ϕ′N

= λ(x), (8.144b)

ϕN (x) = C. (8.144c)

The first of these equations with the third inserted is now a set of N−1 differential equations
that are equivalent to the Euler–Lagrange equations that would have resulted from inserting
the third equation into the functional from the beginning and considered it a functional of
the remaining N − 1 functions ϕi for i < N . The second relation can be used to express the
function λ(x) and the third is the holonomic constraint itself. Based on this argumentation,
we do not need to go through the trouble of introducing the functional H, we can instead
solve a problem involving holonomic constraints by choosing variables that parametrise the
constraint surface and find the stationary functions of the functional resulting from inserting
the holonomic constraint into the original one.

8.6 FUNCTIONALS AND HIGHER-DIMENSIONAL SPACES
In the discussion so far, all of our functionals have been maps from functions that depend
only on one variable to the real numbers. This is a rather restrictive set of functions, but
luckily the extension to general functions that depend on a larger number of parameters is
rather straightforward. Let us consider functionals of the form

F [ϕ] =

∫
V

L(ϕ(~x),∇ϕ(~x), ~x)dV, (8.145)

where ~x is a vector in N dimensions and the integral is taken over some N -dimensional
volume V .

Example 8.17 A square membrane with tension σ and side length ` is subjected to a
homogeneous force density f(~x), see Fig. 8.12. For small deviations from the flat state
f(~x) = 0, we can write the potential energy of the membrane as a sum of the contribution
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` `

h(~x)

σ

f(~x)

x

Figure 8.12 The potential energy of a membrane with a tension σ subjected to an external transver-
sal force density f(~x) can be described as a sum of the potential energies due to the elastic defor-
mation of the membrane and that due to displacement relative to the external force. The result is
a functional taking the transversal displacement function h(~x) as argument.

from the tension and the contribution from the external force density. The contribution
from the tension is proportional to the total area of the membrane and therefore

VT [h] = σ

∫ √
1 + (∇h(~x))2 dS, (8.146)

where ~x is a two-dimensional vector defining the position on the membrane and h(~x) is the
transversal deviation of the membrane at ~x. At the same time, the potential energy due to
the external force density is given by

Vf [h] = −
∫
f(~x)h(~x) dS. (8.147)

If we wish to minimise the total potential energy, we must therefore try to find the minimum
of the sum V [h] = VT [h] + Vf [h].

The approach to the general scenario with a number of dimensions larger than one is
very similar to what we have already seen. We start by considering a variation δϕ(~x) of the
function ϕ(~x). To linear order in the variation, the change in the functional F [ϕ] can be
written as

δF = F [ϕ+ δϕ]− F [ϕ] '
∫
V

[
∂L
∂ϕ

δϕ(~x) +
∂L
∂∇ϕ

· ∇δϕ(~x)

]
dV, (8.148a)

where we have introduced the notation

∂L
∂∇ϕ

= ~ei
∂L

∂(∂iϕ)
(8.148b)

as the multi-dimensional analogue of ∂L/∂ϕ′. Assuming the variation δϕ(~x) vanishes on the
boundary S, we can use the divergence theorem to rewrite the second term of δF according
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to ∫
V

∂L
∂∇ϕ

· ∇δϕ(~x)dV =

∫
V

∇ · ∂L
∂∇ϕ

δϕ(x)dV −
∫
V

δϕ(~x)∇ · ∂L
∂∇ϕ

dV

=

∮
S

∂L
∂∇ϕ

δϕ(x) · d~S −
∫
V

δϕ(~x)∇ · ∂L
∂∇ϕ

dV

= −
∫
V

δϕ(~x)∇ · ∂L
∂∇ϕ

dV. (8.149)

This allows us to write down the variation δF as

δF =

∫
V

(
∂L
∂ϕ
−∇ · ∂L

∂∇ϕ

)
δϕ(~x)dV (8.150)

or, in terms of a functional derivative,

δF

δϕ(~x)
=
∂L
∂ϕ
−∇ · ∂L

∂∇ϕ
. (8.151)

In order for ϕ(~x) to be an extremum of F [ϕ], the change δF must vanish for all allowed
variations δϕ(~x) and therefore the functional derivative must be equal to zero, just as in
the case with functions in one dimension. Written explicitly in terms of the coordinate
derivatives, we therefore have the multi-dimensional Euler–Lagrange equation

∂L
∂ϕ
− ∂

∂xi
∂L

∂(∂iϕ)
= 0. (8.152)

A word of warning regarding the notation is in order here. The partial derivatives of L in
this expression are partial derivatives of L with respect to its corresponding arguments as
given explicitly in Eq. (8.145). However, the partial derivative ∂/∂xi is a partial derivative
treating ∂L/∂(∂iϕ) as a function of the coordinates xi only. With this in mind, this term
could also be written as

∂

∂xi
∂L

∂(∂iϕ)
=

∂2L
∂ϕ∂(∂iϕ)

(∂iϕ) +
∂2L

∂(∂kϕ)∂(∂iϕ)
(∂i∂kϕ) +

∂2L
∂xi∂(∂iϕ)

, (8.153)

where all derivatives of L are to be treated as partial derivatives with respect to its full
set of arguments. However, this formula is rather cumbersome and it is usually simpler to
just remember that the derivative ∂/∂xi also acts on any functions of xi and perform the
derivative explicitly. The corresponding relation in the one-dimensional case would have
been

d

dx

∂L
∂ϕ′

=
∂2L
∂ϕ∂ϕ′

ϕ′ +
∂2L
∂ϕ′2

ϕ′′ +
∂2L
∂x∂ϕ′

. (8.154)

The reason we did not encounter this difficulty before was that there was no ambiguity
in writing d/dx while we really cannot write d/dxi in a meaningful way in the multi-
dimensional case.

Example 8.18 Consider the square membrane from Example 8.17 with a fixed boundary
such that the boundary conditions are given by

(BC) : h(0, x2) = h(`, x2) = h(x1, 0) = h(x1, `) = 0. (8.155)
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The total potential energy of the membrane is given by

V [h] =

∫ [
σ
√

1 + (∇h(~x))2 − f(~x)h(~x)
]

︸ ︷︷ ︸
≡L

dx1dx2 (8.156)

and we therefore find that

∂L
∂h

= −f(~x), (8.157a)

∂L
∂∇h

= σ
∇h√

1 + (∇h)2
, (8.157b)

∇ · ∂L
∂∇h

= σ

[
∇2h√

1 + (∇h)2
− ∇h · [(∇h) · ∇]∇h√

1 + (∇h)2
3

]
' σ∇2h, (8.157c)

where we have linearised the problem in the last step, assuming that the deviation h(~x) and
its derivative are small. The Euler–Lagrange equation for h(~x) is therefore given by

(PDE) : ∇2h(~x) = −f(~x)

σ
, (8.158)

i.e., it is Poisson’s equation. The resulting problem may be solved using the methods de-
scribed in the previous chapters.

It should also be noted that we could have saved ourselves some of the pain we suffered
when doing the derivatives by expanding the expression for the potential energy to second
order in h(~x) before performing the derivatives instead of doing so at the very end.

8.6.1 Conservation laws
In the one-dimensional setting we encountered a number of constants of motion, quantities
that were the same everywhere as long as the Euler–Lagrange equations were satisfied. In
the multi-dimensional case, it is no longer clear what the generalisation of this statement is
and, as it will turn out, we are no longer talking about quantities that take the same value
everywhere.

Let us start by examining the case in which the integrand L(ϕ,∇ϕ, ~x) = L(∇ϕ, ~x)
does not explicitly depend on the function ϕ(~x) itself, but only on its derivatives. In the
one-dimensional setting, this led us to the constant of motion

C =
∂L
∂ϕ′

. (8.159)

When going to the multi-dimensional case, the Euler–Lagrange equation is given by

0 = ∇ · ∂L
∂∇ϕ

≡ ∇ · ~J, (8.160)

where we have introduced the conserved current

~J =
∂L
∂∇ϕ

. (8.161)
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S0

S
V

S ′

Figure 8.13 Two differentN−1-dimensional surfaces S′ and S with the same boundary (represented

by the points) for the case of N = 2. By taking the difference of the flux integrals of the current ~J
over these surfaces, we obtain the closed surface integral over S0, which can be rewritten as a
volume integral of ∇ · ~J = 0 over the volume V .

While this certainly allows for the possibility that ~J is constant, it is no longer a necessity. In-
stead, when working with a problem in N dimensions, we can consider an N−1-dimensional
region S, which has an N − 2-dimensional boundary. In the two-dimensional case, this cor-
responds to taking a curve which has two endpoints, while in the three-dimensional case it
corresponds to taking a surface whose boundary is a one-dimensional curve, see Fig. 8.13. If
we continuously deform the surface into a new surface S′ while keeping the boundary fixed,
we can write the difference in the flux of ~J through the surfaces as

∆Φ =

∫
S′

~J · d~S −
∫
S

~J · d~S =

∮
S0

~J · d~S, (8.162)

where S0 is the boundary of the volume enclosed by the surfaces S and S′, i.e., it is the
union of the surfaces S and S′ where the normal direction of S has been inverted. Using
the divergence theorem we now find

∆Φ =

∫
V

∇ · ~J dV = 0 (8.163)

or, in other words, the fluxes of the conserved current ~J through the surfaces are the same.
This has several profound physical consequences, among them generalised conservation laws
that allow for a non-constant current ~J .

Example 8.19 Consider the situation where we are working in a four-dimensional setting
and one of the coordinates is time t and the others are the spatial coordinates xi. The
current ~J is now generally of the form

~J = ~e0ρ+ ~, (8.164)

where ~e0 is the basis vector in the time direction and ~ is the spatial part of the con-
served current ~J . Separating the time derivative from the spatial derivatives in the current
conservation law ∇ · ~J = 0, we find that

∂ρ

∂t
+∇ · ~ = 0. (8.165)

This is an equation we have seen before! It is the source free continuity equation for a



Variational Calculus � 501

t2

t

t1

Figure 8.14 The equivalent to Fig. 8.13 for N = 1 with the single dimension being the t-axis. The
zero-dimensional surfaces are now single points with no boundary. The corresponding argumenta-
tion results in that the value of the current, now with only one component, at these points must
be the same and it is therefore a constant of motion.

quantity with density ρ and a current density ~. Therefore, if a current is conserved in this
setting, it implies that there is a concentration that follows the continuity equation with
no sources or sinks. Naturally, this leads us to more generally consider the case when the
integrand L does depend on ϕ and we instead end up with the relation

∂ρ

∂t
+∇ · ~ =

∂L
∂ϕ

, (8.166)

which is the continuity equation with a source term ∂L/∂ϕ.

We can now go back and compare with the one-dimensional setting. In this situation,
an N − 1-dimensional surface is just a single point which has no boundary and therefore
the continuous deformation consists of moving the point, see Fig. 8.14. At the same time,
the surface integral reduces to evaluating the current J = ∂L/∂ϕ′ at the point and the
conservation law then directly states that the value of J is the same at all points, just as
we concluded earlier.

The current we just considered was the multi-dimensional equivalent of the constant of
motion implied by the integrand L not depending explicitly on the function itself. This is
not the only type of conserved current which will appear and we may ask ourselves the
question if there is also a current corresponding to the Beltrami identity. As we shall now
see, the answer to this question is that there is not only one, but several such currents, each
corresponding to an integrand that does not depend explicitly on a particular coordinate.

Consider the situation where the integrand L does not depend explicitly on the coordi-
nate xi. In this situation, we can differentiate L with respect to xi (remember that L may
still depend on xi implicitly through its dependence on ϕ(~x)) and we obtain

∂

∂xi
L =

∂L
∂ϕ

∂iϕ+
∂L

∂(∂kϕ)
∂i∂kϕ. (8.167a)

If the Euler–Lagrange equation for ϕ is satisfied, we can use it to replace ∂L/∂ϕ, just as
we did when deriving the Beltrami identity, and find

∂

∂xi
L = (∂iϕ)

∂

∂xk
∂L

∂(∂kϕ)
+

∂L
∂(∂kϕ)

∂k∂iϕ =
∂

∂xk

[
∂L

∂(∂kϕ)
∂iϕ

]
. (8.167b)
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Figure 8.15 If the index of refraction is not constant, the straight path, here shown as a dashed
line, may not be the fastest way for light to propagate from A to B. Instead, the alternative path
shown as a solid curve will be faster and will be the path along which we can send a signal between
the points according to Fermat’s principle.

We can now use ∂/∂xi = δki ∂/∂x
k on the left-hand side and rearrange this to

0 =
∂

∂xk

[
∂L

∂(∂kϕ)
∂iϕ− δki L

]
≡ ∂kT ki. (8.168)

If L does not depend explicitly on xi for some fixed i, then T ki is therefore a conserved
current.

8.7 BASIC VARIATIONAL PRINCIPLES IN PHYSICS
There are several variational principles in modern physics. Many times, they are equivalent
to other formulations of the same theory, but offer new insights and simplify further devel-
opment and computations. We have already seen that variational calculus is of use when we
need to find the lowest energy state in a system and we shall now discuss two of the more
prominent variational principles in classical physics.

8.7.1 Fermat’s principle
Within the area of optics, the propagation of light is often described using the Huygens–
Fresnel principle, which treats the propagation of a wave by considering every point the
wave reaches as the new source of a spherical wave. In fact, this is well in line with our
earlier treatment using Green’s functions as, given the state of a wave at a particular time
t, we can find the entire future propagation of the wave by propagating this state with the
Green’s function of the wave equation, which is spherically symmetric. Wave rays are then
the lines that are orthogonal to the wave fronts.

An alternative formulation for how light behaves is offered by Fermat’s principle, which
states that light rays propagate along the path that makes the travel time stationary. The
time taken for a light ray to propagate along a path Γ in a medium with variable index of
refraction, see Fig. 8.15, is given by

T [~x] =

∫
Γ

dt =

∫
ds

v
=

∫ 1

0

n(~x)

c

√
~x′2 dθ, (8.169)
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Figure 8.16 When passing between media of different refractive index, a light ray is refracted. The
relation between the incident angle and the refraction angle is given by Snell’s law, which may be
derived based on Fermat’s principle.

where θ is a curve parameter, here assumed to go from zero to one, c is the speed of light
in vacuum, n(~x) the variable index of refraction, v the speed of light in the medium, and
~x = ~x(θ) describes the path of the light ray. Equivalently, we can work with the optical
length of a path, defined by

L[~x] =

∫
n(~x)ds =

∫ 1

0

n(~x)
√
~x′2 dθ = cT [~x], (8.170)

as it only differs from T [~x] by the constant c. Finding the stationary paths of the optical
length is a general variational problem for which we can apply all of the framework developed
so far in this chapter.

Example 8.20 Snell’s law (or the law of refraction) states that the direction of a refracted
light ray is related to its incident direction as

ni sin(θi) = nr sin(θr), (8.171)

where ni and nr are the refractive indices in the medium before and after the refraction,
respectively, θi is the angle of the incoming light ray relative to the normal of the refractive
surface, and θr is the angle of the refracted light ray relative to the normal, see Fig. 8.16.

Assuming that we wish to send a light signal from point A in a medium with refractive
index ni to point B in the medium with refractive index nr, we need to find the path for
which the optical length takes a stationary value. Since the refractive index in each medium
is constant, we may write the total optical length as a sum of the optical length of the path
in each medium and find that

L[y] = L1[y] + L2[y] = ni`i[y] + nr`r[y], (8.172)

where `i[y] and `r[y] are the functionals giving the length of the paths in each medium,
respectively. Within each medium, the Euler–Lagrange equations are just the same as that
for finding the extrema of the path length `i[y] and the paths will therefore be straight lines
within the media. However, there are still several possibilities depending on where the path
crosses from one medium to the next, see Fig. 8.17, and we can compute the total optical
path as a function of the location of this point

L[y] = L(yc) = ni

√
x2
i + y2

c + nr
√
x2
r + (y0 − yc)2. (8.173)
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Figure 8.17 Finding the stationary optical length between the points A and B, we know that the
straight lines within each medium satisfy the Euler–Lagrange equations. We can find the stationary
path by checking all possibilities for the distance yc.

This is a function of one variable only and we can easily find its stationary points from

L′(yc) =
niyc√
x2
i + y2

c

− nr(y0 − yc)√
x2
i + (y0 − yc)2

= ni sin(θi)− nr sin(θr) = 0, (8.174)

which proves that the stationary path for the optical length indeed satisfies Snell’s law.

Example 8.21 We can use variational calculus to express Snell’s law in a more general
form. If we let a light ray propagate in a medium with a variable refractive index that
depends only on the x-coordinate, then the optical length is given by

L[y] =

∫
n(x)

√
1 + y′(x)2︸ ︷︷ ︸
≡L

dx, (8.175)

where the integrand L does not depend explicitly on the function y(x), but only on its
derivative and x. Because of this, we have a constant of motion given by

C =
∂L
∂y′

=
n(x)y′(x)√
1 + y′(x)2

= n(x) sin(θ(x)), (8.176)

where θ(x) is the angle that the path makes with the x-axis at x. For any two points x1

and x2 on the path, it must therefore hold that

n(x1) sin(θ(x1)) = n(x2) sin(θ(x2)), (8.177)
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which is Snell’s law for the case when the index of refraction may vary in any manner as a
function of x. Note that if n(x1) > n(x2), then a requirement for this equation to have a
solution is that

sin(θ(x1)) ≤ n(x2)

n(x1)
, (8.178)

if the light ray is sent from x1, any larger angle θ(x1) will result in a reflection of the ray
before reaching x2.

8.7.2 Hamilton’s principle
In the context of classical mechanics, we are already very familiar with Newton’s formulation
in terms of forces and Newton’s laws:

1. In an inertial frame, a body moves with a constant velocity unless acted upon by a
force.

2. If a force ~F acts on a body of mass m, its acceleration is given by ~a = ~F/m. More
generally, for a system with variable mass, this is often expressed in terms of the
change in momentum according to ~F = d~p/dt.

3. If a body A exerts a force ~F on a body B, then B exerts a force −~F on A.

As it turns out, as long as we deal only with conservative internal forces and external
potentials that do not depend on velocities, this may be reformulated into a variational
principle.

Let us first define a few objects that will be useful in describing the evolution of a system
with a general set qi(t) of degrees of freedom, starting with the Lagrangian L(~q, ~̇q, t), which
in classical mechanics takes the form

L(~q, ~̇q, t) = T − V, (8.179)

where T is the kinetic energy of the system and V its potential energy. We also define the
action

S[~q] =

∫ t1

t0

L(~q, ~̇q, t)dt (8.180)

as the integral of the Lagrangian between the time t0, at which we know the state of the
system, to the time t1, at which we wish to know the state of the system. Hamilton’s
principle (or the principle of stationary action) states that the system’s evolution will be
described by functions that are stationary functions of the action. As such, the equations of
motion for the system will be the Euler–Lagrange equations for the action. In more compact
terms, the physical solutions ~q(t) are such that

δS = 0. (8.181)

Hamilton’s principle is also sometimes referred to as the principle of least action. However,
this is generally a misnomer as the stationary function may also be a maximum or a saddle
point. To separate the two approaches to mechanics, although they are often equivalent, we
will refer to them as Newtonian and Lagrangian mechanics, respectively. It is also of interest
to note that there is a third formulation of classical mechanics, known as Hamiltonian
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mechanics. Although Hamilton’s principle appears in Lagrangian mechanics, the two should
generally not be confused with each other.

At face value, Hamilton’s principle may look unfamiliar and even a bit strange. Let us
therefore verify that we can recover Newton’s laws by the following series of examples.

Example 8.22 First, let us consider a particle of mass m moving in three spatial dimen-
sions. If this particle is not subjected to any forces, the potential V may be set to zero while
the kinetic energy is given by

T = m
~v 2

2
= m

~̇x 2

2
. (8.182)

With a potential of zero, the Lagrangian L is equal to the kinetic energy, resulting in an
action

S[~x] =
m

2

∫
~̇x 2dt. (8.183)

Since the Lagrangian does not depend explicitly on ~x, we find that

~p =
∂L
∂~̇x

= m~̇x = m~v (8.184)

is a constant of motion. Thus, if there are no forces acting on the particle, its velocity will
be constant. This is Newton’s first law.

Example 8.23 Let us now lift the restriction of no forces acting upon the particle and
instead consider a particle moving in a force field such that ~F (~x, t) = −∇V , where the
potential energy V (~x, t) is independent of the velocity of the particle. With the kinetic
energy given by the same expression as before, the Lagrangian is now of the form

L =
m

2
~̇x 2 − V (~x, t). (8.185)

From this expression, we can easily find the Euler–Lagrange equations

∂L
∂~x
− d

dt

∂L
∂~̇x

= −∇V (~x, t)− d

dt
m~̇x = −∇V − ~̇p = 0, (8.186)

where again ~p = m~̇x is the momentum of the particle. Inserting the expression for the force
in terms of the potential, we end up with

~̇p = ~F , (8.187)

which is Newton’s second law.

Example 8.24 Finally, let us consider the situation where we are looking at a system of
two particles with masses m1 and m2 that has a potential energy

V (~x1, ~x2) = V (~x2 − ~x1) = V ( ~X), (8.188)



Variational Calculus � 507

m1

~̇x1
~̇x2

m2

~X

Figure 8.18 Two particles with masses m1 and m2, respectively, moving freely apart from being

subjected to a force due to a potential V ( ~X) depending on the separation ~X = ~x2 − ~x1 between
them. Hamilton’s principle will imply that the forces on the particles are equal in magnitude and
opposite in direction.

which depends on the separation ~X = ~x2 − ~x1 between the particles, see Fig. 8.18. In addi-
tion, each of the particles contributes with its own kinetic energy, leading to the Lagrangian

L =
1

2
(m1~̇x

2
1 +m2~̇x

2
2 )− V ( ~X). (8.189)

The Euler–Lagrange equations for the first particle are now given by

∂L
∂~x1
− d

dt

∂L
∂~̇x1

= −∇1V ( ~X)− d

dt
m~̇x1 = 0, (8.190)

where ∇1 is the gradient with respect to the coordinates ~x1. Using the chain rule, this may
be rewritten as

~F1 = ~̇p1 = −∇1V ( ~X) = −~ei
∂Xk

∂xi1

∂V

∂Xk
= ~ei

∂V

∂Xi
, (8.191)

where we have used the fact that ∂Xk/∂xi1 = −δik. The exact same computation holds for
the second particle with the only difference being that ∂Xk/∂xi2 = δik, which leads to

~F2 = ~̇p2 = −~ei
∂V

∂Xi
= −~F1. (8.192)

The mutual potential V ( ~X) therefore leads to the appearance of a force ~F2 acting on the

second particle which is the negative of the force ~F1 acting on the first, showing that
Newton’s third law also holds in Lagrangian mechanics, at least for this type of systems.

8.7.2.1 Constants of motion

Our earlier discussion on constants of motion may have been illuminating in itself and
provided us with sharp tools for facing some variational problems that might otherwise have
been more difficult. However, it is now about to bear fruit in a whole different context as we
shall see how they relate to a large number of conservation laws that we are used to from
Newtonian mechanics. As a small appetiser, we have already seen that the momentum of a
single particle is conserved unless there are any external forces acting on it in Example 8.22.
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In general, we would like to show that the total momentum for a system containing any
number of particles is conserved in the absence of external forces. Let us therefore study a
system of N particles moving only under the influence of a mutual potential

V ( ~X) = V (~x12, ~x13, . . .), (8.193)

where ~X is a 3N -dimensional vector containing the positions of all of the N particles and
~xij = ~xi − ~xj is the separation of the particles i and j. If particle i has mass mi, then we
can introduce the position of the center of mass as a new coordinate

~xcm =

∑
imi~xi∑
imi

≡
∑
imi~xi
M

, (8.194)

where we have introduced M =
∑
imi as the total mass of the system. In order to de-

scribe the system fully, the remaining coordinates may be given in terms of the particles’
displacement from the center of mass. Note that only N − 1 of those displacements will be
independent and we will therefore still have a total of 3N coordinates describing the system.
Since the potential only depends on the separation of the particles, we find that

∂V

∂xkcm

= 0. (8.195)

In addition, the kinetic energy of the system can be written as

T =
∑
i

mi

2
~̇x 2
i =

∑
i

mi

2
(~̇xcm + ~̇di)

2, (8.196)

where ~di is the displacement of particle i from the center of mass. Expanding the square
leads to

T =
∑
i

mi

2
~̇x 2

cm + ~̇xcm ·
d

dt

∑
i

mi
~di +

∑
i

mi

2
~̇d 2
i =

M

2
~̇x 2

cm +
∑
i

mi

2
~̇d 2
i , (8.197)

where we have used that

~xcm =
1

M

∑
i

mi~xi =
1

M

∑
i

mi(~xcm + ~di) = ~xcm +
1

M

∑
i

mi
~di, (8.198)

implies ∑
i

mi
~di = 0. (8.199)

We can now write down the Lagrangian in this coordinate system as

L =
M

2
~̇x 2

cm − V ( ~D) +
∑
i

mi

2
~̇d 2
i , (8.200)

where ~D is a 3N -dimensional vector containing the displacements ~di. It is possible to express
the potential in this fashion since

~xij = ~xi − ~xj = (~xcm + ~di)− (~xcm + ~dj) = ~di − ~dj . (8.201)

We can get rid of the additional three degrees of freedom introduced by using N displace-
ment vectors ~di either by directly using Eq. (8.199) to express one of the ~di in terms of the
others or by using it as a holonomic constraint.
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Once we have done the above exercise of rewriting the Lagrangian, it is clear that the
Lagrangian does not depend explicitly on the center of mass coordinates, but only their
derivatives through the kinetic term. It therefore follows that the total momentum

~P =
∂L
∂~̇xcm

= M~̇xcm =
∑
i

mi~̇xi =
∑
i

~pi (8.202)

is a constant of motion.
In addition to the constant of motion resulting from the Lagrangian not being explicitly

dependent on the center of mass position, it is also clear that the given Lagrangian does
not depend explicitly on the time t. Since this is true also in the original coordinates and
the discussion is slightly simpler using the original coordinates, we use the Lagrangian

L =
∑
i

mi

2
~̇x 2
i − V ( ~X). (8.203)

The Beltrami identity now implies that∑
i

~̇xi ·
∂L
∂~̇xi
− L =

∑
i

mi

2
~̇x 2
i + V ( ~X) = T + V = E, (8.204)

where E is a constant of motion. Being the sum of the kinetic and potential energies of the
system, we can directly identify this constant with its total energy .

In a similar fashion to what we have described here, if the Lagrangian can be shown to
be independent of any single coordinate, there is a constant of motion that corresponds to
this independence. This may be used to show that several different quantities, such as the
angular momentum, are invariant under certain conditions, see Problem 8.37.

8.8 MODELLING WITH VARIATIONAL CALCULUS
As we have seen in this chapter, variational principles generally lead to differential equations
that need to be solved. This is good news! We spent the major part of Chapter 3 using
different lines of argumentation to do just that and admittedly some of the derivations were
rather lengthy and required us to go down to the level of force diagrams for small parts
of an object. Variational calculus provides us with an additional tool that can be used in
model building to derive certain differential equations from basic variational principles by
just writing down the functional for which we wish to find the stationary functions and
applying the Euler–Lagrange equations.

In addition to allowing us to find the differential equations describing a system in a more
direct fashion, the variational framework may also provide us with additional insights into
how the system behaves. This will generally result from considering the different constants of
motion and conserved currents that arise from determining whether the functional contains
an integrand that is not explicitly dependent on some of its arguments.

Example 8.25 As an example of a situation where we can derive a differential equation
directly from variational arguments is given by the vibrating string with a tension S and
linear density ρ` discussed in Section 3.5.1. After a rather lengthy argument using the free
body diagram of a small part of the string, we found that the transversal deviation u(x, t)
of the string should satisfy the wave equation

utt(x, t)− c2uxx(x, t) =
f

ρ`
, (8.205)
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where c2 = S/ρ` is the wave velocity. Let us see how we could treat this derivation by
applying variational methods.

According to Hamilton’s principle, the system will evolve in such a way that the action
is stationary. In order to find out what this implies, we need to find the Lagrangian of
the system, which is written in terms of the kinetic and potential energies. Since we have
already treated the potential energy of the elastic string in Example 8.5, we can just write
down the resulting potential energy as

V [u] =

∫ b

a

[
S

2
ux(x, t)2 + f(x, t)u(x, t)

]
dx, (8.206)

where we have replaced the gravitational force from Example 8.5 by a general time depen-
dent force density f(x, t) and kept only the leading non-constant term in the potential due to
the extension of the string. Looking at the kinetic energy T , it is a sum of the contributions
of all small masses dm along the string, which have kinetic energies dT = ut(x, t)

2dm/2.
Using that dm = ρ`dx, we therefore find

T =

∫
dT =

∫ b

a

ρ`
2
ut(x, t)

2dx. (8.207)

The action is now given by the functional

S[u] =

∫ t1

t0

(T − V )dt =

∫ t1

t0

∫ b

a

[
ρ`
2
ut(x, t)

2 − S

2
ux(x, t)2 − f(x, t)u(x, t)

]
︸ ︷︷ ︸

≡L

dx dt, (8.208)

where L is not the Lagrangian, since it is not the kinetic energy minus the potential, but the
Lagrangian density , i.e., the density of kinetic energy minus the density of potential energy.
However, it is often common to also refer to the Lagrangian density just as the Lagrangian
although not technically accurate.

Having found an expression for the action functional, we can find the equations of motion
for the system by requiring that δS = 0 or, in other terms, that the Lagrangian density
satisfies the Euler–Lagrange equation

∂L
∂u
− ∂t

∂L
∂ut
− ∂x

∂L
∂ux

= 0. (8.209)

Performing the derivatives of the Lagrangian density, we find that

∂L
∂u

= −f(x, t), (8.210a)

∂t
∂L
∂ut

= ρ`utt(x, t), (8.210b)

∂x
∂L
∂ux

= −Suxx(x, t), (8.210c)

leading to the differential equation

ρ`utt(x, t)− Suxx(x, t) = f(x, t). (8.210d)

Dividing this result by the linear density ρ` gives us the result in Eq. (8.205).
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Example 8.26 Let us see what we can say about a vibrating string like the one in the
previous example based on the particular expression for the Lagrangian density

L =
1

2
[ρ`ut(x, t)

2 − Sux(x, t)2], (8.211)

where we have assumed that there is no external force acting on it and therefore f(x, t) = 0.
This Lagrangian density has no explicit dependence on the coordinates x and t, nor does it
depend on the transversal displacement u(x, t) itself, but only on its derivatives.

Starting with the Lagrangian density not being explicitly dependent on the function
u(x, t) itself, we find that the corresponding conserved current is given by

J t =
∂L
∂ut

= ρ`ut(x, t), Jx =
∂L
∂ux

= −Sux. (8.212)

What physical quantity does this correspond to? Having in mind the well-known formula
p = mv, the momentum of a small part dx of the string in the transversal direction must
be given by

dpT = ut(x, t)dm = ut(x, t)ρ`dx. (8.213)

As a result, we can interpret the time component J t of the current as the momentum density
in the transversal direction. By our discussion in Example 8.19, the corresponding current
in the continuity equation is the spatial component Jx. This is exactly what we expect! For
a given x, the expression for the spatial component is nothing but the transversal force from
the string to the left of x on the string to the right of x as we argued already in Section 3.5.1.
We have not only recovered the continuity equation for the transversal momentum but also
found the correct expression for the corresponding force. We can find another relation of
interest by considering the integral

I =

∫ t1

t0

∫ b

a

[∂tJ
t + ∂xJ

x]dx dt = 0, (8.214)

which holds due to the conserved current, see Fig. 8.19. As advertised when we discussed
conserved currents in general, this can be rewritten as

I =

∫ b

a

[J t(x, t1)− J t(x, t0)]dx+

∫ t1

t0

[Jx(b, t)− Jx(a, t)]dt = 0 (8.215)

by using the divergence theorem. For the spatial integrals we find that∫ b

a

J t(x, τ)dx =

∫ b

a

ρ`ut(x, τ)dx = pT (τ) (8.216)

is the total transversal momentum of the string at time τ . We therefore obtain the relation

pT (t1)− pT (t0) = S

∫ t1

t0

[ux(b, t)− ux(a, t)]dt, (8.217)

where the right-hand side describes the transversal momentum flow into the string at the
endpoints. In particular, we note that if the string endpoints are allowed to move freely,
then the natural boundary condition at x = a and x = b will be given by

∂L
∂ux

= Jx = −Sux = 0 =⇒ ux = 0 (8.218)
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and the total transversal momentum in the string will be conserved. This is no longer true
if we fix the string at the endpoints, see Fig. 8.20.

Since the Lagrangian density is also not explicitly dependent on the coordinates x and
t, there are two conserved currents related to this which can be deduced through the gen-
eralisation of the Beltrami identity. In particular, taking the current from Eq. (8.168) cor-
responding to the Lagrangian density not depending explicitly on the time coordinate t, we
find that the density

T tt = ut(x, t)
∂L
∂ut
− L =

1

2

[
ρ`ut(x, t)

2 + Sux(x, t)2
]

(8.219a)

is the sum of the kinetic and potential energy densities and therefore total energy density
and that the corresponding current is

T xt = ut(x, t)
∂L
∂ux

= −Sut(x, t)ux(x, t). (8.219b)

Again, this is just what we should expect! We already know that −Sux(x, t) is the force
acting from the string left of x on the string to the right of x. Furthermore, the movement
of the point of application of this force parallel to the force direction is given by the velocity
ut(x, t). The work done on the part of the string to the right of x per time unit is therefore
given by the force multiplied by ut(x, t), which gives exactly the above expression for T xt
and is therefore the power dissipated from the left to right, i.e., the energy current density.

Finally, there is the current related to the Lagrangian density not explicitly depending
on the x coordinate. The corresponding time component of the conserved current is

T tx = ux(x, t)
∂L
∂ut

= ρ`ut(x, t)ux(x, t) (8.220a)

which should be interpreted as a density of some sort and the corresponding spatial current
is given by

T xx = ux(x, t)
∂L
∂ux

− L = −1

2

[
ρ`ut(x, t)

2 + Sux(x, t)2
]
. (8.220b)

As it turns out, the density corresponds to a longitudinal momentum density carried by
the transversal wave, or more precisely, the negative of the longitudinal momentum density.
Treating this properly in terms of the string motion requires looking at the longitudinal
motion of the string as well as the transversal, a fact we have been ignoring throughout.
This is therefore out of the scope for this text.

8.9 VARIATIONAL METHODS IN EIGENVALUE PROBLEMS
Variational methods also have some interesting applications to Sturm–Liouville problems.
Let us start by considering a functional of the form

I[ϕ] =
〈
ϕ, L̂ϕ

〉
=

∫ b

a

w(x)ϕ(x)L̂ϕ(x)dx, (8.221)

where L̂ is a Sturm–Liouville operator and see if variational methods can give us some
insights when we look for eigenfunctions of L̂. Since eigenfunctions are only defined up
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t = t0

t = t1

`

t

x

∂tJ
t + ∂xJ

x = 0

Figure 8.19 Integrating a conserved current over the spatial and temporal boundary surfaces will
give the result zero due to the divergence of the current being identically zero. The current integral
over the temporal boundary surfaces (darker boundary) relate to an extensive quantity of the system
at that time, while the current integral over the spatial boundary surfaces (lighter boundary) give
the total flow of the quantity out of the system. If this flow is zero, the extensive quantity must be
the same at t = t0 and t = t1 and is therefore conserved in the system.

θ

S

Figure 8.20 For a string with a fixed endpoint, the force due to the string tension S at the end-
point will generally have a component in the transverse direction unless θ = 0. This means that
momentum in the transverse direction will be transferred between the string and the wall, thereby
resulting in the transverse momentum in the string not being constant in time.
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to a multiplicative constant, let us look for normalised eigenfunctions in particular, i.e.,
eigenfunctions that satisfy the normalisation condition

J [ϕ] = 〈ϕ,ϕ〉 =

∫ b

a

w(x)ϕ(x)2dx = 1. (8.222)

This normalisation condition is just an isoperimetric constraint on the function ϕ(x) and
in order to find the stationary functions of the functional I[ϕ] under this constraint, we can
define the new functional

K[ϕ] = I[ϕ]− λJ [ϕ]. (8.223)

Writing out this functional explicitly, we have

K[ϕ] =

∫ b

a

{
−ϕ(x)

d

dx
[p(x)ϕ′(x)] + [q(x)− λw(x)]ϕ(x)2

}
dx

=

∫ b

a

[
p(x)ϕ′(x)2 + (q(x)− λw(x))ϕ(x)2

]
dx, (8.224)

where we have used partial integration and assumed that the boundary terms vanish due
to the boundary conditions. The Euler–Lagrange equation corresponding to this functional
is given by

1

2

δK

δϕ(x)
= − d

dx
[p(x)ϕ′(x)] + [q(x)− λw(x)]ϕ(x) = 0, (8.225a)

which after division by w(x) becomes the Sturm–Liouville eigenvalue equation

L̂ϕ(x) = λϕ(x). (8.225b)

As a direct consequence of this, any normalised eigenfunction of the Sturm–Liouville oper-
ator L̂ is a local stationary function of I[ϕ] in the set of normalised functions.

Let us see if we can understand this result from a different perspective by expressing a
general function ϕ(x) as a linear combination of the normalised eigenfunctions ϕn(x) such
that L̂ϕn(x) = λnϕn(x). This linear combination will be of the form

ϕ(x) =
∑
n

anϕn(x), (8.226)

where the constants an are the expansion coefficients. The functionals I[ϕ] and J [ϕ] can
now be written as

I[ϕ] =
∑
n,m

anam

〈
ϕn, L̂ϕm

〉
=
∑
n

a2
nλn ≡ I(~a), (8.227a)

J [ϕ] =
∑
n,m

anam 〈ϕn, ϕm〉 =
∑
n

a2
n ≡ J(~a), (8.227b)

where I(~a) and J(~a) are functions of the infinite dimensional vector ~a with the expansion
coefficients as the vector components. The corresponding function K(~a) = I(~a) − λJ(~a) is
therefore given by

K(~a) =
∑
n

a2
n(λn − λ). (8.228)

As a direct consequence, we find that the extrema of K(~a) must satisfy

∂K

∂am
= 2am(λm − λ) = 0 (8.229)
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for all m. The only ways of accommodating this for each m are either am = 0 or λ =
λm. Since the eigenvalues are distinct, we therefore find that the extrema correspond to
functions indexed by the integer k such that am = 0 for all m 6= k. With the additional
normalisation condition, we must also have ak = 1, indicating that the stationary functions
of the functional I[ϕ] constrained to J [ϕ] = 1 are the normalised eigenfunctions ϕn(x).

We can also go one step further and ask what type of stationary function each eigen-
function corresponds to. For the eigenfunction ϕk(x), let us consider a variation

ϕ(x) = N(~ε)

ϕk(x) +
∑
n 6=k

εnϕn(x)

 (8.230)

such that the parameters εn may be considered small and N(~ε) is a normalisation constant
given by

J [ϕ] = N(~ε)2

1 +
∑
n 6=k

ε2
n

 = 1 =⇒ N(~ε)2 ' 1−
∑
n 6=k

ε2
n. (8.231)

Inserting this into the expression for I[ϕ] leads to

I[ϕ] = N(~ε)2

λk +
∑
n 6=k

λnε
2
n

 = λk +
∑
n 6=k

(λn − λk)ε2
n +O(ε4). (8.232)

If we order the eigenfunctions such that λ1 < λ2 < λ3 < . . ., then a variation such that
εn = 0 for all n > k will lead to a decrease in I[ϕ], while a variation such that εn = 0
for all n < k will lead to an increase. Since there is an infinite set of eigenfunctions and
eigenvalues, it follows that ϕk(x) is a saddle point for all k except for the eigenfunction with
the lowest eigenvalue, for which it is a minimum.

8.9.1 The Ritz method
Based on the above, we can use variational methods in order to find an approximation
to the lowest eigenvalue of a Sturm–Liouville operator by guessing how the corresponding
eigenfunction will behave. This is mainly important in the cases where the Sturm–Liouville
problem is difficult, or even impossible, to solve analytically and the better the guess we
can make, the closer to the actual eigenvalue we get. Given a guess ϕ̃1(x), it will generally
be a linear combination of all of the eigenfunctions ϕn(x) such that

ϕ̃1(x) = k

[
ϕ1(x) +

∑
n>1

εnϕn(x)

]
. (8.233)

Note that we do not need to actually know the eigenfunctions to make this argument, it is
sufficient to know that they exist. We have also extracted the coefficient of ϕ1(x) from the
entire sum, which is just a matter of normalisation. If we have made a good guess, then all
of the εn will be small and we will find that the Rayleigh quotient

R[ϕ] =
I[ϕ]

J [ϕ]
=

〈
ϕ, L̂ϕ

〉
〈ϕ,ϕ〉

(8.234a)

is given by

R[ϕ] ' λ1 +
∑
n>1

(λn − λ1)ε2
n ≥ λ1 (8.234b)
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to second order in εn. Naturally, this is just the same expression as in Eq. (8.232) with k = 1
and minimising the Rayleigh quotient is therefore equivalent to minimising I[ϕ] under the
criteria that J [ϕ] = 1. This is hardly surprising as R[ϕ] is independent of the normalisation
of ϕ and R[ϕ] = I[ϕ] when J [ϕ] = 1. If we have made a good enough guess, then the εn
should be small numbers and we can use the approximation

λ̄1 = R[ϕ] = λ1 +O(ε2). (8.235)

Note that, e if we make an error of O(ε) in our guess of the eigenfunction, the leading
correction in this approximation is of O(ε2).

The method described above for finding an approximation of the eigenfunction corre-
sponding to the lowest eigenvalue is known as the Ritz method and there is a very straight-
forward way in which we can improve our estimate. Our chances of finding a good approx-
imation will increase significantly if we can make several guesses at once. In particular, we
can indeed make an infinite number of guesses at once by considering a one-parameter fam-
ily of functions ϕ̃κ1 (x), where κ is a continuous parameter that we can vary. The Rayleigh
quotient will now be given by a function of κ

R(κ) = R[ϕ̃κ1 ], (8.236)

but still satisfy R(κ) ≥ λ1. If we can compute this function, it is only a matter of minimising
it to find the best approximation of λ1. Not only will this generally result in a better
approximation than pure guessing, but it will also produce the best approximation of the
actual eigenfunction ϕ1(x) within the one-parameter family. Note that this method works
not only in one, but also in a higher number of dimensions.

Example 8.27 Consider the problem of finding the lowest eigenvalue of the Laplace
operator in a circular domain with Dirichlet boundary conditions

(PDE) : −∇2ϕ(~x) = λϕ(~x), (8.237a)

(BC) : ϕ(~x) = 0. (~x 2 = 1) (8.237b)

This is a problem we have seen before and one that we know is relevant, for example in order
to find the dominant mode in describing a diffusion problem in such a circular domain. It
is also a problem that we can solve exactly and the lowest eigenfunction is

ϕ1(~x) = J0(α01ρ), (8.238)

where α01 is the first zero of the Bessel function J0(x) and ρ is the radial coordinate in
polar coordinates with the center of the circular domain as the origin. The corresponding
eigenvalue is given by α2

01.
Let us for a blissful moment imagine that we did not know anything about Bessel

functions but still wanted to know the lowest eigenvalue for this problem. We could start
by guessing that the corresponding eigenfunction is approximately given by

ϕ̃κ1 (~x) = 1− ρκ. (8.239)

For all κ > 0, this function is non-trivial and satisfies the given boundary conditions. We
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can now use the explicit form of this function to compute

I[ϕ̃κ1 ] = −
∫ 1

0

ρ(1− ρκ)

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ

)
(1− ρκ)dρ =

κ

2
, (8.240a)

J [ϕ̃κ1 ] =

∫ 1

0

ρ(1− ρκ)2dρ =
κ2

4 + 6κ+ 2κ2
, (8.240b)

leading to the Rayleigh quotient

R(κ) =
I[ϕ̃κ1 ]

J [ϕ̃κ1 ]
=

2

κ
+ 3 + κ. (8.241)

This function takes its minimum value when

R′(κ) = − 2

κ2
+ 1 = 0 =⇒ κ =

√
2, R(

√
2) = 3 + 2

√
2. (8.242)

Our upper bound for the lowest eigenvalue is therefore given by

λ1 ≤ λ̄1 = 3 + 2
√

2 ' 5.828. (8.243)

Going back to the world where we do know about Bessel functions and their zeros, we find
that this is reasonably close to the true value α2

01 ' 5.784, which can be found from tables
of Bessel function zeros.

If a given guessed eigenfunction can be guaranteed to be orthogonal to ϕ1(x) by some
means, we can go on to find a similar bound for the second eigenvalue λ2 by making that
guess. However, there is a different extension of Ritz method which is generally more effective
and that requires only the diagonalisation of a matrix.

8.9.2 The Rayleigh-Ritz method
Instead of considering only one guessed eigenfunction as in Ritz method, we can always
consider a finite subspace of our entire function space, spanned by N functions ϕ̃n(~x) that
we assume to be linearly independent. The action of the Sturm–Liouville operator L̂ on
this finite dimensional space can be approximated in terms of an N ×N matrix L with the
entries

Lnm =
〈
ϕ̃n, L̂ϕ̃m

〉
. (8.244)

At the same time, we may also define another N ×N matrix J by its entries

Jnm = 〈ϕ̃n, ϕ̃m〉 . (8.245)

If the ϕ̃n(~x) have been chosen in such a way that they are orthonormal, then Jnm = δnm,
but this is not a requirement for the following method to work. Due to the symmetric
property of the inner product, the matrix J is by definition symmetric and we can therefore
find a new basis

ϕ̄n(~x) = Pnmϕ̃m(~x) (8.246)

such that
J̄nm = 〈ϕ̄n, ϕ̄m〉 = δnm (8.247)



518 � Mathematical Methods for Physics and Engineering

by diagonalising and rescaling the original basis. We can also write down the matrix L̄ with
the entries

L̄nm =
〈
ϕ̄n, L̂ϕ̄m

〉
. (8.248)

However, the simplest way of finding these elements will be to do the same matrix trans-
formation as was performed in order to diagonalise and normalise J . As long as we pick
functions ϕ̃n such that they are mainly composed of N eigenfunctions ϕm, the eigenvalues
and eigenvectors of L̂ restricted to the finite dimensional space may be taken as approxi-
mations of the eigenvalues and eigenfunctions in the full space. This method, known as the
Rayleigh-Ritz method , works best when the functions ϕ̃n(~x) are chosen in such a fashion
that they are actual linear combinations of N eigenfunctions of L̂. The method will then
return those exact eigenfunctions and eigenvalues.

Example 8.28 Let us consider the example of the operator L̂ = −d2/dx2 on the interval
0 < x < ` with homogeneous Dirichlet boundary conditions ϕ(0) = ϕ(`) = 0. In this case,
we have already seen several times that the normalised eigenfunctions are of the form

ϕn(x) =

√
2

`
sin(knx) (8.249)

for kn = πn/` with corresponding eigenvalues λn = k2
n. Let us therefore investigate if we

can get anywhere close to this by using the Rayleigh-Ritz method. We aim for the two
lowest eigenvalues and choose a two-dimensional subspace of the functional space, given by

ϕ̃1(x) =

√
30

`

x

`

(
1− x

`

)
, (8.250a)

ϕ̃2(x) =

√
840

`

x

`

(
1− x

`

)(1

2
− x

`

)
, (8.250b)

where the prefactors have been chosen in such a way that these functions are already
normalised. Furthermore, since ϕ̃1(x) is symmetric around x = `/2 and ϕ̃2(x) is anti-
symmetric around the same point, the functions are also orthogonal. These functions are
shown in Fig. 8.21 along with the actual first three eigenfunctions and the function ϕ̃3,
which we will define in Eq. (8.252).

Because ϕ̃1(x) and ϕ̃2(x) are orthonormal, we do not need to diagonalise the 2 × 2
matrix J , since it already is diagonal. The elements of the matrix L̄ can be found according
to

L̄11 = −
∫ `

0

ϕ̃1(x)ϕ̃′′1(x) =
10

`2
, (8.251a)

L̄22 = −
∫ `

0

ϕ̃2(x)ϕ̃′′2(x) =
42

`2
, (8.251b)

L̄12 = L̄21 = −
∫ `

0

ϕ̃1(x)ϕ̃′′2(x) = 0. (8.251c)

The resulting matrix

L̄ =
1

`2

(
10 0
0 42

)
(8.251d)



Variational Calculus � 519

0.2 0.4 0.6 0.8 1.0

–1.5

–1.0

–0.5

0.5

1.0

1.5

ϕ(x) x/`

Figure 8.21 The three functions defined in Eqs. (8.250) and (8.252) used in our example of the
Rayleigh–Ritz method (solid curves) along with the three actual eigenfunctions of the problem with
the smallest eigenvalues (dashed curves).

clearly has the eigenvalues λ̄1 = 10/`2 and λ̄2 = 42/`2. These approximations should be
compared to the true lowest eigenvalues λ1 = π2/`2 ' 9.8696/`2 and λ2 = 4π2/`2 ' 39.5/`2

of the Sturm–Liouville operator L̂. If we extend our set of functions to also include the
function

ϕ̃3(x) =

√
17010

`

x

`

(
1− x

`

)(1

3
− x

`

)(
2

3
− x

`

)
, (8.252)

the approximation for the first eigenvalue improves to the significantly more accurate value
λ̄1 ' 9.8698/`2.

8.9.2.1 Finite element method

A particular choice of the functions ϕ̃n(~x) in the Rayleigh-Ritz method is very useful in
for finding approximations of the eigenvalues and eigenfunctions numerically. In the finite
element method (often abbreviated FEM ), we start by selecting a number of points ~xn
within the domain of study and then perform a triangulation of the domain based on this
set of points as vertices. A triangulation is a division of the domain into a set of simplices,
which in one dimension is just the interval between two of the points, in two dimensions it
is a set of triangles and in three dimensions a set of irregular tetrahedrons, see Fig. 8.22. In
general, a simplex in N dimensions is uniquely defined by its N+1 corners. Mathematically,
a point within a simplex can be written as

~x =
N+1∑
k=1

ξk~xs(k), (8.253a)

where ~xs(k) is the kth corner of the simplex and the numbers ξk satisfy

N+1∑
k=1

ξk = 1 and ξk ≥ 0. (8.253b)
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Figure 8.22 Triangulations of a one dimensional line (left) and a two dimensional square (right),
which may be used for the finite element method. The light circles represent internal nodes and we
will introduce our set of functions for the Rayleigh–Ritz method in such a way that there is one
function per internal node. In general, the more nodes that are introduced, the more accurate the
result will be.

xn

ϕ̃n

~xn

Figure 8.23 The functions ϕ̃n(~x) corresponding to the dark internal nodes for the triangulations
presented in Fig. 8.22. The functions are taken to have the value one at the dark node, zero at all
other nodes, and to be linear within each simplex.

For our set of functions ϕ̃n(~x), we pick functions such that

ϕ̃n(~xm) = δnm (8.254)

and such that ϕ̃n(~x) is linear within each simplex, see Fig. 8.23.
Now consider the problem of finding the eigenvalues of the Laplace operator on some

arbitrary domain with homogeneous Dirichlet boundary conditions. We can then rewrite
the functional I[ϕ] as

I[ϕ] = −
∫
V

ϕ(~x)∇2ϕ(~x)dV =

∫
V

[∇ϕ(~x)]2dV (8.255)

by using Green’s first identity. The reason for doing this is that our selected set of func-
tions has derivatives that are piecewise smooth and behave much nicer than the second
derivatives. Because of the way ϕ̃n(~x) is defined, it is going to have a vanishing gradient
everywhere but in the simplices in which ~xn is a corner. As such, most of the matrix ele-
ments Lnm and Jnm will vanish as well, generally leading to very sparse matrices that are
well suited for numerical diagonalisation.
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8.10 PROBLEMS
Problem 8.1. In Example 8.3, we showed that the straight line between two points is a
stationary function of the distance functional

L[y] =

∫ x0

0

√
1 + y′(x)2 dx. (8.256)

We did this by introducing the function

L(ε) = L[kx+ εη] (8.257)

and verifying that L′(0) = 0 for all η(x). Show that the straight line is not only a stationary
function, but indeed a minimum, by computing L′′(ε) and evaluating it for ε = 0. If it is a
minimum then we must have L′′(0) ≥ 0 regardless of the function η(x).

Problem 8.2. That the straight line is a minimum for the path length has been shown in
Example 8.3 and Problem 8.1 by checking that any variation around the straight line leads
to a longer path.

a) If we had not been able to guess this solution, we would have needed to solve a set
of differential equations. Find this set by writing down the Euler–Lagrange equations
corresponding to the path length functional

L[x, y] =

∫ 1

0

√
ẋ(t)2 + ẏ(t)2 dt. (8.258)

Give an interpretation of the result you find.

b) By changing coordinates according to

x(t) = ρ(t) cos(φ(t)) and y(t) = ρ(t) sin(φ(t)), (8.259)

write down the differential equation that a straight line must satisfy in polar coordi-
nates when parametrised by the curve length.

Problem 8.3. A particle moves in a non-conservative time-dependent force field ~F (~x, t).
Write down a functional of the path ~x(t) that describes the total work done on the particle
when moving along the path from ~x(0) to ~x(t0).

Problem 8.4. A fluid is flowing with a stationary velocity field ~v(~x) and has a density
given by ρ(~x). Write down functionals that describe

a) the total kinetic energy in a volume V and

b) the net mass flow per unit time through a surface S.

Problem 8.5. Write down the Euler–Lagrange equations for the functionals

a) F1[φ] =

∫ b

a

√
φ′(x) + 1φ(x)dx,

b) F2[φ] =

∫ b

a

xφ(x)

φ′(x)2
dx,

c) F3[φ] =

∫ b

a

φ(x)3φ′(x)dx,
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where φ(x) is a function of x. Discuss the meaning of your result in (c).

Problem 8.6. When studying special relativity, it will turn out that space-time has a very
different geometry compared to Euclidean space. As a result, the proper time between t = 0
and t = t1 of an observer whose motion is described by the function x(t) is given by

τ [x] =

∫ t1

0

√
1− ẋ(t)2

c2
dt, (8.260)

where c is the speed of light.

a) Assume that ∆x = |x(t1)− x(0)| < ct1 and find the Euler–Lagrange equations de-
scribing a stationary proper time.

b) Show that the straight line x(t) = ∆x t/t1 + x(0) satisfies the Euler–Lagrange equa-
tions and that it is a maximum for the proper time.

Problem 8.7. The functional

F [φ1, φ2] =

∫ x0

0

[x0φ
′
1(x) + φ2(x)][x0φ

′
2(x) + 2φ1(x)]dx (8.261)

depends on the two functions φ1(x) and φ2(x). Find both sets of Euler–Lagrange equations
for this functional corresponding to the variation with respect to the different functions.
Determine the solution to the resulting differential equations.

Problem 8.8. Determine the natural boundary conditions that the argument φ(x) of the
functionals defined in Problem 8.5 must satisfy in order to provide a stationary function of
the functionals if it is not fixed at the endpoints.

Problem 8.9. The length of a curve y(x) between the lines x = 0 and x = x0 is given by
the functional

`[y] =

∫ x0

0

√
1 + y′(x)2 dx. (8.262)

Assuming that we place no requirement on the boundary values y(0) and y(x0) of the
curve and find the resulting natural boundary conditions. Verify that the straight lines with
constant y(x) = y0 minimise `[y].

Problem 8.10. Just as Snell’s law was derived in Example 8.20, we may use a similar
argument to deduce the law of reflection. Consider the situation shown in Fig. 8.24 where
we wish to find the stationary functions of the optical length between the points A and B
given by (x, y) = (−x0, y0) and (x, y) = (x0, y0), respectively.

a) Start by considering reflection in the surface y = 0 and show that the total path is
minimal when the path touches the surface at x = 0.

b) Now consider reflection in a curved surface y = kx2. Show that the path touching the
surface at x = 0 is still an extremum of the path length. In addition, find the values
of k for which that path is not a minimum.

Problem 8.11. Consider the functional

F [ϕ] =

∫ b

a

L(ϕ′′(x), x)dx, (8.263)

where the integrand does not depend explicitly on the function ϕ(x), but only on its second
derivative. Use the same kind of reasoning as we did around Eq. (8.63) to show that there
exist two constants of motion related to this form of the integrand.
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Figure 8.24 The situation considered in Problem 8.10. The reflective surface considered in (a)
is shown as a solid line, while two of the surfaces in (b) are shown dashed. Depending on the
curvature of the surface at the point of reflection, the path taken (light gray curve) by the light
may correspond to different types of a stationary point.

Problem 8.12. When discussing the bending of a beam in solid mechanics in Example 8.6,
we only derived the differential equation describing the transversal deviation under the
assumption that the boundary terms would vanish when performing the partial integrations.
Perform the partial integrations explicitly and deduce the form of these boundary terms.
Discuss the restrictions on the variation η(x) that will guarantee that this is the case.
In the situation where these restrictions are not imposed, what are the natural boundary
conditions that will ensure that the change in potential energy is equal to zero regardless of
the variation η(x)? What is the physical interpretation of the natural boundary conditions?

Problem 8.13. Consider a string under tension with some stiffness. In such a string, the
potential energy due to transversal displacement between the coordinates x and x+ dx can
be written as

dV =
1

2

[
Sux(x, t)2 + µuxx(x, t)2

]
dx. (8.264)

Find the equation of motion for this string using Hamilton’s principle. Also find the natural
boundary conditions of the system.

Problem 8.14. A string that can be approximated to have zero stiffness, i.e., µ = 0 in
Problem 8.13, has ends at x = 0 and x = ` that are allowed to move in the transversal
direction subject to a linear restoring force from springs with spring constant k. Write down
a functional that describes the total potential energy of the system and use variational
arguments to find the boundary conditions resulting from requiring the potential energy to
be minimal.

Problem 8.15. We showed that the natural boundary conditions imposed on a stationary
function of a functional in one dimension are

∂L
∂ϕ̇

= 0, (8.265)

where L is the integrand of the functional. Use the same kind of reasoning as we did in one
dimension to deduce the generalisation of the natural boundary conditions to an arbitrary
number of dimensions.
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Problem 8.16. Consider a functional given by the integral

F [ ~A] =

∫
V

[(∇× ~A)2 + k ~A 2]dV, (8.266)

where V is a three-dimensional volume. Find the differential equations and boundary con-
ditions that the vector field ~A(~x) must satisfy in order to be a stationary function of this
functional.

Problem 8.17. For a functional

F [ϕ1, ϕ2] =

∫
L(ϕ1, ϕ2, ϕ

′
1, ϕ
′
2)dx, (8.267)

where the integrand does not depend explicitly on the integration variable x, show that the
same argumentation as that leading to the Beltrami identity for functionals depending only
on one function leads to

ϕ′1(x)
∂L
∂ϕ′1

+ ϕ′2(x)
∂L
∂ϕ′2

− L = C (8.268)

being a constant of motion, i.e., verify Eq. (8.71) in the case where the functional depends
on two functions.

Problem 8.18. Show that solving Poisson’s equation in a volume V with the inhomogeneity
ρ(~x) is equivalent to finding the stationary functions of the functional

F [u] =

∫
V

[
1

2
(∇u(~x)) · (∇u(~x))− u(~x)ρ(~x)

]
dV. (8.269)

Also find the natural boundary conditions on the boundary ∂V of V that will be implied if
the value of u(~x) on the boundary is not known.

Problem 8.19. One functional where derivatives appear at an order higher than one and
where the function it depends on is a function on a higher-dimensional space is

F [φ] =
1

2

∫
V

[∇2φ(~x)]2dV. (8.270)

Find the variation of this functional with respect to its argument φ and write down the
partial differential equation that needs to be satisfied in order to find its stationary functions.

Problem 8.20. The problem of finding the shape of a curve of fixed length ` that encloses
the largest area is known as Dido’s problem, see Fig. 8.25.

a) The area of any two dimensional region S is given by

A =

∫
S

dA. (8.271)

Use the the divergence theorem to rewrite this as an integral over the boundary
curve of S. You may parametrise this curve with some curve parameter t and after
solving this part you should have an expression for the area enclosed by the curve
as a functional A[x1, x2]. Hint: You may want to use the fact that ∇ · ~x = N in N
dimensions.

b) Write down an expression for the total length of the curve in terms of a functional
L[x1, x2].
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x2

Figure 8.25 Dido’s problem is the problem of finding the region S with the largest possible area A
that is bounded by a curve Γ of a fixed length `.

c) Use the method of Lagrange multipliers to solve Dido’s problem.

Problem 8.21. A function y(x) > 0 that satisfies y(0) = y(x0) = 0 is rotated around the
x-axis. Find the maximal value of the area A[y] of the rotated shape under the constraint
that the arc-length L[y] of the function y(x) between x = 0 and x = x0 should be given by
L[y] = `.

Problem 8.22. A cylinder of radius R is partially filled with water and is rotated at an
angular velocity ω. The stationary state occurs when the water is rotating along with the
cylinder and will minimise the total potential energy of the water in the rotating frame.
The potential energy of a small water element of volume dV in this frame will be given by

dΦ = ρ

(
gz − r2ω2

2

)
dV, (8.272)

where ρ is the water density, and we have used cylinder coordinates with r as the radial
distance rather than ρ in order to avoid mixing it up with the density. Find an expression
for the total potential energy as a functional of the water depth h(r), see Fig. 8.26, and
solve for h(r) under the constraint that the total volume of water in the cylinder is fixed.

Problem 8.23. Assume a particle starts at rest and is then constrained to move without
friction along a curve y(x) under the influence of a gravitational field in the negative y-
direction. Show that the curve y(x) that minimises the time taken to reach y(`) = −y0

starting from y(0) = 0, see Fig. 8.27, is a cycloid, i.e., it can be parametrised as

x(s) = k[s− sin(s)], y(s) = −k[1− cos(s)], (8.273)

where k is a constant. The problem of finding this curve is known as the brachistochrone
problem.

Problem 8.24. Instead of moving in a homogeneous gravitational field as in the brachis-
tochrone problem, consider a particle of charge q moving in an electric field ~E = E0y~e2,
again constrained to move along some curve y(x). Starting at y(0) = 0 and initially being at
rest, find the curve that minimises the time taken to reach the line x = `. Note: Although
y = 0 is a stationary point, it is unstable. The solution you will find may therefore be
interpreted as the limiting case as the particle is only slightly offset from y = 0 at t = 0.
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Figure 8.26 In a rotating cylinder partially filled with water, the water surface will eventually settle
in such a way that the potential energy in the rotating system is minimised. This potential energy
will be a functional with contributions from the gravitational field ~g and from the rotation. There
will also be an isoperimetric constraint based on the fixed volume of water in the cylinder.

~g

y y0

`

x

Figure 8.27 The brachistochrone problem is based on finding the fastest path between two points
for a particle affected only by a homogeneous gravitational field. Taking x as a curve parameter,
the time taken is a functional of y(x).
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Figure 8.28 Looking for the shortest path between points A and B on a sphere, a coordinate system
may be introduced such that both points lie on the equator θ = π/2. A curve between the points
may then be described by the function θ(ϕ) and its length in terms of a functional taking this
function as its argument.

Problem 8.25. Consider a particle that moves in a rotationally symmetric potential such
that its velocity is given by

v(ρ) = v0
ρ2

R2
(8.274)

in polar coordinates, where v0 and R are constants. Find the constraint curve ρ(φ) that
minimises the time for the particle to move from the point given by φ = 0 and ρ = R to
the line φ = π/4.

Problem 8.26. In general relativity, the motion of a particle moving radially outside
a spherically symmetric mass distribution is described by the curve r(t) that makes the
functional

S[r] =

∫ [
c2φ(r)− ṙ2

φ(r)

]
dt (8.275)

take a stationary value. The function φ(r) is given by

φ(r) = 1− 2GM

c2r
, (8.276)

where G is Newton’s gravitational constant, M the total mass, and c the speed of light
in vacuum. Derive a second order differential equation describing how r depends on t and
show that it is equivalent to Newton’s law of gravitation when |ṙ| � c and GM � c2r.

Problem 8.27. We essentially solved the problem of finding the shape that minimises
the area, and therefore the energy, of a soap film suspended between two concentric rings
in Example 8.10. Consider the situation where the rings are placed at z = ±h and are
both of radius ρ(±h) = r0. By adapting the constants z0 and C found in the example to
these boundary conditions, show that there are one, two, or zero solutions, depending on
the relation between h and r0. In the case when there are two solutions, only one of these
solutions will correspond to a minimum area. Find out which one by comparing the resulting
areas.

Problem 8.28. Looking to minimise the distance between two points A and B on a sphere
of radius R, see Fig. 8.28, we may introduce a spherical coordinate system such that θ = π/2
for both A and B. In addition, we may select the ϕ coordinate in such a way that

ϕ(A) = 0 and ϕ(B) = ϕ0. (8.277)
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Figure 8.29 We are looking for the shortest path between points A and B on the cone with the
opening angle 2α. In order to apply the resulting holonomic constraint, we can write the cylinder
coordinate ρ as a function of z.

a) Using the coordinate ϕ as the curve parameter, verify that the curve

θ(ϕ) =
π

2
(8.278)

is a stationary function of the curve length functional.

b) The curve described in (a) is a great circle. If allowed to continue to larger values of
ϕ than ϕ0, it will return to A as ϕ→ 2π. In the same fashion, we could have used the
coordinate ϕ(B) = −2π + ϕ0 and let −2π + ϕ0 < ϕ < 0 in order to describe a curve
between A and B. Verify that the curve defined by Eq. (8.278) is still a stationary
function for the curve length when we approach B in this way.

c) You have just found that there are at least two curves that are stationary functions
for the curve length between A and B. Determine the nature of these two extrema if
0 < ϕ0 < π, i.e., determine whether they are minima, maxima, or saddle points.

Problem 8.29. Looking at the problem of finding the shortest distance between two points
on a sphere, see Problem 8.28, find the differential equations that a general curve (not
necessarily at θ = π/2) must satisfy in order to minimise the distance when using the
angle ϕ as the curve parameter. Once this is done, use geometry to parametrise the curve
where the sphere intersects a plane through its center. Verify that this curve satisfies the
differential equations.

Problem 8.30. A two-dimensional conical surface may be described using the holonomic
constraint ρ(z) = tan(α)z in cylinder coordinates, where 2α is the opening angle of the
cone, see Fig. 8.29. Determine the general form of the curves describing the shortest path
between two given points on the surface.

Problem 8.31. Consider a circular disc of a material with a refractive index that is inversely
proportional to the distance from the center of the disc n = k/ρ up to the radius ρ = k.
Introducing polar coordinates, we wish to send a light signal from the point ρ = ρ0 < k,
φ = 0, to the point ρ = ρ1, φ = φ1. In which direction must we direct the signal at the first
point for it to reach the second?



Variational Calculus � 529

θ

y

n(y)

Figure 8.30 On a sunny day, inferior mirages appear at roads due to a layer of heated air that
reflects light just above the road, in this case from the car’s headlights. In Problem 8.33, we look
for an expression for the minimal angle θ for which the road will be visible instead of the mirage.

Problem 8.32. On the paraboloid z = kρ2/2 in cylinder coordinates, a path may be
parametrised by the polar coordinate φ and uniquely defined by the function ρ(φ). Write
down a functional describing the path length L[ρ] and find a first order differential equation
that ρ(φ) has to satisfy in order to provide a stationary value for the distance between two
points.

Problem 8.33. An inferior mirage is a phenomenon that occurs when there is a layer of
air below eye-level which is much hotter than the air at eye-level. When viewed at a small
angle, the phenomenon manifests itself as if the layer of hot air is reflective. Most people
will be familiar with this phenomenon in terms of the optical effects occurring on a road
on a sunny summer’s day, see Fig. 8.30, when the asphalt is heated up by the Sun and in
turn heats up a layer of air above it. Ultimately, the mirage is due to hot air being less
dense and therefore having a lower index of refraction. Viewing the index of refraction as a
function of the height above the road, find an expression for the minimal angle θ for which
the road will be seen instead of the mirage if the index of refraction is n at eye-level and n0

just above the asphalt.

Problem 8.34. A different type of mirage is the superior mirage, which may occur when
there is a thermal inversion, i.e., when the air temperature increases with altitude. In order
to illustrate this, consider a situation where the index of refraction varies as n = n0(1−ky),
where y is the distance above the surface and k > 0. If a superior mirage is observed from
ground level at x = 0 in the direction y′(0) = α0, what is the actual distance to the object
being seen, which is also assumed to be at ground level? You may ignore any effects due to
the curvature of the Earth.

Problem 8.35. A gradient-index fibre is an optical fibre where the index of refraction
decreases with the distance from the optical axis. For the purpose of this problem, assume
that the index of refraction is of the form n(ρ) = n0(1− k2ρ2). This index of refraction will
allow helical optical paths, i.e., paths for which ρ is constant and the path moves around
the optical axis at a constant rate dϕ/dz = ω. Determine what ω is necessary for such a
path as a function of the constant radius ρ.

Problem 8.36. For a vibrating string that is subjected to a restoring force density propor-
tional to the transversal displacement, there is an additional contribution to the potential
energy that for a small string element between x and x+ dx is given by

dVf =
1

2
ku(x, t)2dx, (8.279)
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Figure 8.31 A particle moving from the top of a sphere of radius R in a gravitational field ~g with
initial speed v0. At some point, the particle will leave the sphere if there is no constraining force
which can hold it down.

where k is a constant of appropriate physical dimension. Use this together with the kinetic
energy due to string movement and the potential energy due to the stretching of the string
in order to find a partial differential equation describing the transversal motion of the string.

Problem 8.37. A particle of mass m is moving in a central potential , i.e., in a potential
that only depends on the distance from its center. Due to the symmetry of the problem, this
will imply that the particle can only move within a two-dimensional plane. Introduce polar
coordinates ρ and φ in this plane and use Hamilton’s principle to show that the angular
momentum

L = mρ2φ̇ (8.280)

is a constant of motion.

Problem 8.38. Consider a collection of particles that has two contributions to the potential
energy. The first contribution only depends on the separation of the particles

V ( ~X) = Vi(~x12, ~x13, . . .), (8.281)

where ~xij = ~xi − ~xj , and the second is an external potential energy Ve( ~X) that satisfies

∂Ve
∂x1

i

= 0 (8.282)

for all i. Show that the total momentum of the entire system in the ~e1 direction is a constant
of motion.

Problem 8.39. A particle is allowed to slide without friction starting with velocity v0 on
the top of a spherical surface, see Fig. 8.31.

a) Assuming the particle is constrained to the surface, use the holonomic constraint
r = R in spherical coordinates to write down the action for the particle. Use the fact
that the Lagrangian is not explicitly time-dependent to derive a constant of motion.

b) Write down the problem using the holonomic constraint and a Lagrange multiplier
function λ(t). Write down the resulting Euler–Lagrange equation for the motion of
the particle in the radial direction. Based on your result, what is your interpretation
of the function λ(t)?
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c) Using your results from (a) and (b) and with the assumption that the constraining
force can only be directed in the positive r direction, at what position will the particle
fall off the sphere?

Problem 8.40. The one-dimensional harmonic oscillator can be implemented as a single
particle of mass m moving in one direction with a potential energy V (x) = kx2/2.

a) Find the equation of motion for this harmonic oscillator by requiring that the action
is stationary.

b) Write down the equation of motion for a single particle of mass m constrained to move
on the parabola y(x) = κx2/2 in the presence of a gravitational potential V (y) = mgy.
Verify that this situation does not correspond to a harmonic oscillator, but that the
harmonic oscillator behaviour is recovered for small oscillations.

Problem 8.41. Consider a particle of mass m that is restricted to moving on a surface
defined by the function z = f(ρ) in cylinder coordinates.

a) Write down the Lagrangian for this particle in cylinder coordinates. Use the holonomic
constraint in order to remove one of the degrees of freedom.

b) Your Lagrangian should not depend explicitly on either the time t or on the function
φ(t). Use these facts to find two constants of motion for the particle. What is the
physical interpretation of these constants of motion?

You may assume that there is no potential energy for the particle.

Problem 8.42. A homogeneous cylinder is allowed to roll without slipping on an inclined
plane making an angle α with the horizontal. Use Hamilton’s principle to find the acceler-
ation of the cylinder in the direction along the plane.

Problem 8.43. When discussing the conserved currents of the vibrating string in Exam-
ple 8.26, we considered the implications of performing an integral of the divergence of the
current Ja over the full domain by use of the divergence theorem. Repeat these considera-
tions for the current T at, see Eqs. (8.219), and show that the result gives you the difference
in the total energy of the string at different times. In addition, verify that the total energy
in the string is conserved both in the case when the ends of the string are fixed and when
the string is allowed to move freely.

Problem 8.44. Consider a string with tension S and length ` that is fixed at its endpoints.
In the case when the string’s linear density ρ`(x) is not constant, but depends on the
coordinate x, show that the energy due to the transversal movement is still conserved, but
that the longitudinal momentum of the string is not. Note: The longitudinal momentum
density and current are the components of T ax.

Problem 8.45. The Lagrangian density corresponding to the transversal movement of an
elastic beam is given by

L =
1

2
[ρ`ut(x, t)

2 − EIuxx(x, t)2].

Since this Lagrangian density does not depend explicitly on u(x, t), but only on its deriva-
tives, there exists a corresponding conserved current Ja such that ∂aJ

a = 0. Find this
current and use it to interpret the physical meaning of the third derivative uxxx(x, t).



532 � Mathematical Methods for Physics and Engineering

x1

m

~g

M

x2

Figure 8.32 The Atwood machine consists of two masses m and M that are connected by an
inextensible massless string via frictionless pulleys. We can describe the motion of the masses in a
gravitational field ~g by using Hamilton’s principle and the holonomic constraint x1 + x2 = `.

m

R

θ

Figure 8.33 A string with a mass m tied to one end and the other end winding around a pole of
radius R. The setting can be parametrised using the coordinate θ and analysed based on Hamilton’s
principle.

Problem 8.46. The Atwood machine consists of a weight M and a counter-weight m hang-
ing by the same fixed-length string over friction- and mass-less pulleys in a homogeneous
gravitational field g, see Fig. 8.32.

a) The fixed length of the string leads to the holonomic constraint x1(t) + x2(t) = `0.
Write down the action of the system for arbitrary x1(t) and x2(t) and use the Lagrange
multiplier method for holonomic constraints to find the equations of motion of the
system. Make sure that your result has the correct limits when m�M and m = M ,
respectively. What is the interpretation of the Lagrange multiplier function λ(t) that
you have introduced?

b) Implement the holonomic constraint from (a) already at the Lagrangian level. This
should result in a system with only one degree of freedom instead of three. Write
down the Euler–Lagrange equation for this new system and verify that it is the same
as those found in (a) as long as the holonomic constraint is satisfied.

Problem 8.47. Consider a string that is tied to a mass m in one end and with the other
end free to wind around a pole of radius R. As long as the string is taut, the situation may
be modelled by a single coordinate θ, see Fig. 8.33. Using Hamilton’s principle, write down
the equation of motion for the system. Can you find any constants of motion? Solve the
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equation of motion and determine the time taken for the mass to hit the rod if the initial
length of the free string is ` and θ̇(0) = ω.

Problem 8.48. Consider the two-dimensional domain defined by R/2 < ρ < R and 0 <
φ < π/2 in polar coordinates. Assuming homogeneous Dirichlet conditions on the boundary,
find an approximation of the lowest eigenvalue of −∇2 on this domain by guessing an
approximate form of the corresponding eigenfunction.

Problem 8.49. We already know that the lowest eigenvalue function to the operator −∇2

in the domain bounded by a sphere of radius R with homogeneous Dirichlet boundary
conditions is given by

u(~x) = j0(πr/R) =
R sin(πr/R)

πr
(8.283)

and that the corresponding eigenvalue is λ = π2/R2. Use the Ritz method to find an
approximation of this result using the trial function ũκ(r) = Rκ − rκ. Compare your result
with the exact result.
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C H A P T E R 9

Calculus on Manifolds

In Chapters 1 and 2, we covered the analysis of vectors and tensors in Cartesian coordinate
systems as well as in general curvilinear ones. However, in all of our exposition we always
assumed that the underlying space was Euclidean so that every position could be uniquely
defined by a position vector. While this assumption is often reasonable and very useful in
the description of physical processes, there are several cases when it turns out to be too
constraining. In particular, there are many situations in both classical mechanics as well
as in general relativity where a physical system must be described using a more advanced
mathematical framework that allows configurations that are not always possible to describe
using a Euclidean space.

Example 9.1 A spherical pendulum consists of a mass m that is constrained to move freely
on a sphere of fixed radius R, see Fig. 9.1. For example, this may be achieved either by
fixing the mass on the end of a rod of length R with the other end allowed to rotate freely.
While this system is embedded in a three-dimensional space, it really is a two-dimensional
system. Any possible position of the mass may be referred to by using only two coordinates,
e.g., the spherical coordinates θ and ϕ, and the system is described by giving a point on
a sphere, which is not a Euclidean space. In order to uniquely define how the pendulum
moves, it is therefore sufficient to state how θ and ϕ change with time.

As should be clear from the example above, where we might want to describe the move-
ment of the spherical pendulum by a velocity vector, we will often want to describe move-
ment or other quantities that we are used to describing as vector quantities in terms of
some similar objects on the sphere. Since the spherical pendulum has a natural embedding
in three dimensions, we may be tempted to apply our full three-dimensional thinking to it,
which will result in the appearance of holonomic constraints such as the ones encountered in
Chapter 8. However, in many other applications where the space involved is not Euclidean,
there is no such natural embedding and it therefore makes sense to look for a description
of this type of situation that does not rely on it, a description that only deals with the
properties within the space we are describing.

9.1 MANIFOLDS
The first order of business in working with more general spaces is to find a framework
with which we may describe them. When we chose curvilinear coordinates in a Euclidean
space, we could base our description on coordinate functions on an underlying Cartesian

535



536 � Mathematical Methods for Physics and Engineering

θ

m

R

ϕ

Figure 9.1 A pendulum of mass m and length m is allowed to move freely at a fixed distance R
from a central point. The configuration of this system may be described by giving the two angles
θ and ϕ and so the configuration space is two-dimensional.

coordinate system. This is no longer the case in a more general space, but we still want to
be able to create a description in terms of coordinates.

Let us consider a space that we may call M . Since it is not always going to be possible to
define a set of global coordinates valid in the entire space, we will be content with requiring
that there exists a one-to-one mapping between a set of N local coordinates ya and a part
of the space. The number of coordinates required to achieve this mapping is called the
dimension of the space. This set of local coordinates is restricted to an open set U in RN
and this together with the identification of each point in U with a point in the space M is
called a chart .

Example 9.2 Let us make an attempt to describe the surface of the Earth. One option
for doing so would be to describe it using a three-dimensional Euclidean space with a
Cartesian or spherical coordinate system imposed on it. The drawback of this is that one
of the coordinates, e.g., the radial coordinate in spherical coordinates, would be redundant,
in particular if we are only moving on a small part of the surface. Instead, we can draw a
map of our surroundings on a two-dimensional piece of paper. If we are reasonably good
cartographers, each point on the map will correspond to one single point on the Earth’s
surface. We can therefore use a coordinate system with two coordinates to describe a position
on the map and therefore also a position on the Earth’s surface. This is the basic idea behind
a chart.

Looking at larger regions, we could also use different projections of the Earth’s surface
onto a two-dimensional plane in order to describe them. These also constitute charts and
may also be used as such, see Fig. 9.2.

There is no guarantee that a single chart will cover all points in M , the only requirement
is that the chart works in some part of the space. In order to describe the entire space, we
may therefore need to use different charts at different positions. In order to have a complete
description of M , it is necessary to have a complete collection of charts such that each point
in M is covered by at least one chart. Such a collection of charts is called an atlas of M
and if we can describe all of M like this it is a manifold .
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Figure 9.2 Three different possible projections of the Earth’s surface onto a two-dimensional plane:
The Mollweide (top), Mercator (left), and Bonne (right) projections. Each of the projections is a
chart of the Earth’s surface.

Example 9.3 None of the charts we showed in Example 9.2 covered the entire Earth
surface (some of them covered almost all of it, but were singular in at least one point, which
would have to be removed, or could not cover the entire surface while remaining a one-to-
one map based on an open set). In fact, it is impossible to cover a sphere just using a single
chart and our atlas will need at least two charts. In connection to the Earth’s surface, an
atlas is just a collection of two-dimensional maps of different parts of the Earth’s surface.
Before the existence of online map services accessible via the internet, these collections were
often called a World atlas, printed on paper and bound into a book stored on a library shelf.
Some maps may partially cover the same region, i.e., New York can be on several maps,
but may only appear once in each map. In order for our atlas to be complete, each point
on the Earth’s surface must be on at least one map.

As mentioned in the example above, there is no requirement that a particular point in a
manifold M is described in only one coordinate chart. On the contrary, unless there is one
chart covering the entire manifold, there must necessarily exist points that can be referred
to using several different charts and so there will be regions of M where the charts overlap
and where points can be described using either one set of coordinates ya or another y′a

′
.

Since each coordinate chart is a one-to-one mapping, wherever such overlaps occur we can
always express one set of coordinates as functions of the other

ya = φa(y′) or y′a
′

= ϕa
′
(y). (9.1)

Since this notation is a bit cumbersome, we will use the coordinate names and infer from
context whether they are taken to mean the coordinate itself or the coordinate expressed
as a function of another set of coordinates. Although we have been rather vague with
specifying particular conditions on functions throughout this text, it is here of particular
importance to point out a very relevant assumption: In the remainder of this text, the
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θϕ− π
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Figure 9.3 The circle S1 along with two different coordinate charts θ and ϕ, which together form
an atlas. In the shaded regions A and B the charts overlap and the coordinate transformations are
infinitely differentiable.

coordinate transformations will all be assumed to be smooth, i.e., infinitely differentiable.
The manifolds we will encounter in physics will generally be of this type.

Example 9.4 Consider the one dimensional circle S1, which is a one-dimensional manifold,
and let us impose two coordinate systems on parts of the circle according to Fig. 9.3. The
ranges of the coordinates θ and ϕ are given by

−2π

3
< θ <

2π

3
and

π

2
< ϕ <

3π

2
, (9.2)

respectively. The coordinate transformation on the overlap A is given by

θ = ϕ, (9.3a)

while that on the overlap B is of the form

θ = ϕ− 2π ⇐⇒ ϕ = θ + 2π. (9.3b)

These coordinate transformations are linear functions, which are clearly infinitely differen-
tiable.

9.2 FORMALISATION OF VECTORS
In order to generalise our concept of vectors and tensors to manifolds, let us take a step back
and think about which properties of vectors we are actually using and try to understand
whether or not we can formalise these in a way that does not inherently depend on the space
being Euclidean. The vectors we have become accustomed to generally appear to be of two
different types, vectors that describe displacements or quantities related to displacements
and vectors that describe how scalar fields change depending on the position. These are
fundamentally different concepts and we should not be surprised to find that they will
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be described by different types of vectors in the general setting, tangent vectors and dual
vectors, respectively.

Example 9.5 Vectors related to displacements are relatively straightforward and the very
first mention of a vector in Chapter 1 was concerned with velocities and accelerations,
quantities related to how a displacement changes with time. Let us take displacements on
the surface of the Earth as an example here. Introducing any coordinate system, such as
using the longitude and latitude as coordinates, the movement of an object may be described
by giving these as functions of time t. It is worth noting here that any two coordinates ya

that uniquely define a position on the Earth’s surface will do. The velocity va(t), i.e., the
displacement per time unit, may now be specified by giving the derivatives

va(t) =
dya

dt
≡ ẏa(t). (9.4)

It is tempting to immediately also attempt to define acceleration as aa(t) = ÿa(t), but this
definition comes with some problems that we have already encountered when dealing with
the derivatives of vectors in curvilinear coordinate systems in Chapter 2. We will deal with
these complications in a while.

Example 9.6 The second type of vectors that we have already encountered is vectors
describing changes in scalar quantities, such as the temperature gradient and the force
related to a potential field. Choosing to consider the altitude h as a function of the position
on the Earth’s surface, the gradient

wa =
∂h

∂ya
≡ ∂ah (9.5)

describes how the altitude changes depending on the chosen coordinates ya.

Given these examples of the two different types of vectors, it is relatively straightforward
to put the two concepts together. If we wish to describe how a scalar quantity ϕ, which
depends on the position, varies with time along a path described by the coordinate functions
ya(t), we are essentially interested in the time derivative of ϕ(y(t)), which can be expressed
in terms of the velocity and the gradient by applying the chain rule

dϕ(y(t))

dt
=

∂ϕ

∂ya
dya

dt
= (∂aϕ)va. (9.6)

Naturally, this directly reminds us of the form of the inner product encountered in Euclidean
spaces, but we need to be wary; we still have not shown that the gradient ∂aϕ, describing
the change in a scalar quantity, and the velocity va, describing a displacement, are vectors of
the same type. Indeed, we will find that this is generally not the case and that in order for a
true inner product to be defined, we will need to define a metric tensor describing distances
in the space. However, the rate of change dϕ/dt is well defined even without reference to a
metric as it only requires knowledge on how ϕ changes with the coordinates and how the
coordinates change with time.
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Example 9.7 Given Examples 9.5 and 9.6, we may describe how the altitude h changes
with time when we follow a path ya(t) along the Earth’s surface. The change is given by

dh

dt
=

∂h

∂ya
dya

dt
= wav

a. (9.7)

Note how this naturally splits the rate of change in the altitude into two separate objects, the
altitude gradient wa = ∂ah, which only depends on how the altitude changes as a function
of position, and the velocity va = ẏa, which describes the movement on the surface.

With the above considerations in mind, let us see how we can use our insights about the
two different types of vectors in order to define vectors in a general non-Euclidean space.

9.2.1 Tangent vectors
Starting with the vectors describing displacements, we have seen that it is natural to define
the components of a velocity vector as

va =
dya

dt
(9.8)

along some curve described by the coordinate functions ya(t). Naturally, these components
will generally depend on the chosen coordinate system. Choosing a different set of coordi-
nates y′a

′
and applying the chain rule, we find that the components of the velocity vector

should transform as

va
′

=
dy′a

′

dt
=
∂y′a

′

∂ya
dya

dt
=
∂y′a

′

∂ya
va. (9.9)

Looking back at Eq. (1.153), this is exactly the transformation property we found for the
contravariant vector components when we dealt with vector analysis in curvilinear coordi-
nates. We now recall that the corresponding basis vectors were given by

~Ea =
∂~x

∂ya
= ∂a~x, (9.10)

where ~x is the position vector. The appearance of the position vector poses a direct problem
in generalising this to a basis which we can formally use when describing vectors in curved
spaces. Since the base space is not necessarily a vector space on its own, the position vector
generally does not exist. The solution to this problem may be as shocking as it is ingenious.
We can just drop the position vector from the definition of the vector basis and define the
tangent vector basis as

~Ea ≡ ∂a. (9.11)

The first questions that pop into our minds are: Does this makes sense at all? Was the
appearance of the position vector irrelevant in defining the directions? If the vector basis
is a set of partial derivatives, does this mean that a vector is a derivative? The answers to
those questions are yes, yes, and yes, but let us elaborate on why this is so.

First of all, what does it mean for a vector to be a derivative? Given the tangent vector
basis as the partial derivatives with respect to the coordinates, a general vector X (note
that we will here skip the vector arrows and generally use capital letters for tangent vectors)
may be written as

X = Xa ~Ea = Xa∂a. (9.12)



Calculus on Manifolds � 541

Looking back to the case of vectors in Euclidean spaces, this directly reminds us of the
directional derivative defined by

d

d~n
= ~n · ∇ = na∂a, (9.13)

which does have a one-to-one correspondence with the vectors ~n, since d~x/d~n = ~n. It is also
easy to see that the set of directional derivatives forms a vector space as there are natural
ways of defining vector addition and multiplication by a scalar

X + Y = (Xa + Y a)∂a and kX = kXa∂a. (9.14)

We therefore generalise the concept of a tangent vector to manifolds by defining it as a
directional derivative. As a directional derivative, the action of a vector on a scalar function
ϕ is given by

Xϕ = Xa∂aϕ. (9.15)

As might be expected, when the vector X is the velocity, as in the examples above, this is
again the rate of change in ϕ.

So what about the role of the position vector ~x that we used in our definition of the
tangent vector basis in a Euclidean space? Its role in the Euclidean case was to provide us
with a reference in terms of the Cartesian basis vectors ~ei as

~Ea =
∂~x

∂ya
=

∂~x

∂xi
∂xi

∂ya
= ~ei

∂xi

∂ya
. (9.16)

In the case of a more general base space, we do not have an underlying Euclidean space
and the concept of a Cartesian coordinate system with its corresponding vector basis is not
relevant. Instead, a displacement direction is now defined by a directional derivative in the
direction of the displacement.

Finally, let us verify that the definition makes sense in terms of coordinate transforma-
tions. Changing coordinates from ya to y′a

′
, we change our vector basis from ∂a to ∂a′ . A

general vector X, i.e., a general directional derivative, can be expressed as

X = Xa∂a = Xa′∂a′ , (9.17)

where Xa and Xa′ are the vector components in the different bases. Using the chain rule
to express ∂a in terms of ∂a′ , we find that

Xa∂a = Xa ∂y
′a′

∂ya
∂a′ (9.18a)

implying that

Xa′ =
∂y′a

′

∂ya
Xa, (9.18b)

which is the expected transformation rule for the contravariant vector components and
precisely what we would expect from a displacement vector as argued in relation to Eq. (9.9).

Example 9.8 A curve γ on a manifold M is a set of points on M that may be parametrised
using a single continuous variable t. It may be described locally taking a coordinate system
and writing down how the coordinates depend on the curve parameter t. Just as in the



542 � Mathematical Methods for Physics and Engineering

Euclidean case, if the curve is differentiable, we may define a tangent vector of the curve
at the point γ(t). Since tangent vectors are derivatives, we can define the tangent vector of
the curve to be the vector γ̇ such that

γ̇f =
df(γ(t))

dt
=
dya

dt
∂af, (9.19)

where f is a scalar field, in any set of coordinates. In other terms, the tangent vector has
the components dya/dt, where t is the curve parameter.

9.2.1.1 Vector fields

Just as in the case when we studied vectors in curvilinear coordinate systems in a Euclidean
space, there is really no obvious way of comparing vectors at different points in a general
space by looking at the vector components. In the Euclidean space, this could be solved by
expressing the vector basis in terms of the Cartesian basis, but in a general space this is no
longer possible as we do not have access to a Cartesian basis. As a direct consequence of
this, there is no longer any possibility of directly comparing vectors at different points in
the base space. When we see the vectors as directional derivatives, this is not very strange.
As a vector is a directional derivative of a function, the direction is only well defined at the
particular point where we take the derivative. It is not possible to add or compare directions
at different points in the space in a meaningful way. Because of this, a tangent vector is
inherently associated with a particular point p in the space M . The vector space that this
vector belongs to is the set of all vectors at p, which is called the tangent vector space at p
and denoted TpM .

An important concept when we discussed vector analysis was the concept of scalar
and vector fields. When it comes to scalar fields, it generalises directly to a more general
base space as a function assigning a scalar value to each point in the base space. When
we introduced vector fields, we defined them as the assignment of a vector to each point
in space. Naturally, when we talk about vector fields in more general spaces, the vector
assigned to the point p must be an element of the tangent vector space TpM at p in order
for the assignment of the vector to p to make sense.

Example 9.9 Consider the two-dimensional sphere S2 with spherical coordinates θ and
ϕ. An example of a vector field on this sphere is

X(θ, ϕ) = sin(θ)∂θ, (9.20a)

which has the vector components

Xθ = sin(θ) and Xϕ = 0. (9.20b)

Although both vector components are given as functions of the coordinates, no inherent
comparison can be made between vectors at different points, see Fig. 9.4.

In some situations it is useful to talk about the flow of a tangent vector field. For each
point p in the manifold M , the flow φX(p, t) of the vector field X is a function of a single
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p
TpS

2

TqS
2

q

Figure 9.4 Tangent vectors at different points on the two-dimensional sphere S2 belong to different
tangent spaces. Here we show tangent vectors at the points p and q with their respective tangent
spaces TpS

2 and TqS
2. There is no inherent way of adding or subtracting these as they belong to

different vector spaces and we may only do this with tangent vectors in the same tangent space.

variable t to M itself, i.e., a curve, such that for every t, the tangent vector of the curve is
equal to X(φX(p, t)) and φX(p, 0) = p. In other words, we require that in any coordinate
system

dya(φX(p, t))

dt
= Xa(φX(p, t)). (9.21)

For a fixed starting point p, the curve φX(p, t) is called a flow line of X. This is a coupled
system of N ordinary differential equations for N variables, the coordinates as a function of
the curve parameter t, and is solvable given N initial conditions set by specifying the point
p, i.e., by giving its N coordinates.

Example 9.10 Let us get back to our favourite example of the two-dimensional sphere S2

with a coordinate system given by the spherical coordinates θ and ϕ. Looking at the vector
field defined by the coordinate basis vector ∂θ, we find that Eq. (9.21) takes the form

dθ

dt
= 1 and

dϕ

dt
= 0. (9.22)

Therefore, the flow of ∂θ starting at the point with coordinates θ0 and ϕ0 is given by

θ(t) = θ0 + t, ϕ(t) = ϕ0. (9.23)

In other words, the flow of the coordinate basis vector ∂a is just the coordinate line on
which all of the other coordinates are kept constant, see Fig. 9.5. Naturally, this holds also
for any other coordinate basis vector field.

9.2.2 Dual vectors
The above treatment of tangent vectors revealed that they are directly related to displace-
ments and their components transform as contravariant vector components under coordinate
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Figure 9.5 The θ and ϕ coordinate lines on the sphere shown in black and red, respectively. The θ
coordinate lines correspond to keeping ϕ fixed and varying θ and vice versa. The coordinate lines
are also the flow lines of the coordinate basis vectors ∂θ and ∂ϕ, respectively.

transformations. It should therefore come as no surprise that dual vectors will turn out to
be related to gradients with components that transform covariantly.

Let us start by formally defining the dual space T ∗pM at the point p in the manifold M
as the set of all linear mappings from the tangent vector space TpM to the real numbers.
The physical meaning of this definition is not yet very clear, but we can make some sort of
sense of it by noting that in the Euclidean setting, we found that

~v · ~w = vawa, (9.24)

where the va were the contravariant components of ~v and the wa were the covariant com-
ponents of ~w. Since this product is linear in va, it is therefore a linear map from vectors
with contravariant components to the real numbers. The covariant components in the dual
basis therefore define just the type of linear transformation we are looking for.

The first thing to note about the dual space is that it is a vector space in itself under
the natural definitions of addition and multiplication by a scalar

(ω + ξ)(X) = ω(X) + ξ(X), (9.25a)

(aω)(X) = aω(X), (9.25b)

where X is any tangent vector. Since the dual vectors are linear mappings, we can write
down the action of a dual vector ω on an arbitrary tangent vector as

ω(X) = ω(Xa∂a) = Xaω(∂a) ≡ Xaωa, (9.26)

where the dual vector components ωa = ω(∂a) are given by the action of the dual vector
on the tangent vector coordinate basis. For any given coordinate system, it is therefore
sufficient to specify the components ωa in order to fully define the dual vector, and the dual
space therefore has the same dimension as the tangent vector space.
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We can now examine how the coefficients ωa transform from one set of coordinates to
another. Taking a different set of coordinates y′a

′
, we find that

ωa′ = ω(∂a′) = ω

(
∂ya

∂y′a′
∂a

)
=

∂ya

∂y′a′
ω(∂a) =

∂ya

∂y′a′
ωa. (9.27)

Just as the tangent vector components transformed as contravariant vector components, we
have now found that the dual vector components transform as covariant vector components.
While this is satisfying in its own right, we still have only found the transformation of the
dual vector components. When discussing the dual basis in the Euclidean setting, these
components belonged to a set of basis vectors ~Ea such that the vector could be written on
the form ~w = wa ~E

a. A property of the dual basis ~Ea was that

~Ea · ~Eb = δab . (9.28)

To generalise this relation to the dual space, we wish to find out what sort of objects the
dual basis Ea that satisfies

Ea(∂b) = δab (9.29)

consists of and how we can construct them. Once we have performed this construction, we
will be able to write any dual vector on the form

ω = ωaE
a (9.30a)

since this will lead to

ω(X) = ωaE
a(Xb∂b) = ωaX

bEa(∂b) = ωaX
bδab = ωaX

a (9.30b)

as expected.

9.2.2.1 Differentials as dual vectors

In the case of the dual basis in curvilinear coordinates in Euclidean space, we defined it in
terms of the gradient of the coordinate functions ya as

~Ea = ∇ya. (9.31)

In turn, the gradient ∇f for any function f was defined in terms of an underlying Cartesian
coordinate system such that ∇f = ~ei∂if . In a manifold, there is no longer any possible
reference to a Cartesian coordinate system and so the gradient cannot be defined in this
manner, just as we could not define the position vector ~x when dealing with the definition
of the tangent vector basis. Instead, the only thing which may be salvaged from this is the
definition of the dual basis in terms of small changes of the coordinates ya. Let us therefore
see if we can find a description making use of infinitesimal changes in different functions.

For any scalar field f , we can define a dual vector field df according to

df(X) = Xf = Xa∂af, (9.32)

i.e., its components are given by dfa = ∂af . It is rather straightforward to show that the
components dfa have the proper transformation properties under coordinate transformations
(see Problem 9.5) and they exactly correspond to the components of the gradient that we
found in the Euclidean case. This dual vector is called the differential of f and the fact
that it is closely related to the gradient provides us with exactly the property we need in
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order to find the dual basis. Since the dual basis in the Euclidean setting was related to
the gradient of the coordinate functions, we consider the differentials dya of the coordinate
functions, which have the property

dya(∂b) =
∂ya

∂yb
= δab . (9.33)

This is precisely the property we expected from the dual basis and we therefore identify
Ea = dya. In particular, this lets us write any dual vector on the form

ω = ωady
a. (9.34)

Furthermore, we also find the familiar relation

df = (∂af)dya, (9.35)

which is a statement on how the general scalar field f varies due to small changes in the
coordinates.

Example 9.11 Looking for a graphical representation of tangent vectors and dual vectors,
we consider the case of the Earth’s surface. Being associated with a direction of displace-
ment, we can represent a tangent vector X with an arrow on a map, see Fig. 9.6. If we use
a chart where objects are represented by larger regions on the map, the arrow will grow
accordingly, representing an increase of the tangent vector components. On the other hand,
a dual vector ω is related to a rate of change and the closest graphical interpretation is in
terms of level curves, with the dual vector components being proportional to the density of
the level curves. As such, using the chart where objects are represented by larger regions
on the map, the density of the level curves, and therefore also the dual vector components,
decrease accordingly. The number of level curves representing the dual vector ω crossed by
the arrow representing a tangent vector X is kept constant and should be interpreted as
ω(X) = ωaX

a.

9.2.3 Tensors
With the concepts of tangent vectors and dual vectors in place, we are ready to follow
through with the construction of tensors in exactly the same fashion as was done in Chap-
ter 2. We define a type (n,m) tensor at the point p in a manifold M as a linear combination
of tensor products of n tangent vectors and m dual vectors belonging to TpM and T ∗pM ,
respectively. We find that a coordinate basis for the resulting vector space is given by

eb1...bma1...an =
n⊗
k=1

∂ak

m⊗
`=1

dyb` (9.36a)

and consequently a general tensor of type (n,m) can be written as

T = T a1...anb1...bm
eb1...bma1...an , (9.36b)

where the coefficients T a1...anb1...bm
are the tensor components in the given coordinate system.

Since the tangent vector and dual bases transform just as they did in Chapter 2 under
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Figure 9.6 A tangent vector may be represented by an arrow with a certain length. Changing the
scaling of the chart changes the arrow length accordingly. A dual vector may then be represented
by level curves and the contraction between a tangent vector and a dual vector is given by the
number of level curves the arrow crosses. When the chart is scaled, the density of the level curves
changes in precisely the correct fashion in order to preserve this number.

coordinate transformations, the tensor components also follow the transformation rules we
are already accustomed to from working with curvilinear coordinates in Euclidean space

T
a′1...a

′
n

b′1...b
′
m

= T a1...anb1...bm

(
n∏
k=1

∂y′a
′
k

∂yak

)(
m∏
`=1

∂yb`

∂y′b
′
`

)
, (9.37)

just as stated in Eq. (2.18).
In addition to the coordinate transformations, all of our discussion regarding tensor

algebra in Section 2.2 also still holds. It should now become clear why contractions are only
allowed between contravariant and covariant indices, there just is no natural inner product
between two tangent vectors, nor between two dual vectors, and our introduction of the
contraction explicitly required one to exist. As in Chapter 2, we will usually not write out
the tensor basis explicitly and refer to the tensor components T a1...anb1...bm

and the tensor T
interchangeably. In these cases, the assumption will always be that the tensor components
are written in the coordinate basis of some coordinate system on the manifold.

As a tensor of type (n,m) includes a tensor product of n tangent vectors and m dual
vectors and we have introduced dual vectors as linear mappings from TpM to the real
numbers, a tensor of this type may also be naturally seen as a linear mapping from (TpM)⊗m

to (TpM)⊗n, where V ⊗k represents the tensor product of k copies of V . If ω is a tensor of
this rank, this linear mapping may be defined as

ω(X1, . . . , Xm) = ωa1...anb1...bm

(
m∏
`=1

dyb`(X`)

)
ea1...an . (9.38)

In fact, this is the most general form of linear maps from (TpM)⊗m to (TpM)⊗n and an
alternative way of defining general mixed tensors. As such, we will sometimes specify a
tensor by defining this linear transformation.
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Example 9.12 The Kronecker delta tensor can be seen as the identity map δ(X) = X on
TpM . Since this is a linear map from TpM to TpM , it is a type (1,1) tensor. We can find
the components of this tensor through the relation

dyb(δ(∂a)) = dyb(∂a) = δba (9.39)

where we have used that δ is the identity map in the first step.

9.3 DERIVATIVE OPERATIONS
Although we have now introduced tangent vectors as directional derivatives of scalar fields,
we will have to go through a large amount of trouble in order to find something that
resembles a derivative of a vector or tensor field. The underlying reason for this is the same
as when we considered derivatives of vector fields in curvilinear coordinates on a Euclidean
space. Apart from differentiating the vector field components, we will also need to know
how the derivative acts upon the vector bases, an issue which is not yet very clear when it
comes to vectors on manifolds.

9.3.1 The Lie bracket
The first thing we might attempt in trying to define a derivative of a vector field Y is to
apply a directional derivative X = Xa∂a to it, resulting in

XY = Xa∂aY
b∂b = Xa(∂aY

b)∂b +XaY b∂a∂b. (9.40)

This is a differential operator of order two and therefore not a vector field and our attempt
was therefore in vain. However, the first term is a first order derivative, although it does not
display the correct transformation properties under coordinate transformations, see Prob-
lem 9.8. The second term, while being a second order derivative, is symmetric in X and Y .
As a result, the Lie bracket

[X,Y ] = XY − Y X = Xa(∂aY
b)∂b − Y a(∂aX

b)∂b (9.41)

is a first order derivative of Y , sometimes referred to as the Lie derivative LXY . The parts
of the components Xa(∂aY

b) − Y a(∂aX
b) that do not display the correct transformation

properties exactly cancel during coordinate transformations and the Lie bracket is therefore
a tangent vector. In addition, the Lie bracket has several properties that we would expect
from a derivative of a vector field. In particular, it satisfies the product rule

LXfY = [X, fY ] = X(f)Y + f [X,Y ] = df(X)Y + fLXY, (9.42)

where f is a scalar field.
So what is this object we have created? Does it have a geometrical interpretation? In

order to answer this, let us consider the flows of the vector fields X and Y starting from a
point p with coordinates ya0 . Following the flow line of X for a short parameter change dt
leaves us at the point pX with coordinates

yaX = ya(φX(p, dt)) = ya0 +Xa(p)dt+
dt2

2
Xb∂bX

a. (9.43)
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Here and in what follows in this paragraph, we will keep only terms of quadratic order or
lower in small parameters such as dt. Continuing from this point by following the flow of Y
for a parameter change ds we end up at the point pY X with coordinates

yaY X = ya0 +Xadt+
dt2

2
Xb∂bX

a + Y ads+
ds2

2
Y b∂bY

a, (9.44)

where Xa and its derivatives are evaluated at p and Y a and its derivatives at pX . If we
instead wish to use the components Y a at p as well, we can do so in terms of the expansion

Y a(pX) = Y a(p) +Xb(p)∂bY
a(p) dt, (9.45)

which leads to

yaY X = ya0 +Xadt+ Y ads+
1

2

(
Xb∂bX

adt2 + Y b∂bY
ads2

)
+Xb∂bY

ads dt. (9.46)

In the same fashion as we here followed the flow of X first and the flow of Y second, we
could just as well have done it in the other order and ended up at the point pXY with
coordinates

yaXY = ya0 +Xadt+ Y ads+
1

2

(
Xb∂bX

adt2 + Y b∂bY
ads2

)
+ Y b∂bX

ads dt. (9.47)

The points pY X and pXY have the same coordinates only if

yaY X − yaXY = dt ds (Xb∂bY
a − Y b∂bXa) = dt ds [X,Y ]a = 0. (9.48)

In other words, following the flow of X and then the flow of Y , we end up at the same point
as if we first follow the flow of Y and then the flow of X only if the Lie bracket vanishes. If
this is the case, we say that the flows commute and the Lie bracket is a measure of whether
this is the case or not, see Fig. 9.7.

Example 9.13 The property of the Lie bracket relating to whether flows commute or not
can be used to determine whether it is possible to use the flows of vector fields to construct
a local coordinate system. If the Lie bracket vanishes, we can use the parameters t and s of
the different flows above in order to uniquely refer to a point close to p. On the other hand,
given a coordinate system, the coordinate basis vectors always commute

[∂a, ∂b] = ∂a∂b − ∂b∂a = 0 (9.49)

and so their flows commute. As we have seen, using the coordinates θ and ϕ on the sphere,
the flows of ∂θ and ∂ϕ are the coordinate lines of constant θ and ϕ, respectively, and the
flows commute, see Fig. 9.8.

9.3.2 Affine connections
While the Lie bracket [X,Y ] works as a derivative of Y , it lacks some of the properties we
have gotten used to from the directional derivative in Euclidean space. Most strikingly, the
covariant derivative introduced in Chapter 2 satisfies the relation

∇f~vT = f∇~vT (9.50a)
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Figure 9.7 Two vector fields X = 1
1+(x2)2

∂1 and Y = 1
1+(x1)2

∂2, shown in black and gray, respec-

tively, with non-commuting flows in R2. The curves represent the flows with the black curve first
taking the flow along Y and then along X, while the gray curve starts at the same point, but
follows the flow along X first and then Y with the same increases in the parameter values along
the curves. The curves not ending at the same point is an indication of the non-commutativity of
the flows.

Figure 9.8 The flows of the tangent vector basis fields ∂θ and ∂ϕ on the sphere commute, as do all
coordinate bases. The dark curve first follows the ∂θ direction and then the ∂ϕ direction, while the
light reverses the order. Both curves start and end at the same point.
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for an arbitrary tensor field T and scalar field f , while the Lie derivative we just introduced
instead gives

LfXY = [fX, Y ] = f [X,Y ]− df(Y )X = fLXY − df(Y )X, (9.50b)

introducing an additional term −df(Y )X. We therefore want to find a more direct general-
isation and start by recalling some of the properties of the covariant derivative.

When we considered vector and tensor fields in general coordinate systems on a Eu-
clidean space, we defined the covariant derivative ∇~n = na∇a as a generalisation of the
directional derivative to arbitrary tensor fields. Our introduction of the covariant derivative
relied upon the partial derivatives of the tangent vector and dual bases in order to define
the Christoffel symbols according to

∂a ~Eb = Γcab ~Ec. (9.51)

In a general manifold, there are several reasons why these derivatives no longer make sense.
To start with, the basis vectors were defined in relation to an underlying Cartesian coor-
dinate system with a position vector, which no longer exists in the manifold case. More
importantly, the directional derivative itself was implicitly defined as the limit

na∂a ~Eb(~x) = lim
ε→0

~Eb(~x+ ε~n)− ~Eb(~x)

ε
. (9.52)

This definition assumes that there exists an intrinsic way of subtracting a vector at the
point ~x from a vector at the point ~x+ ε~n. In a Euclidean space, this is not problematic as
all vectors may be traced back to their expression in the underlying Cartesian vector basis,
but in a general manifold this is no longer the case. Instead, tangent vectors at different
points p and q in the manifold belong to different vector spaces TpM and TqM , respectively.
As a consequence of this, it is impossible to define the derivative of the tangent vector basis
in the same fashion.

So how do we recover from this setback? A large portion of the utility of vector analysis
came from the possibility of differentiating vector fields and we have seemingly just lost
it. The way out is to define an operator ∇X , which has the important properties expected
from a directional derivative operator in the direction determined by the tangent vector X.
In particular we want this operator to map a tangent vector field to another tangent vector
field, to satisfy the product rule for derivatives

∇X(fY ) = df(X)Y + f∇XY (9.53a)

for the product of a scalar and a vector field, and to be linear in both the direction and in
the tangent vector field it acts upon, i.e.,

∇f1X1+f2X2
Y = f1∇X1

Y + f2∇X2
Y, (9.53b)

∇X(a1Y1 + a2Y2) = a1∇XY1 + a2∇XY2, (9.53c)

where a1 and a2 are constants and f1 and f2 are scalar functions. An affine connection
introduces an operator that satisfies these conditions and thereby generalises the directional
derivative concept to manifolds. Because of the linearity in the direction X, we find that

∇XY = ∇Xa∂aY = va∇aY, (9.54)

where we have defined ∇a ≡ ∇∂a . In order to know how ∇X acts on Y , it is therefore
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enough to know the action of the operators ∇a and the components of X. In fact, in the
remainder of this text, we are going to interchangeably refer to ∇a and ∇X as an affine
connection. Furthermore, it is also customary to use the notation ∇aY b for the coefficient
of the basis vector ∂b in ∇aY , i.e., ∇aY b = dyb(∇aY ). This is particularly true when we are
not writing out the vector basis explicitly and in accordance with the notation introduced
in Eq. (2.74).

Developing the affine connection further, we can expand the vector field it acts on in
the same coordinate basis to obtain

∇aY = ∇a(Y b∂b) = (∂aY
b)∂b + Y b∇a∂b (9.55)

by use of the product rule. While the first term is straightforward to evaluate, it only contains
the partial derivatives of the components Y b and the tangent vector basis, the second term
contains the object ∇a∂b, which we do not know how to evaluate. Since the tangent vectors
have ∂a as their coordinate basis, this is nothing other than the generalisation of the term
∂a ~Eb that appeared when we treated Euclidean spaces in curvilinear coordinates. All that
we currently know about these objects is that they are tangent vectors and it must therefore
be possible to write them on the form

∇a∂b = Γcab∂c, (9.56)

since any vector may be expressed as a linear combination of the basis vectors. The compo-
nents Γcab are the connection coefficients of ∇a and depend only on the chosen coordinates.
There is no unique way of assigning the connection coefficients and, as a result, there are
going to be many different possible affine connections on a given manifold. As we shall
discover later, it will be possible to define a unique affine connection with a particular set of
properties if our manifold is endowed with a metric, but for now we leave the ambiguity in
having several possible generalisations of the directional derivative to manifolds and instead
focus on how the connection coefficients must behave under coordinate transformations. We
will return to the issue of defining different connections later.

9.3.2.1 Coordinate transformations

If we know the expression for the connection coefficients in one coordinate system, it is
relatively straightforward to express them in any other coordinate system. This may be
done by expressing the basis vectors of the new coordinate system in terms of those of the
old by applying the chain rule according to

∇a′∂b′ = Γc
′

a′b′∂c′ =
∂ya

∂y′a′
∇a
(
∂yb

∂y′b′
∂b

)
. (9.57)

Use of the product rule now results in

Γc
′

a′b′∂c′ =
∂ya

∂y′a′

[
∂yb

∂y′b′
∇a∂b +

(
∂

∂ya
∂yb

∂y′b′

)
∂b

]
=

[
∂ya

∂y′a′
∂yb

∂y′b′
Γcab +

∂2yc

∂y′a′∂y′b′

]
∂c

=

[
∂ya

∂y′a′
∂yb

∂y′b′
Γcab +

∂2yc

∂y′a′∂y′b′

]
∂y′c

′

∂yc
∂c′ (9.58a)

or, in other words,

Γc
′

a′b′ =
∂ya

∂y′a′
∂yb

∂y′b′
∂y′c

′

∂yc
Γcab +

∂y′c
′

∂yc
∂2yc

∂y′a′∂y′b′
. (9.58b)
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In fact, these are the very same transformation rules as those of the Christoffel symbols that
you have found in Problem 2.17. Clearly this is no coincidence as the Christoffel symbols
encoded the partial derivatives of the tangent vector basis in the definition of the covariant
derivative that we encountered in Chapter 2.

9.3.2.2 Affine connections and tensor fields

We can extend the action of the affine connection to a general tensor field in a fashion
very similar to how we earlier extended the covariant derivative to general tensor fields in
the Euclidean setting. In order to do this, we require that the action of the operator ∇X
satisfies the conditions

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2), (9.59a)

∇X(ω(Y )) = (∇Xω)(Y ) + ω(∇XY ), (9.59b)

where T1 and T2 are arbitrary tensors, X and Y are tangent vector fields, and ω is a dual
vector field. The first of these conditions is the generalised product rule for derivatives and
the second is the product rule applied to a contraction of a tangent vector field and a dual
vector field. Starting with the second condition, ω(Y ) is given by the scalar field ωaY

a

in any given set of coordinates. The action of ∇X on a scalar field f is just that of the
directional derivative defined by Xf , resulting in

∇X(ω(Y )) = ∇X(ωaY
a) = Xb∂b(ωaY

b). (9.60)

On the other hand, the right-hand side of Eq. (9.59b) can be written as

(∇Xω)(Y ) + ω(∇XY ) = Xa[(∇aω)(Y ) + ω(∇aY )]

= Xa[(∂aωb)Y
b + ωb(∇adyb)(Y ) + ωb(∂aY

b + Y cΓbac)]

= Xa∂a(ωbY
b) +XaωbY

c[Cbac + Γbac], (9.61)

where we have defined the coefficients Cbac according to

∇adyb = Cbacdy
c. (9.62)

Comparing the different expressions for ∇X(ω(Y )), we now find that

Cbac = −Γbac (9.63a)

must hold since the fields X, Y , and ω are arbitrary, or in other words

∇adyb = −Γbacdy
c. (9.63b)

This relation should be compared to Eq. (2.80b), where we found a similar relation for the
partial derivative of the dual basis in a Euclidean space. The general action of the ∇X on
an arbitrary tensor field follows directly from applying the product rule, see Problem 9.14.

Just as we introduced the covariant derivative of tensor components in Chapter 2, we will
often not write out the tangent vector, dual, or tensor basis explicitly when using the affine
connection. Thus, when we write expressions of the form ∇aXb, this should be interpreted
as the component in the ∂b direction of the vector field resulting from applying the ∇a to
the vector field X, i.e.,

∇aX ≡ (∇aXb)∂b. (9.64)
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In the same spirit, we will from now on also only use ∂aX
b when we refer to the partial

derivative of the vector field component Xb. With this notation, we find that

∇aXb = ∂aX
b + ΓbacX

c, (9.65a)

∇aωb = ∂aωb − Γcabωc (9.65b)

along with similar relations for arbitrary tensor fields. Note that this notation is consistent
with that already introduced for the covariant derivative in a Euclidean space.

9.3.3 Parallel fields
As we have just discussed, an affine connection provides us with a way of differentiating
vectors as well as more general tensors. In particular, the relations

∇a∂b = Γcab∂c and ∇adyb = −Γbacdy
c (9.66a)

are the direct generalisations of the identities

∂a ~Eb = Γcab ~Ec and ∂a ~E
b = −Γbac ~E

c (9.66b)

that we encountered in curvilinear coordinates on a Euclidean space. As such, we may
interpret the connection coefficients as a way of describing how the tangent vector and dual
bases change in different directions.

If we know how the bases change, we also get an idea about how a general field varies
with the position. In a Euclidean space, there was a natural way of determining whether a
field was constant or not by referring back to the Cartesian basis in order to compare vectors
at different points by using it. For a constant vector field ~v, we then find the requirement
that

∂a~v = 0 (9.67)

for all a. In a general manifold, this is no longer possible and this was our reason to introduce
the affine connection in the first place. Since talking about a constant field no longer has
any clear meaning due to the tangent spaces at different points being different, we instead
generalise the concept of a constant field by defining a field T as a parallel tensor field if it
satisfies

∇XT = 0 (9.68)

for all vector fields X. This requirement generally results in an overdetermined system of
partial differential equations and it is by no means guaranteed that a given affine connection
allows the system to have non-trivial solutions.

Example 9.14 In a Euclidean space with Cartesian coordinates xi, the connection coeffi-
cients all vanish. Because of this, the requirement for a vector field Y to be parallel reduces
to

∇iY j = ∂iY
j + ΓjikY

k = ∂iY
j = 0. (9.69)

This is the same requirement as that for the Cartesian vector components deduced from
∂i~v = 0 and therefore precisely what we would expect. The resulting differential equations
are solved by letting all vector components be constant in the Cartesian coordinate system.
Transferring to a curvilinear coordinate system, the connection coefficients would become
non-zero, but the equations would still be solvable.
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Figure 9.9 The vector fields X = ∂θ (light) and Y = 1
sin(θ)

∂ϕ (dark) on the sphere. These fields
are defined as parallel when introducing an affine connection in Example 9.15.

Example 9.15 The affine connection may be defined by specifying N linearly independent
vector fields that are assumed to be parallel. The connection coefficients Γcab can then be
computed by applying ∇a to these vector fields and identifying the coefficients. Let us
consider the following two vector fields on the two-dimensional sphere S2

X = ∂θ and Y =
1

sin(θ)
∂ϕ, (9.70)

which are linearly independent everywhere where they are well defined, i.e., everywhere but
at θ = 0 and θ = π. When we later introduce a metric on S2, these vector fields will turn
out to be the vectors of unit length in the θ and ϕ directions, respectively, see Fig. 9.9.
The affine connection defined by assuming these vector fields to be parallel will therefore
correspond to keeping the vector length and angle with the coordinate lines constant during
parallel transport.

The connection coefficients are now given by the assumption that X and Y are parallel,
leading to

0 = ∇θX = ∇θ∂θ = Γaθθ∂a, (9.71a)

0 = ∇ϕX = ∇ϕ∂θ = Γaϕθ∂a, (9.71b)

0 = ∇θY =

(
∂θ

1

sin(θ)

)
∂ϕ +

1

sin(θ)
Γaθϕ∂a =

1

sin(θ)
[− cot(θ)∂ϕ + Γaθϕ∂a], (9.71c)

0 = ∇ϕY =
1

sin(θ)
∇ϕ∂ϕ =

1

sin(θ)
Γaϕϕ∂a. (9.71d)

Direct identification of the connection coefficients now results in the only non-zero connec-
tion coefficient being Γϕθϕ = cot(θ).

It should be noted that these vector fields are not global as both of them are singular at
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the poles. However, we will here consider them as vector fields on the sphere with the poles
removed. In general, there are no global vector fields on S2 that are non-zero everywhere
and so a global affine connection cannot be defined on the entire sphere in this fashion. In
addition, another important point is that this affine connection is not the affine connection
that is usually used on the sphere, which is induced by the metric tensor we will introduce
in a while.

While it may not always be possible to find a global parallel vector field, we can always
consider how a vector field behaves in the local neighbourhood of a curve γ. The directional
derivative of the vector field X along the curve is given by

∇γ̇X = ẏa∇aX = ẏa(∂aX
b + ΓbacX

c)∂b =

(
dXb

dt
+ Γbacẏ

aXc

)
∂b, (9.72)

where t is the curve parameter, γ̇ is the tangent vector of γ, and ẏa its components. If this
directional derivative vanishes, we say that X is parallel along γ. Unlike the case of fully
parallel fields, the requirement

∇γ̇X = 0 (9.73)

in an N -dimensional manifold is a more limited set of N ordinary differential equations for
any given curve γ and for any given initial conditions there will be a solution. Taking a curve
in the manifold M such that γ(0) = p and γ(1) = q and a vector X in TpM , the vector
obtained in TqM by requiring that X is parallel along γ is called the parallel transport of
X from p to q along γ.

A special case of a parallel transported vector field occurs when the tangent vector γ̇
itself is parallel transported along the curve γ itself, leading to

∇γ̇ γ̇ = 0 =⇒ ẏa∂aẏ
b + Γbacẏ

aẏc = ÿb + Γbacẏ
aẏc = 0. (9.74)

A curve satisfying this condition is called a geodesic and the condition itself is called the
geodesic equation. The interpretation of the geodesic equation is that the tangent vector
keeps pointing in the same direction as defined by the affine connection.

Example 9.16 Going back to a Euclidean space with a set of Cartesian coordinates xi,
the connection coefficients vanish leading to the geodesic equation

ẍi = 0, (9.75)

indicating that the tangent vector components ẋi are constant. This means that the
geodesics in Euclidean space are just straight lines. On other manifolds, geodesics may
be considered as a generalisation of straight lines, see Fig. 9.10.

Example 9.17 Let us now consider the affine connection on the sphere defined in Exam-
ple 9.15. The geodesic equations for this connection are given by

θ̈ = −Γθabẏ
aẏb = 0, (9.76a)

ϕ̈ = −Γϕabẏ
aẏb = − cot(θ)θ̇ϕ̇. (9.76b)
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S2R2

Figure 9.10 Examples of geodesics in the two-dimensional plane R2 and on the two-dimensional
sphere S2. In R2 the geodesics correspond to straight lines, while on the two-dimensional sphere,
we shall later find that a natural choice for the affine connection (see Section 9.4.3) leads to the
geodesics being great circles.

The first of these implies that θ̇ = vθ is a constant and therefore

θ(t) = vθt+ θ0. (9.77)

Inserting this into the second geodesic equation and integrating yields

ϕ̇ =
A

sin(vθt+ θ0)
, (9.78)

where A is an integration constant. Performing another integration for θ < π/2 then results
in

ϕ(t) =
A

vθ
ln

(
sin(vθt+ θ0)

1 + cos(vθt+ θ0)

)
+B. (9.79)

Note that we in total have four constants characterising the geodesics. These can be de-
termined by specifying where the geodesic starts at t = 0 and its tangent vector at that
point. The geodesics for this affine connection are illustrated in Fig. 9.11, where we also
note that they correspond to curves that always have a given bearing, i.e., go in a given
compass direction. The corresponding affine connection on the surface of the Earth would
tell us that the direction in which a compass needle points is parallel transported as we
travel around the world.

9.3.4 Torsion
Let us now examine the relation between the affine connection and the Lie bracket. When
acting on a scalar field, the operator ∇X acts in precisely the same way as the vector field
X since the scalar field does not have a basis in need of a connection in order to define the
directional derivative. We can therefore write

[X,Y ]f = XY f − Y Xf = X(∇Y f)− Y (∇Xf) = (∇X∇Y −∇Y∇X)f, (9.80)
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Figure 9.11 The geodesics of the connection defined in Example 9.15 correspond to the curves
with a constant bearing. Here exemplified on the Earth with three different geodesics. Note how
the geodesics always intersect the coordinate lines at the same angles.

i.e., we can express the Lie bracket in terms of the commutator of ∇X and ∇Y acting on a
scalar field. On the other hand, the expression ∇X∇Y f may also be rewritten as

∇X∇Y f = ∇X(Y a∂af) = (∂af)∇XY a + Y a∇X(∇af) (9.81)

in a local coordinate system, where we now consider the expression ∂af = ∇af as a com-
ponent of the differential df . Using this relation, the expression for the Lie bracket’s action
on f can be written as

[X,Y ]f = (∇XY −∇YX)f +XaY b(∇a∇b −∇b∇a)f. (9.82)

It should here be noted that the commutator ∇a∇b −∇b∇a acting on f is not necessarily
zero. Instead, we can rewrite the above relation as a vector equation

T (X,Y ) ≡ ∇XY −∇YX − [X,Y ] = −XaY a(∇a∇b −∇b∇a), (9.83)

where we have introduced the vector field T (X,Y ), which generally is a function of the
vector fields X and Y . We can easily verify (see Problem 9.16) that T (X,Y ) is linear in
both arguments

T (h1X1 + h2X2, Y ) = h1T (X1, Y ) + h2T (X2, Y ), (9.84a)

T (X,h1Y1 + h2Y2) = h1T (X,Y2) + h2T (X,Y2), (9.84b)

where h1 and h2 are scalar fields. It follows that the mapping T (X,Y ) defines a type (1, 2)
tensor field with components given by

T cab∂cf = −(∇a∇b −∇b∇a)f. (9.85)

This tensor is called the torsion tensor and is only dependent on the affine connection
defining it. In any given coordinate system, we find that

∇a∇bf = ∇a∂bf = ∂a∂bf − Γcab∂cf. (9.86)
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Since the partial derivatives commute, this leads to the relation

T cab = Γcab − Γcba = 2Γc[ab], (9.87)

i.e., the components of the torsion are given by the anti-symmetrised connection coefficients.
It directly follows that an affine connection is torsion free if its connection coefficients are
symmetric in the lower indices or, equivalently, if

∇a∂b = ∇b∂a. (9.88)

As for the Lie bracket, we can find a geometrical interpretation of the torsion by con-
sidering a set of different curves in the manifold M . When considering the Lie bracket, we
looked at the flows of two vector fields X and Y , but for the torsion there is a more natural
choice as it is intimately related to the affine connection and therefore to the notion of
parallel transport. Let us therefore start at a point p and consider the two vectors X and Y
in TpM . Each of these vectors defines a unique geodesic and the geodesic equation becomes

ÿa + Γabcẏ
bẏc = 0, (9.89)

where we have ẏa(0) = Xa for the geodesic defined by X and ẏa(0) = Y a for that defined
by Y . Focusing on the former of these and using a slight abuse of notation, we define Xa(t)
to be the tangent vector ẏa(t), which is parallel transported along the geodesic, and Y a(t)
to be the parallel transport of Y a along the same geodesic, implying that

Ẏ a(t) + Γabcẏ
bY c(t) = 0. (9.90)

For small values dt of the geodesic parameter, we can expand both the coordinates ya and
the vector Y a in terms of dt according to

ya(dt) ' ya0 + dt ẏa(0) +
dt2

2
ÿa(0) = ya0 + dtXa − dt2

2
ΓabcX

bXc, (9.91a)

Y a(dt) ' Y a + dt Ẏ a(0) = Y a − dtΓabcX
bY c, (9.91b)

where terms have been kept to second order in dt in the first expression and to first order
in the last. The vector Y a(dt) now defines a unique geodesic ya(dt, s) starting at ya(dt),
whose parameter we can call s. Its geodesic equation is given by

∂2ya(dt, s)

∂s2
+ Γabc

∂yb(dt, s)

∂s

∂yc(dt, s)

∂s
= 0, (9.92)

with ya(dt, 0) = ya(dt) and ∂ya(dt, 0)/∂s = Y a(dt). Letting the geodesic parameter take
the small value ds, we can expand ya(dt, ds) to combined second order in dt and ds and
find that

ya(dt, ds) ' ya(dt) + ds Y a(dt)− ds2

2
ΓabcY

b(dt)Y c(dt)

' ya0 + dtXa − dt2

2
ΓabcX

bXc + ds[Y a − dtΓabcX
bY c]− ds2

2
ΓabcY

bY c

' ya0 + dtXa + ds Y a − 1

2
Γabc
(
XbXcdt2 + Y bY cds2 + 2XbY cdt ds

)
. (9.93)

Defining this point as pY X and the point obtained by first following the geodesic defined
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by Y and then the geodesic defined by the parallel transported X as pXY , calling their
coordinates yaY X and yaXY , respectively, results in

yaY X − yaXY = dt dsΓabc(Y
bXc −XbY c) = dt ds T abcY

bXc. (9.94)

In other terms, just as the Lie bracket measures the failure of the flows of two vector fields to
commute, the torsion measures the failure of following the flows of the parallel transported
vector fields to commute.

Example 9.18 We can exemplify this reasoning by looking at the affine connection on the
sphere defined in Example 9.15 and taking the vector fields X = ∂θ and Y = (1/ sin(θ))∂ϕ
at a point given by the coordinates θ = θ0 and ϕ = ϕ0. Comparing with the results of
Example 9.17, the geodesic in the X-direction is given by

θ(t) = t+ θ0, ϕ(t) = ϕ0. (9.95)

Furthermore, since the fields X and Y are parallel with respect to the given connection, we
already know that the parallel transport of Y along this geodesic will be given by

Y (t) = Y (θ(t), ϕ(t)) =
1

sin(t+ θ0)
∂ϕ. (9.96)

The geodesic in the Y (t) direction now has the form

θ(t, s) = t+ θ0, ϕ(t, s) =
s

sin(t+ θ0)
+ ϕ0. (9.97)

Going along the geodesics in the opposite order, but for the same values of the geodesic
parameters s and t, leads to

θ̃(s, t) = t+ θ0, ϕ̃(s, t) =
s

sin(θ0)
+ ϕ0 (9.98)

or, in other terms,

vθ(t, s) = θ(t, s)− θ̃(s, t) = 0, (9.99a)

vϕ(t, s) = ϕ(t, s)− ϕ̃(s, t) = s

(
1

sin(t+ θ0)
− 1

sin(θ0)

)
. (9.99b)

Taking the derivatives of these functions with respect to t and s and evaluating at t = s = 0
results in

∂2vθ

∂t∂s

∣∣∣∣
t=s=0

= 0 = T θabX
aY b, (9.100a)

∂2vϕ

∂t∂s

∣∣∣∣
t=s=0

= −cot(θ0)

sin(θ0)
= TϕabY

aXb = Tϕϕθ
1

sin(θ0)
, (9.100b)

where we have used Tϕϕθ = Γϕϕθ − Γϕθϕ = − cot(θ). This is exactly what we expect from
Eq. (9.94).

Remembering our treatment of the covariant derivative in curvilinear coordinates in a
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Euclidean space, we remember that one of the properties of the corresponding Christoffel
symbols was their symmetry Γcab = Γcba stemming from the relation ∂a ~Eb = ∂b ~Ea. From this
we can deduce that this covariant derivative defined a torsion free connection. In fact, in
most physical situations, we will deal with affine connections such that the torsion vanishes,
in many cases by assumption. For the remainder of this text, the manifolds will be assumed
to be torsion free unless non-zero torsion is mentioned explicitly.

9.3.5 Curvature
When considering the geometric interpretation of the Lie bracket and the torsion we have
been dealing with different curves that did not form a closed loop. However, there is also a
great deal of geometry involved when parallel transporting an arbitrary vector X along a
closed loop or, equivalently, from a starting point to an endpoint along different paths. Just
as we arrived at the expression for the torsion by considering the commutator of ∇X and
∇Y acting on a scalar field and then removing the commutator [X,Y ], let us now consider
the corresponding procedure for a vector field Z and look at the expression

R(X,Y )Z = (∇X∇Y −∇Y∇X −∇[X,Y ])Z. (9.101)

The natural extension of the Lie bracket acting on scalar fields to an operator on vector
fields is replacing [X,Y ] by ∇[X,Y ] as [X,Y ]f = ∇[X,Y ]f . Because of the definition of the
expression, R(X,Y )Z is clearly a vector field, but we would like to know how it behaves
when we change the fields X, Y , and Z. Replacing X by fX, we find that

R(fX, Y )Z = (∇fX∇Y −∇Y∇fX −∇[fX,Y ])Z

= (f∇X∇Y −∇Y f∇X − f∇[X,Y ] + Y (f)∇X)Z

= (f∇X∇Y − Y (f)∇X − f∇Y∇X − f∇[X,Y ] + Y (f)∇X)Z

= fR(X,Y )Z, (9.102a)

where we have used the product rule properties of the various differential operators. It
follows that R(X,Y )Z is linear in X and a similar computation holds for Y . For the de-
pendence when changing Z to fZ we have

R(X,Y )fZ = (∇X∇Y −∇Y∇X −∇[X,Y ])fZ

= ∇X(Y f)Z +∇Xf∇Y Z −∇Y (Xf)Z −∇Y f∇XZ − ([X,Y ]f)Z − f∇[X,Y ]Z

= (XY f)Z + (Y f)∇XZ + (Xf)∇Y Z + f∇X∇Y Z − (Y Xf)Z

− (Xf)∇Y Z − (Y f)∇XZ − f∇Y∇XZ − ([X,Y ]f)Z − f∇[X,Y ]Z

= fR(X,Y )Z (9.102b)

and hence R(X,Y )Z is linear in Z as well and only depends on its value at the given point.
Since R(X,Y )Z is a tangent vector field, it defines a linear map from three tangent vector
fields to one. It therefore follows that it defines a type (1, 3) tensor field. This tensor is
called the curvature tensor of the affine connection (alternatively the Riemann tensor or
Riemann curvature tensor) and its components may be found as

Rdcab∂d ≡ R(∂a, ∂b)∂c = ∇a∇b∂c −∇b∇a∂c
= ∇aΓebc∂e −∇bΓeac∂e = (∂aΓdbc + ΓebcΓ

d
ae − ∂bΓdac − ΓeacΓ

d
be)∂d. (9.103a)

Carefully note the positioning of the indices here, the indices of the ∂a and ∂b in R(∂a, ∂b)∂c
are placed in the end of the list of covariant indices! Identifying the components from this
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expression we find that

Rdcab = ∂aΓdbc − ∂bΓdac + ΓebcΓ
d
ae − ΓeacΓ

d
be. (9.103b)

It should be clear that these components are anti-symmetric in the last two indices due to
the anti-symmetry R(X,Y )Z = −R(Y,X)Z.

Just like the torsion, the curvature has a rather intriguing geometrical interpretation. If
we consider the parallel transport of a vector X around a closed loop starting and ending
at the same point p, we will end up with a new vector X∗ at that point. Since X and X∗

are in the same vector space TpM , they can be directly compared without any reference to
the affine connection other than through the parallel transport equations around the curve,
which take the form

dXa

dt
+ Γabcẏ

bXc = 0. (9.104)

This is an ordinary linear differential equation for the components Xa. It follows that the
components of X∗ are linearly dependent on the initial conditions, given by the components
of X, and we may write this as

X∗ = Pγ(X), (9.105)

where Pγ is a type (1,1) tensor at p, which depends on the curve γ and the affine connection.

Example 9.19 If we study a Euclidean space with a set of Cartesian coordinates xi, the
connection coefficients all vanish and the parallel transport equation gives us

dXa

dt
= 0 =⇒ X∗a = Xa (9.106)

regardless of the curve γ. In this case, we therefore find that Pγ(X) = X is the identity map
and therefore the Kronecker delta tensor δ, see Fig. 9.12. At the same time, the curvature
tensor also vanishes due to the connection coefficients all vanishing. A manifold where
the curvature tensor vanishes everywhere is called flat and any closed curve that may be
continuously deformed to a point in such a space will result in Pγ = δ.

Example 9.20 We will soon introduce the concept of a metric and when doing so an
affine connection may be defined in such a way that when parallel transporting a vector
along a geodesic, its length and angle to the geodesic remain constant. With the natural
metric on the sphere S2 the geodesics will turn out to be great circles. Parallel transporting
a vector around the curve γ in Fig. 9.13, composed by three different geodesics, one along
the equator and the other two going from the equator to one of the poles, we find that the
final vector has been rotated by an angle α relative to the original one. The angle α will be
equal to the angle between the geodesics that meet at the pole.

In general, if the vector X∗ is not equal to X, i.e., the tensor Pγ is not the Kronecker
delta, for curves γ that can be continuously deformed to a point, then the manifold is
said to be curved . This has an intricate relation to the curvature tensor. Let us study
the parallel transport of X along two different paths between two points. Technically, this
will be the same as parallel transporting one of the resulting vectors around the loop to
the final position, but the computations we will have to do with this approach are more
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γ

Figure 9.12 For any curve γ starting and ending at the same point in a Euclidean space, the parallel
transport of a vector around the curve gives back the same vector. The map Pγ , which is a map
from the tangent space at the point to itself, is therefore the identity map. This will generally no
longer be the case in a curved space.

α

α

γ

X

X∗

Figure 9.13 When performing a parallel transport on a sphere along the equator and then along
the θ coordinate lines to a pole, with a torsion free affine connection based on the metric (see
Section 9.4.3), the angle α between the initial and final vectors will be given by the angle between
the coordinate lines at the pole.
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s = s0 + ds

t = t0 + dt

Xst

ds

dt

X

Xts

Xt

Xs

p

q

t = t0

s = s0

Figure 9.14 In a general curved space, the result of a parallel transport between the points p and
q will depend on the path taken. For parallel transport along short displacements in a manifold,
the difference between paths will be given by the curvature tensor Racbd.

straightforward. We will assume that we are studying parallel transport in a region so small
that the curves may be parametrised by the two parameters t and s that can be taken
as two of the local coordinates and consider the curves defined by the coordinate lines for
which s = s0, s = s0 +ds, t = t0, and t = t0 +dt, respectively, see Fig. 9.14. We select these
coordinates such that t = t0 and s = s0 correspond to the starting point and t = t0 + dt
and s = s0 + ds correspond to the endpoint of the parallel transports. There are now two
different choices of paths. We can either move along the curve of constant t first or the
curve of constant s first. As the expressions will be analogous, it does not matter which
one we select as the other will be given by the substitution t↔ s. Before doing any maths,
we note that if either dt or ds is equal to zero, both paths will be equivalent and lead to
no difference in the final vector. We can therefore deduce that the leading order difference
between the vector Xst, which is first parallel transported along the curve with constant s,
and the vector Xts which is first parallel transported along the curve with constant t, should
be of order dt ds and we will therefore only keep terms linear in both dt and ds throughout
our computation.

Along the coordinate line of fixed s, we parametrise the curve using the coordinate t.
The parallel transport equations along this lines are given by

dXa

dt
+ Γabc

∂yb

∂t
Xc = 0, (9.107)

where yb = yb(t, s) are the coordinates. By expanding the parallel transport equation using
Xa(t0, s0) = Xa

0 as the initial condition, we find that, to first order in dt,

Xa
t ≡ Xa(t0 + dt, s) ' Xa

0 + dt
dXa

dt

∣∣∣∣
t=t0

= Xa
0 − dtΓabc(t0, s0)

∂yb

∂t
Xc

0 . (9.108)

In the same fashion, expanding the parallel transport along the curve of constant t = t0 +dt
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we find that

Xa
st ' Xa

t + ds
dXa

ds

∣∣∣∣
s=s0

= Xa
t − dsΓabc(t0 + dt, s0)

∂yb

∂s
Xc
t . (9.109)

Inserting our expression for Xt into this and expanding

Γabc(t0 + dt, s0) ' Γabc(t0, s0) + dt
∂yd

∂t
∂dΓ

a
bc (9.110)

to first order in dt, again keeping only terms linear in dt as well as in ds, i.e., including also
the dt ds term, we end up with

Xa
st ' Xa

0 − Γabc

(
∂yb

∂t
dt+

∂yb

∂s
ds

)
Xc

0 − dt ds
∂yb

∂t

∂yd

∂s
Xc

0(∂bΓ
a
dc − ΓadeΓ

e
bc). (9.111)

Obtaining the corresponding expression for Xa
ts by substituting t↔ s results in the differ-

ence

Xa
ts −Xa

st = dt ds
∂yb

∂t

∂yd

∂s
Xc

0(∂bΓ
a
dc − ∂dΓabc + ΓabeΓ

e
dc − ΓadeΓ

e
bc)

= dt ds
∂yb

∂t

∂yd

∂s
Xc

0R
a
cbd. (9.112)

We have therefore found that the change in the vector component X after parallel transport
around a small closed loop in the directions Y = (∂yb/∂t)∂b and Z = (∂yd/∂s)∂d is directly
proportional to R(Y, Z)X.

9.4 METRIC TENSOR
In Chapter 2 we discussed the metric tensor with components defined by gab = ~Ea · ~Eb. In
a general manifold, there is no longer a natural choice of an inner product between tangent
vectors and we will instead need to work in the opposite direction. The metric tensor in an
arbitrary coordinate system in the Euclidean setting displayed two important properties,
symmetry and positive definiteness. We therefore define a metric (or Riemannian metric)
on a manifold M to be a type (0, 2) tensor field g for which

g(X,Y ) = g(Y,X), (9.113a)

g(X,X) ≥ 0, (9.113b)

g(X,X) = 0 =⇒ X = 0, (9.113c)

where X and Y are vectors in the same tangent space TpM . The last two conditions are
related to the positive definiteness of the metric, but are in some cases replaced by the less
strict condition that the metric is non-degenerate, i.e., if

g(X,Y ) = 0 (9.114)

for all Y , then X = 0. A metric satisfying this condition rather than positive definiteness is
usually called a pseudo metric (or pseudo-Riemannian metric). However, this construction
is most common in special and general relativity, where the tensor is usually still referred
to as a metric.
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Example 9.21 We have already seen the example of the standard metric in a Euclidean
N -dimensional space, defined by the Cartesian inner product. However, this is not the only
possible metric on RN and there are many possible choices that will all be perfectly valid
metrics. In two dimensions, another possible choice would be given by

g11 = e−(x1)2 , g22 = e−(x2)2 , g12 = g21 = 0. (9.115)

The geometry implied by this metric will be very different from that given by the standard
one.

Just as in Chapter 2, we can also introduce the inverse metric tensor as the type (2, 0)
tensor with components gab such that

gabg
bc = δca. (9.116)

Together, the metric tensor and its inverse define a natural one-to-one correspondence be-
tween tangent vectors and dual vectors such that for a tangent vector Xa, there exists a
unique dual vector Xa such that

Xa = gabX
b and Xa = gabXb. (9.117)

Thanks to the metric tensor, we have now recovered the relation between tangent vectors
and dual vectors that was previously lost by not being able to refer back to an underlying
Cartesian coordinate system. As a type (0, 2) tensor, the metric is a linear map from tangent
vectors to dual vectors, while the inverse metric as a type (2, 0) tensor is a linear map from
dual vectors to tangent vectors. In a similar fashion, when there exists a metric tensor, we
can lower and raise the indices of tensors of arbitrary type and although a tensor such as
the curvature may be naturally considered as a type (1, 3) tensor, it then generally suffices
to refer to it as a rank four tensor.

9.4.1 Inner products
Before the introduction of a metric, there is no clear definition of an inner product on the
tangent space TpM . Indeed, an inner product between two vectors should be a bilinear
positive definite mapping to the real numbers, but this is exactly what the metric provides.
In a manifold equipped with a metric tensor, we therefore define the inner product between
two tangent vectors X and Y to be

X · Y = g(X,Y ) = gabX
aY b = XaY

a = XaYa. (9.118)

Since the metric defines a unique relation between tangent vectors and dual vectors, it also
removes the need to separate them on a notational level and we will therefore also use the
notation ω ·X, where ω is a dual vector and X a tangent vector, to denote the contraction

ω ·X = ω(X) = ωaX
a. (9.119)

With an inner product in place, we can start introducing some of the concepts we used
in the earlier chapters. In particular, we define the norm of a vector X as

|X| ≡
√
X ·X =

√
g(X,X) =

√
gabXaXb (9.120)

and the angle α between the vectors X and Y through the relation

X · Y = gabX
aY b ≡ |X| |Y | cos(α). (9.121)
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Example 9.22 As we shall see later in this chapter, there is a natural metric on the two-
dimensional sphere arising from its embedding into a three-dimensional Euclidean space,
given by

gθθ = 1, gϕϕ = sin2(θ), and gθϕ = gϕθ = 0 (9.122)

in the usual spherical coordinates. With this metric, we find that

|∂θ| =
√
gθθ = 1, |∂ϕ| =

√
gϕϕ = sin(θ), g(∂θ, ∂ϕ) = 0. (9.123)

Thus, the norms of the coordinate basis vectors are one and sin(θ), respectively, and the
angle between them is π/2, i.e., they are orthogonal

9.4.2 Length of curves
With the inner product in place, we now have a tool for defining the norm of any given
tangent vector. Looking back at the Euclidean case, we found the distance between two
nearby points whose coordinates differed by dya to be given by

ds2 = gabdy
adyb. (9.124)

Lifting this definition directly to the general manifold, the expression

|γ̇| =
√
g(γ̇, γ̇) (9.125)

for a curve γ is the norm of the curve tangent γ̇, i.e., the distance covered per unit increase
in the curve parameter. Integrating this norm over the curve parameter, we find the total
length of the curve

sγ =

∫
γ

ds =

∫
γ

|γ̇| dt =

∫
γ

√
g(γ̇, γ̇) dt =

∫
γ

√
gabẏaẏb dt, (9.126)

where t is the curve parameter.

Example 9.23 Consider a curve of constant θ on the sphere. This is a closed curve that
may be parametrised as

θ = θ0, ϕ = 2πt, (9.127)

where 0 < t < 1. The tangent vector to the curve is given by

γ̇ =
dya

dt
∂a = 2π∂ϕ. (9.128)

This implies that

|γ̇| =
√
gϕϕ(2π)2 = 2π sin(θ0), (9.129)

where we are using the metric introduced in Example 9.22. The total length of the closed
curve is therefore given by

sγ =

∫ 1

0

|γ̇| dt =

∫ 1

0

2π sin(θ0)dt = 2π sin(θ0). (9.130)

This is perfectly compatible with our intuition that the curve should be shorter when it is
close to one of the poles, see Fig. 9.15.
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Figure 9.15 We expect the curves on the sphere of constant θ coordinate to be shorter closer to the
pole θ = 0. The definition of the curve length sγ in terms of the metric introduced in Example 9.22
gives us this expected result.

t

q

γ̇

p

Figure 9.16 For a curve γ from p to q parametrised by the curve parameter t, we compute its
length by integrating ds =

√
g(γ̇, γ̇) dt along the curve.

We now have an expression in place to describe the length of a curve parametrised by t,
given by the coordinate functions ya(t). If we fix the curve endpoints p and q, see Fig. 9.16,
we can consider the expression

s[γ] = sγ =

∫ √
gabẏaẏb︸ ︷︷ ︸
≡L

dt (9.131)

as a functional of the coordinate functions and apply the machinery developed in Chapter 8
in order to find its stationary curves, i.e., the curves that provide a stationary curve length
between the given endpoints. The Euler–Lagrange equation for the variation of ya(t) is
given by

∂L
∂ya
− d

dt

∂L
∂ẏa

= 0, (9.132a)

where the individual terms are

∂L
∂ya

=
1

L
ẏbẏc∂agbc, (9.132b)

d

dt

∂L
∂ẏa

=
d

dt

(
1

L
gbcẏ

cδba

)
=

1

L

(
− 1

L
dL
dt
gacẏ

c + gacÿ
c + ẏbẏc∂bgac

)
. (9.132c)

Inserting this into the Euler–Lagrange equation and multiplying by Lgda results in the
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equation

ÿd + ẏbẏcgda
(
∂bgac −

1

2
∂agbc

)
= ẏd

d

dt
ln(L). (9.133)

Any curve satisfying this differential equation is going to give a stationary value for the
curve length s[γ].

Example 9.24 Let us go back to the case of Euclidean space with Cartesian coordinates. In
this situation, the metric is diagonal, its entries constant, and the Euler–Lagrange equations
to find the stationary curves of the path length between two points are reduced to

ẍi = ẋi
d

dt
ln
(
|~̇x|
)
⇐⇒ ~̈x = ~̇x

d

dt
ln
(
|~̇x|
)
. (9.134)

In other words, we find that the derivative of the tangent vector ~̇x of the curve is directly
proportional to ~̇x itself. This is hardly surprising as we already know that the curves that
give a stationary curve length are going to be straight lines. The right-hand side arises due
to an ambiguity in the parametrisation of the curve. In particular, we can write the equation
of a straight line with a constant tangent vector as

~x = ~as+ ~x0, (9.135)

where s is the curve parameter and ~a the constant tangent vector. This line clearly satisfies
the required Euler–Lagrange equations since both sides of the equations vanish. We could
now reparametrise this line by introducing a new curve parameter t and expressing the old
curve parameter in terms of it as a function s = s(t). We find that

d~x

dt
= ~a

ds

dt
,

d2~x

dt2
= ~a

d

dt

ds

dt
=
d~x

dt

1

ds/dt

d

dt

ds

dt
=
d~x

dt

d

dt
ln

(∣∣∣∣d~xdt
∣∣∣∣) , (9.136)

which is exactly the form of Eq. (9.134). The interpretation of this result is that, since the
re parametrisation of the curve does not affect its length, it is sufficient to require that
the change in the tangent vector is proportional to the tangent vector itself. However, it is
always possible to change the curve parametrisation in such a way that the tangent vector
has constant norm and for this situation the right-hand side vanishes.

Coming back to the case of the general manifold M , we can also reparametrise the
curve in such a way that the right-hand side vanishes, i.e., the norm of the tangent vector
is constant. Such a parametrisation of a curve is a parametrisation in terms of the curve
length and is called an affine parametrisation. We are left with the relation

ÿd + ẏbẏcgda
(
∂bgac −

1

2
∂agbc

)
= 0. (9.137)

This looks very similar to the geodesic equation

ÿd + Γdbcẏ
bẏc = 0. (9.138)

In fact, it is the geodesic equation if we have a connection such that

Γdbcẏ
bẏc = ẏbẏcgda

(
∂bgac −

1

2
∂agbc

)
, (9.139)
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which should not be very surprising. After all, in Example 9.24 we saw that the straight
line with a constant norm tangent vector was that where the tangent vector was constant.
As this relation contains the factor ẏbẏc, there are several possible connections that satisfy
this relation, as only the symmetric part Γc{ab} of the Christoffel symbols contribute to the
left-hand side.

It should be noted that Eq. (9.137) can be obtained directly by variation of the functional

L[γ] =

∫
γ

L2dt =

∫
γ

gabẏ
aẏbdt (9.140)

rather than of s[γ]. The Euler–Lagrange equations for L[γ] are given by

∂L2

∂ya
− d

dt

∂L2

∂ẏa
= ẏbẏc∂agbc − 2

d

dt
gacẏ

c = ẏbẏc(∂agbc − 2∂bgac)− 2gacÿ
c = 0. (9.141)

Multiplying this by −gda/2 results in Eq. (9.137). The curves that give stationary values
for L[γ] are therefore precisely the curves that also give stationary values of s[γ] and have
a parametrisation such that the tangent vector has constant norm. It is also often easier to
vary L[γ] than s[γ] and we will therefore use this for all practical computations.

9.4.3 The Levi-Civita connection
For any manifold M with a metric tensor g, an affine connection is said to be metric
compatible if the metric tensor is parallel, i.e., if

∇Xg = 0 (9.142)

for all vectors X. The reason for this is that if we take two vectors X and Y parallel
transported along a curve γ, then their inner product g(X,Y ) satisfies

d

dt
g(X,Y ) = ∇γ̇g(X,Y ) = (∇γ̇g)(X,Y ) + g(∇γ̇X,Y ) + g(X,∇γ̇Y ) = 0, (9.143)

where the first term is zero due to the metric compatibility and the last two due to X
and Y being parallel along γ and hence ∇γ̇X = ∇γ̇Y = 0. Thus, a metric compatible
connection preserves the inner product between parallel transported vectors and therefore
also the vector norms as well as the angles between parallel transported vectors.

In any given coordinate system, a metric compatible connection satisfies

∇cgab = ∂cgab − Γdcagdb − Γdcbgad = 0. (9.144)

This expression is exactly equivalent to Eq. (2.84) that we found in Chapter 2 by differ-

entiating gab = ~Ea · ~Eb with respect to yc. If we furthermore require that our connection
is torsion free, we can follow exactly the same steps as those leading up to Eq. (2.86) and
we find that there is a unique metric compatible torsion free affine connection given by the
connection coefficients

Γcab =
1

2
gcd(∂agdb + ∂bgda − ∂dgab). (9.145)

This connection is known as the Levi-Civita connection and, just as we did in Chapter 2,
we will refer to its connection coefficients as the Christoffel symbols.
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With the Levi-Civita connection in place, we can write down its geodesic equations and
find that

ÿc + Γcabẏ
aẏb = ÿc + ẏaẏb

1

2
gcd(∂agdb + ∂bgda − ∂dgab)

= ÿc + ẏaẏbgcd
(
∂agdb −

1

2
∂dgab

)
= 0. (9.146)

This is exactly the condition given in Eq. (9.137) for a curve that gives a stationary value for
the curve length s[γ]. Thus, for the Levi-Civita connection, the geodesics are the stationary
curves of the curve length. Inversely, the Christoffel symbols of the Levi-Civita connection
can be directly inferred from the Euler–Lagrange equations resulting from variation of the
functional L[γ] defined in Eq. (9.140).

Example 9.25 Let us compute the Christoffel symbols on a sphere with the metric given
in Example 9.22. The functional L[γ] is given by

L[γ] =

∫
gabẏ

aẏbdt =

∫
(θ̇2 + sin2(θ)ϕ̇2)dt. (9.147)

The Euler–Lagrange equation due to variations of θ are now given by

sin(θ) cos(θ)ϕ̇2 − θ̈ = 0, (9.148)

which we identify with the geodesic equation

θ̈ + Γθabẏ
aẏb = 0, (9.149)

indicating that the only non-zero Christoffel symbol Γθab is given by Γθϕϕ = − sin(θ) cos(θ).
In a similar fashion, the variation with respect to ϕ results in

d

dt
sin2(θ)ϕ̇ = sin2(θ)ϕ̈+ 2 sin(θ) cos(θ)θ̇ϕ̇ = 0. (9.150)

Dividing by sin2(θ) and identifying with

ϕ̈+ Γϕabẏ
aẏb = ϕ̈+ Γϕθθ θ̇

2 + Γϕϕϕϕ̇
2 + 2Γϕθϕθ̇ϕ̇ = 0, (9.151)

where we have used the fact that the Levi-Civita connection is assumed to be torsion free,
we arrive at the conclusion that the only non-zero Christoffel symbols of the form Γϕab are
Γϕθϕ = Γϕϕθ = cot(θ). In summary, the non-zero Christoffel symbols on the sphere are given
by

Γθϕϕ = − sin(θ) cos(θ) = −1

2
sin(2θ) and Γϕθϕ = Γϕϕθ = cot(θ). (9.152)

Of course, we could also have computed these Christoffel symbols starting directly from
Eq. (9.145). However, this is generally more tedious and easier to get wrong than the
approach shown in this example.
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9.4.4 Curvature revisited
With the Levi-Civita connection in place, we can return to the concept of curvature and
discuss the implications for the curvature tensor. It turns out that it is sometimes easier to
work with the type (0, 4) tensor

Rdcab ≡ gdeRecab (9.153)

rather than the curvature tensor itself. In addition, some of the symmetries of the curvature
tensor will be more apparent when it is written on this form. Of course, these are completely
equivalent as the type (1, 3) tensor may be recovered by raising the first index of Rdcab.

In order to find the symmetries of Rdcab, we first need to derive a few helpful relations.
We start by defining the Christoffel symbols with all indices down as

Γabc = gadΓ
d
bc. (9.154)

These are sometimes referred to as Christoffel symbols of the first kind , while the Γabc that
we are used to are then referred to as Christoffel symbols of the second kind. Due to the
symmetry in the indices b and c of the left-hand side, it should be clear that Γabc = Γacb.
We will also need the relation

0 = ∂aδ
b
c = ∂ag

bdgcd = gbd∂agcd + gcd∂ag
bd ⇐⇒ gbd∂agcd = −gcd∂agbd. (9.155)

We now set out to express Rdcab in such a way that its symmetries become apparent, starting
by rewriting the derivatives of the Christoffel symbols in the expression for the curvature
tensor in terms of the metric

Rdcab = gde(∂aΓebc − ∂bΓeac + ΓfbcΓ
e
af − ΓfacΓ

e
bf )

= gde[∂a(gefΓfbc)− ∂b(gefΓfac)] + ΓfbcΓdaf − ΓfacΓdbf

= ∂aΓdbc − ∂bΓdac + gdeΓfbc∂ag
ef − gdeΓfac∂bgef + ΓfbcΓdaf − ΓfacΓdbf

=
1

2
(∂a∂bgcd + ∂a∂cgbd − ∂a∂dgbc − ∂b∂agcd − ∂b∂cgad + ∂b∂dgac)

− Γfbc(∂agdf − Γdaf ) + Γfac(∂bgdf − Γdbf ). (9.156a)

Noting that Eq. (9.144) can be written on the form

∂agdf = Γfad + Γdaf (9.156b)

this result can be rewritten as

Rdcab =
1

2
(∂a∂cgbd − ∂a∂dgbc − ∂b∂cgad + ∂b∂dgac)− ΓfbcΓfad + ΓfacΓfbd. (9.156c)

It is now evident that the curvature tensor has the symmetries

Rdcab = −Rcdab = −Rdcba = Rabdc. (9.157)

These symmetries are important when considering the possible contractions of the curvature
tensor. In particular, the contractions of the first two indices as well as that of the last two
both vanish due to the anti-symmetries

gdcRdcab = 0 and gabRdcab = 0. (9.158)

The remaining four possibilities are all related as

Rcb = Racab = gadRdcab = −gadRcdab = −gadRdcba = gadRcdba (9.159)
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and results in a single type (0, 2) tensor called the Ricci tensor , which is symmetric

Rcb = gadRdcab = gadRabdc = Rbc. (9.160)

Finally, the Ricci scalar
R = gbcRbc (9.161)

is defined as the trace of the Ricci tensor. These concepts will turn out to be central in the
formulation of general relativity.

Example 9.26 Computing the components of the curvature tensor on the two-dimensional
sphere with the metric introduced in Example 9.22, its symmetries imply that the only
independent non-zero component is

Rθϕθϕ = −Rϕθθϕ = −Rθϕϕθ = Rϕθϕθ. (9.162)

Using the non-zero components gθθ = 1 and gϕϕ = sin2(θ) of the metric together with the
corresponding Christoffel symbols of the Levi-Civita connection, computed in Example 9.25,
we find that

Rθϕθϕ =
1

2
(∂θ∂ϕgθϕ − ∂2

θgϕϕ − ∂2
ϕgθθ + ∂ϕ∂θgϕθ)− ΓaϕϕΓaθθ + ΓaϕθΓaϕθ

= −1

2
∂2
θ sin2(θ) + ΓϕϕθΓϕϕθ = −∂θ sin(θ) cos(θ) + (Γϕϕθ)

2gϕϕ

= − cos2(θ) + sin2(θ) + cot2(θ) sin2(θ) = sin2(θ). (9.163)

The components of the Ricci tensor are now given by

Rθθ = Raθaθ = gθθRθθθθ + gϕϕRϕθϕθ =
1

sin2(θ)
sin2(θ) = 1 = gθθ, (9.164a)

Rϕϕ = Raϕaϕ = gθθRθϕθϕ + gϕϕRϕϕϕϕ = sin2(θ) = gϕϕ, (9.164b)

Rθϕ = Raθaϕ = gθθRθθθϕ + gϕϕRϕθϕϕ = 0 = gθϕ. (9.164c)

In other words, we find that the Ricci tensor is equal to the metric tensor Rab = gab and
consequently the Ricci scalar is given by

R = Rabg
ab = gabg

ab = δaa = 2. (9.165)

In general, a space where the Ricci tensor is proportional to the metric tensor is called an
Einstein space.

9.5 INTEGRATION ON MANIFOLDS
A large part of Chapter 1 was devoted to defining integrals over lines, volumes, and surfaces.
We also spent some time in Chapter 2 on generalising the expression of these integrals to
general coordinate systems. With the previous parts of this chapter fresh in our memory,
we are now ready to start a discussion on how to generalise the integral concept to mani-
folds. This will be done in the language of differential forms and we will therefore start by
introducing these and looking at some of their properties.
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9.5.1 Differential forms
Looking at the expression in Eq. (2.165), it is clear that the volume element has the property
that it depends on a set of tangent vectors and is completely anti-symmetric in these. The
volume element was generally given by

dV = ~E1 · ( ~E2 × ~E3)dy1dy2dy3 =
∂~x

∂y1
·
(
∂~x

∂y2
× ∂~x

∂y3

)
dy1dy2dy3, (9.166)

where it should be clear that the vector triple product is completely anti-symmetric in the
three tangent vectors ∂~x/∂ya. Indeed, also the line element

d~x =
d~x

dt
dt (9.167)

contains a tangent vector and a differential and, since there are no other tangent vectors,
is completely anti-symmetric in all possible exchanges of tangent vectors. All in all, these
properties of volume, surface, and line elements all gently hint towards the relevance of
completely anti-symmetric multi-linear maps from tangent vectors to the real numbers. By
definition, when such a map takes p tangent vector arguments, it is a completely anti-
symmetric tensor of type (0, p) and we call such tensors p-forms. The set of 1-forms is
just the cotangent space as all type (0, 1) tensors are completely antisymmetric. It is also
common to talk about scalar fields as 0-forms as they are completely anti-symmetric type
(0, 0) tensors.

Just as a general type (0, p) tensor can be written in the basis ea1...ap = dya1⊗ . . .⊗dyap ,
a basis for the set of p-forms can be constructed through the wedge product of p 1-forms
defined as

dya1 ∧ . . . ∧ dyap =
∑
σ∈Sp

sgn(σ)dyaσ(1) ⊗ . . .⊗ dyaσ(p) , (9.168)

where Sp is the symmetric group for p elements, i.e., the set of all possible permutations
of those elements (see Section 4.3.3). It should be clear that this product is anti-symmetric
in all indices ak and so if any two indices are the same, the wedge product will be zero.
Because of this, the set of non-zero basis elements are found by selecting p different indices,
which in an N -dimensional manifold can be done in

nNp =

(
N
p

)
=

N !

(N − p)!p!
(9.169)

different ways. Due to the anti-symmetry, any ordering of the indices will result in linearly
dependent forms and the set of p-forms on an N -dimensional manifold therefore has di-
mension nNp . Since it is impossible to select more than N different indices, any p-form with
p > N is going to be equal to zero.

Example 9.27 Let us consider a three-dimensional manifold with coordinates y1, y2, and
y3. From our discussion above, we will only have non-zero p-forms for p = 0, 1, 2, and 3 and
the numbers of basis p-forms are going to be given by

n3
0 = 1, n3

1 = 3, n3
2 = 3, and n3

3 = 1, (9.170)
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respectively. The different bases can be written down explicitly as

0-forms : 1, (9.171a)

1-forms : dy1, dy2, dy3, (9.171b)

2-forms : dy1 ∧ dy2 = −dy2 ∧ dy1 = dy1 ⊗ dy2 − dy2 ⊗ dy1,

dy2 ∧ dy3 = −dy3 ∧ dy2 = dy2 ⊗ dy3 − dy3 ⊗ dy2,

dy3 ∧ dy1 = −dy1 ∧ dy3 = dy3 ⊗ dy1 − dy1 ⊗ dy3, (9.171c)

3-forms : dy1 ∧ dy2 ∧ dy3, (9.171d)

where we have written out the expansion of the 2-forms explicitly for clarity.

When writing a p-form ω in terms of its completely anti-symmetric components ωa1...ap
of the type (0, p) tensor, we know that

ω = ωa1...apdy
a1 ⊗ . . .⊗ dyap = ωa1...apdy

[a1 ⊗ . . .⊗ dyap], (9.172)

where we have used the fact that ωa1...ap is completely anti-symmetric in order to anti-
symmetrise the basis. We now note that

dy[a1 ⊗ . . .⊗ dyap] =
1

p!

∑
σ∈Sp

sgn(σ)dyaσ(1) ⊗ . . .⊗ dyaσ(p) =
1

p!
dya1 ∧ . . . ∧ dyap . (9.173)

In other words, we find that

ω =
1

p!
ωa1...apdy

a1 ∧ . . . ∧ dyap , (9.174)

where it must be noted that for ωa1...ap to be the components of the form in the dya1 ⊗
. . .⊗ dyap basis, they must be completely anti-symmetric.

Example 9.28 Consider the 2-form ω = dy1 ∧ dy2 in a two dimensional manifold with
coordinates y1 and y2. Writing out the wedge product in terms of the tensor product of
1-forms, we find that

ω = dy1 ⊗ dy2 − dy2 ⊗ dy1. (9.175)

In other words, ω is a type (0, 2) tensor with the components

ω11 = ω22 = 0, ω12 = −ω21 = 1. (9.176)

However, when we sum ωab with the wedge product dya ∧ dyb, we obtain

ωabdy
a ∧ dyb = ω12dy

1 ∧ dy2 + ω21dy
2 ∧ dy1 = dy1 ∧ dy2 − dy2 ∧ dy1

= 2dy1 ∧ dy2 = 2ω. (9.177)

Consequently, we find that we must divide ωab dy
a ∧ dyb by 2! = 2 in order to recover ω.
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9.5.1.1 The exterior derivative

There is an important derivative operator on a p-form that returns a p+ 1-form. As we will
soon discover through examples, it is a generalisation of the gradient, the divergence, and
the curl all in one. We define the exterior derivative dω of a p-form ω as

dω =
1

p!
(∂a1ωa2...ap+1

) dya1 ∧ dya2 ∧ . . . ∧ dyap+1 . (9.178)

Note that even though we have used the partial derivative of the tensor components
ωa2...ap+1 , this expression still transforms as a tensor under coordinate transformations due
to the anti-symmetrisation implied by the wedge product.

Example 9.29 Let us look at the different possible exterior derivatives in three dimensions.
Starting from the exterior derivative of a 0-form, we should obtain a 1-form as a result. As
a 0-form is equivalent to a scalar field f , we find that its exterior derivative is given by

df = (∂af)dya = (∂1f)dy1 + (∂2f)dy2 + (∂3f)dy3, (9.179)

which is nothing but the definition of the differential of f as a type (0, 1) tensor. Since we
have already used df to denote the differential earlier, we can here see the consistency in
using df to also denote the exterior derivative, at least when applied to 0-forms. We note
that there is a close connection between the differential of a 0-form and the gradient of a
scalar field that we encountered in Chapter 1, since the gradient of f has components ∂if in
a Cartesian coordinate system. The gradient of a scalar field f in a manifold with a metric is
usually defined as the tangent vector field with components gab∂af , i.e., the tangent vector
that the metric maps to the differential df .

Moving on to the exterior derivative of a 1-form ω = ω1dy
1 + ω2dy

2 + ω3dy
3, we find

that

dω = (∂2ω1)dy2 ∧ dy1 + (∂3ω1)dy3 ∧ dy1 + (∂1ω2)dy1 ∧ dy2

+ (∂3ω2)dy3 ∧ dy2 + (∂1ω3)dy1 ∧ dy3 + (∂2ω3)dy2 ∧ dy3

= (∂2ω3 − ∂3ω2)dy2 ∧ dy3 + (∂3ω1 − ∂1ω3)dy3 ∧ dy1

+ (∂1ω2 − ∂2ω1)dy1 ∧ dy2. (9.180)

The observant reader will here notice that the prefactors of all the wedge products are
exactly the components of the curl of a vector field with components ω1, ω2, and ω3.

Finally, we look at the exterior derivative of the most general 2-form

ω = ω1dy
2 ∧ dy3 + ω2dy

3 ∧ dy1 + ω3dy
1 ∧ dy2. (9.181)

The definition of the exterior derivative now leads to

dω = (∂1ω1 + ∂2ω2 + ∂3ω3)dy1 ∧ dy2 ∧ dy3, (9.182)

where we have used that dy2 ∧ dy3 ∧ dy1 = dy3 ∧ dy1 ∧ dy2 = dy1 ∧ dy2 ∧ dy3. As we
are now used to finding expressions similar to the ones discussed in Chapter 1, we merely
acknowledge that the pre-factor of dy1 ∧ dy2 ∧ dy3 in this expression is very reminiscent of
the divergence of a vector field with components ω1, ω2, and ω3.
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9.5.2 Integration of differential forms
We shall now put our differential forms to work and we start by examining how they relate
to line, area, and volume elements. In general, if we have a set of p tangent vectors Xi,
we look for the properties we expect from the p-dimensional volume of the infinitesimal
parallelogram spanned by the displacements dyai = Xa

i dti (no sum over i). First of all, if
the vectors Xi are not linearly independent, we expect the p-dimensional volume to be zero,
since the parallelogram spanned by the displacements will now be at most p−1-dimensional.
Furthermore, we expect that the volume is going to be linear in all of the Xi, i.e., if we
increase the length of one of the sides, the p-dimensional volume will increase accordingly.
Both of these properties are directly satisfied by letting the p-dimensional volume element
of the parallelogram be given by

dVp = ω(X1, . . . , Xp)dt1 . . . dtp, (9.183)

where ω is a p-form. In addition to satisfying the requirements we have already mentioned,
this p-volume is directed and the volume will alternate between being positive and negative
depending on whether the vectors Xi form a right- or left-handed set.

Example 9.30 Consider the case of a three-dimensional Euclidean space in Cartesian
coordinates. The standard volume spanned by the vectors ~v1, ~v2, and ~v3 is given by the
triple product

V = ~v1 · (~v2 × ~v3) = εijkv
i
1v
j
2v
k
3 . (9.184)

At the same time, we note that

η =
1

3!
εijkdx

i ∧ dxj ∧ dxk = dx1 ∧ dx2 ∧ dx3 (9.185)

is a 3-form with precisely the property that

η(~v1, ~v2, ~v3) = V (9.186)

when the ~vi are considered as tangent vectors. Generalising to arbitrary curvilinear coor-
dinates, we must replace the permutation symbol by the completely anti-symmetric tensor
ηabc =

√
gεabc, where g is the metric determinant. Our 3-form then becomes

η =
1

3!

√
g εabcdy

a ∧ dyb ∧ dyc =
√
g dy1 ∧ dy2 ∧ dy3 (9.187)

and the infinitesimal volume spanned by the tangent vectors X1dt1, X2dt2, and X3dt3 is
found to be

dV3 = η(X1dt1, X2dt2, X3dt3) =
√
g εabcX

a
1X

b
2X

c
3dt1dt2dt3. (9.188)

This should be compared with what we found in Eq. (2.166).

We consider a p-dimensional volume S, parametrised by the variables ti, in an N -
dimensional manifold with local coordinates ya. Of course, we will generally have N ≥ p
and based on viewing a p-form ω taking p tangent vectors as an argument as a p-volume
element, possibly multiplied by some function, we define the integral of ω over S as∫

S

ω ≡
∫
S∗
ω (γ̇1, . . . , γ̇p) dt1 . . . dtp, (9.189)
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df = dya∂af
pq

Figure 9.17 The integral of a one-form df which is the exterior derivative of a function f along a
curve γ from q to p is given by the difference of the function values at the endpoints f(p) − f(q)
and does not depend on the curve γ itself, only the positions of its endpoints.

where γ̇i is the tangent vector with components ∂ya/∂ti and S∗ is the range of parameter
values ti that map to S.

Example 9.31 Going back to the integration of the three-form dx1∧dx2∧dx3 in Cartesian
coordinates over a volume V in a Euclidean space, we may use the coordinates x1, x2, and
x3 themselves as parameters. Naturally, this directly implies that V ∗ = V and we find that,
if ρ = ρ(~x) is a scalar field, then∫

V

ρω =

∫
V ∗
ρ(~x)(dx1 ∧ dx2 ∧ dx3)(~e1, ~e2, ~e3)dx1dx2dx3 =

∫
V

ρ(~x) dx1dx2dx3. (9.190)

If ρ(~x) describes a density of an extensive property, this integral therefore evaluates to the
total of that property enclosed in the volume V .

Example 9.32 Consider the one-form df = (∂af)dya, i.e., the differential of the scalar
field f , in a two-dimensional manifold M . The integral of this one-form along a curve γ
going from point q to point p, see Fig. 9.17, is given by∫

γ

df =

∫ 1

0

df(γ̇)dt, (9.191)

where we have assumed that the curve parameter t is such that γ(0) = q and γ(1) = p.
Inserting the definition of df(γ̇), we find that∫

γ

df =

∫ 1

0

(∂af)
dya

dt
dt =

∫ 1

0

df(γ(t))

dt
dt = f(p)− f(q). (9.192)

In other words, integrating the differential of f along a curve gives us the difference of the
value of f at the curve endpoints. This is a result which is familiar from when we first
considered line integrals.

Without a metric, there is no notion of distances on an N -dimensional manifold and so



Calculus on Manifolds � 579

there is also no intrinsic concept of what constitutes an actual volume element corresponding
to a physical volume. However, when a metric g is introduced, there will be a particular
N -form η that fulfils exactly this purpose. Since we are looking for an N -form in an N -
dimensional manifold, it must be proportional to

ε = dy1 ∧ . . . ∧ dyN (9.193)

everywhere in a general coordinate system and we should find that

η = f̃ ε, (9.194)

where f̃ is a function of the coordinates. It should here be noted that

ε = dy1 ∧ . . . ∧ dyN 6= ε′ = dy′1 ∧ . . . ∧ dy′N (9.195)

and ε is therefore a tensor density rather than an actual tensor. In order for η to be
a differential form, and hence a tensor, the function f̃ must be a scalar density of the
appropriate weight. As was argued already in Section 2.5.2, the square root of the metric
determinant g has the correct weight and we therefore assume that

f̃ = f
√
g, (9.196)

where f is now a scalar field. To find an appropriate value of f , we can go to a coordinate
system where the metric tensor is diagonal at the point p. In this system, the tangent vector
basis satisfies

gab = g(∂a, ∂b) = δabh
2
a, (no sum) (9.197)

where the scale factor ha is the norm of ∂a. Since the metric is diagonal, the metric deter-
minant is given by the product of the diagonal elements

g =
N∏
a=1

h2
a =⇒ √

g =
N∏
a=1

ha. (9.198)

At the same time, since the vectors Xa = dt ∂a are orthogonal, they span a small cuboid
with side lengths hadt, which should have the volume

dV = dtN
∏
a=1

ha = dtN
√
g. (9.199)

By construction, we want this to be equal to dtNη(∂1, . . . , ∂N ) and we conclude that

dtN
√
g = dtNη(∂1, . . . , ∂N ) = dtNf

√
g ε12...N = dtNf

√
g. (9.200)

Direct identification now gives us f = 1 and since f is a scalar field, taking the same value
in any coordinate system, this will be the case regardless of the coordinate system we select.
We conclude that the N -form corresponding to a physical volume is given by

η =
√
g dy1 ∧ . . . ∧ dyN (9.201)

in any coordinate system with coordinates ya.
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sin(θ)dϕ

dθdA

Figure 9.18 The area element on the sphere spanned by changing θ by dθ and ϕ by dϕ is given by
dA = sin(θ)dθ dϕ. This may be deduced by considering the small area spanned by the orthogonal
vectors ∂θ and ∂ϕ.

Example 9.33 Looking for the physical volume element on the two-dimensional unit
sphere S2, we use the coordinates θ and ϕ as usual. In this coordinate system, the metric
tensor is already diagonal and we know that hθ = 1 and hϕ = sin(θ). The two-volume,
i.e., area, spanned by the tangent vectors dt ∂θ and dt ∂ϕ should therefore be sin(θ) dt2, see
Fig. 9.18. Writing down the area two-form, we find that

η = f̃ dθ ∧ dϕ, (9.202)

which should satisfy

η(∂θ, ∂ϕ) = f̃

(
∂θ

∂θ

∂ϕ

∂ϕ
− ∂ϕ

∂θ

∂θ

∂ϕ

)
= f̃ = sin(θ). (9.203)

The area two-form is therefore given by

η = sin(θ) dθ ∧ dϕ. (9.204)

In passing we also note that
√
g = sin(θ) in this coordinate system, in accordance to what

we expect from the discussion above.

9.5.3 Stokes’ theorem
Some of the most important results of Chapter 1 were the integral theorems, i.e., the
divergence and curl theorems, relating integrals over closed surfaces and loops to integrals
over the volumes and surfaces they bound. In the language of integration of differential
forms, it will turn out that these are special cases of a more general relation known as
Stokes’ theorem, not to be confused with the fact that the curl theorem is also sometimes
referred to as Stokes’ theorem. The theorem states that for any p-form ω and p+ 1-volume
V , it holds that ∫

V

dω =

∮
∂V

ω, (9.205)
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∂V

V

t2

t1

Figure 9.19 A two-dimensional example of the parametrisation used for the derivation of Stokes’
theorem. The parameter t1 is used as the curve parameter in a family of curves going from one
point on the boundary to another while the parameter t2 parametrises this family of curves, which
sweeps the integration volume V . The boundary ∂V of V corresponds to the extreme values of the
parameter t2.

where ∂V is the closed p-dimensional boundary of V . In order to show that this is the case,
let us consider a p+ 1-volume, which we can parametrise using the p+ 1 parameters ti for
i = 1, 2, . . . , p + 1 assigned such that 0 ≤ tp+1 ≤ 1 and the remaining coordinates for a
fixed tp+1 take values in the range V ∗p and parametrise a p-dimensional surface with a tp+1-
independent boundary, see Fig. 9.19. This implies that whenever the remaining parameters
take values on the boundary of V ∗p , we have ∂ya/∂t1 = 0. Although this is a bit restrictive
on the type of volumes we can consider, we can always use volumes of this kind to build an
arbitrary volume.

Example 9.34 To give a concrete example of a volume parametrised in this fashion, let
us consider the the volume V given by r ≤ 1 in spherical coordinates in R3. In order to
parametrise this volume we use the three variables t1, t2, and t3 such that

x1 = t1, x2 = t2, and x3 = (2t3 − 1)
√

1− t21 − t22. (9.206)

With this choice, V ∗2 is the region t21 + t22 ≤ 1 and we note that t3 = 1 corresponds to the
upper half-sphere of radius one and t3 = 0 to the lower one, see Fig. 9.20.

With ω being a p-form, we can construct the integral∫
V

dω =
∑

σ∈Sp+1

sgn(σ)

p!

∫
V ∗
∂ap+1

ωa1...ap
∂yaσ(1)

∂t1
. . .

∂yaσ(p+1)

∂tp+1
dt1 . . . dtp+1

=
∑

σ∈Sp+1

sgn(σ)

p!

∫
V ∗
∂ap+1

ωa1...ap
∂ya1

∂tσ(1)
. . .

∂yap+1

∂tσ(p+1)
dt1 . . . dtp+1︸ ︷︷ ︸

≡I(σ,ω)

. (9.207)
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Figure 9.20 A cross section of the example parametrisation from Example 9.34 used for the deriva-
tion of Stokes’ theorem in the case of three dimensions with the volume being a ball V . The surfaces
inside the sphere correspond to fixed values of t3 and the dark circle the region where the mapping
does not depend on t3, i.e., the boundary of the family of surfaces. The outer surface corresponds
to the boundary ∂V of V , which is a sphere.

Looking closer at the integral I(σ, ω), we find that

I(σ, ω) =

∫
V ∗

∂yap+1

∂tσ(p+1)
(∂ap+1

ωa1...ap)
∂ya1

∂tσ(1)
. . .

∂yap

∂tσ(p)
dt1 . . . dtp+1

=

∫
V ∗

∂ωa1...ap
∂tσ(p+1)

∂ya1

∂tσ(1)
. . .

∂yap

∂tσ(p)
dt1 . . . dtp+1

=

∫
tσ(p+1)=t

+
σ(p+1)

ωa1...ap
∂ya1

∂tσ(1)
. . .

∂yap

∂tσ(p)
dt1 . . .���

�XXXXdtσ(p+1) . . . dtp+1

−
∫
tσ(p+1)=t

−
σ(p+1)

ωa1...ap
∂ya1

∂tσ(1)
. . .

∂yap

∂tσ(p)
dt1 . . .��

��XXXXdtσ(p+1) . . . dtp+1

+

∫
V ∗
ωa1...ap

∂

∂tσ(p+1)

(
∂ya1

∂tσ(1)
. . .

∂yap

∂tσ(p)

)
dt1 . . . dtp+1, (9.208)

where tσ(p+1)± are the largest and smallest possible values of tσ(p+1) given the values of the
other parameters and the first two integrals are taken with respect to those. In order to
obtain the result in the last step we have performed a partial integration in tσ(p+1). While
this expression looks quite bulky, most of the terms are going to either cancel or be equal
to zero. We start by noting that if σ(p + 1) 6= p + 1, then tσ(p+1) = t±σ(p+1) implies that

the leftover integration domain is on the boundary of V ∗p . Consequently, there is going to
be a k such that 1 ≤ k ≤ p and σ(k) = p+ 1 for which ∂yak/∂tp+1 = ∂yak/∂tσ(k) = 0 and
the integrals in the first two lines of the final expression therefore evaluate to zero. On the
other hand, if σ(p+ 1) = p+ 1, we find that t+p+1 = 1 and t−p+1 = 0 and that the remaining
integration domain is V ∗p . Looking at the integrand in the final line, it is always going to
contain a term of the form

∂

∂tσ(p+1)

∂yak

∂tσ(k)
=

∂2yak

∂tσ(k)∂tσ(p+1)
, (9.209)

which is symmetric with respect to p+1 and k. However, the sum over Sp+1 is anti-symmetric
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t 2
=

1

∂V

t2 = 0

Figure 9.21 In order to obtain the integral over the closed directed boundary ∂V , the integral for
the curve t2 = 1 must be taken in the positive t1 direction, but the integral for the curve t2 = 0
must be taken in the negative t1 direction. This is precisely the type of integral that results from
the argumentation leading to Stokes’ theorem.

under exchange of p+ 1 and k and these terms therefore cancel out in the sum. We are left
with the result∫

V

dω =
∑
σ̃∈Sp

sgn(σ̃)

∫
V ∗p

ωa1...ap
∂ya1

∂tσ̃(1)
. . .

∂yap

∂tσ̃(p)
dt1 . . . dtp

∣∣∣∣∣
tp+1=1

−
∫
V ∗p

ωa1...ap
∂ya1

∂tσ̃(1)
. . .

∂yap

∂tσ̃(p)
dt1 . . . dtp

∣∣∣∣∣
tp+1=0

 . (9.210)

The surfaces parametrised by V ∗p are nothing but the bounding surfaces of V and the minus
sign tells us that the the surfaces have opposite orientation, essentially meaning that both
of these surfaces taken together form the bounding surface ∂V , see Fig. 9.21, and therefore∫

V

dω =

∮
∂V

ω, (9.211)

which is Stokes’ theorem for integration of differential forms.

Example 9.35 All of the integral theorems that we encountered in Chapter 1 are special
cases of Stokes’ theorem. Let us recover them one by one! For p = 0, we have a zero-
form f , i.e., a scalar, and V is a one-dimensional curve γ. We have already seen the result
in Example 9.32 ∫

γ

df = f(p)− f(q), (9.212)

where q is the starting point and p the endpoint of γ and thus its boundary. Restricting
ourselves to a three-dimensional Euclidean space in Cartesian coordinates, we can consider
a one-form ω = ωidx

i and integrate its exterior derivative over a two-dimensional surface S.
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Looking at any integral with the two-form dxi ∧ dxj , we find that

(dxi ∧ dxj)(γ̇t, γ̇s)dt ds =
1

2
εijkεk`m(dx` ∧ dxm)(γ̇t, γ̇s)dt ds

=
1

2
εijkεk`m

(
∂x`

∂t

∂xm

∂s
− ∂x`

∂s

∂xm

∂t

)
dt ds

= εijkεk`m
∂x`

∂t

∂xm

∂s
dt ds = εijkdSk, (9.213)

where we have used t and s as curve parameters. The integral over the surface S can
therefore be rewritten according to∫

S

dω =

∫
S

(∂iωj)dx
i ∧ dxj =

∫
S

(∂iωj)εijkdSk =

∫
S

(∇× ~ω) · d~S. (9.214a)

At the same time, we find that∮
∂S

ω =

∮
∂S

ωidx
i =

∮
∂S

~ω · d~x (9.214b)

and therefore Stokes’ theorem implies∫
S

(∇× ~ω) · d~S =

∫
S

dω =

∮
∂S

ω =

∮
∂S

~ω · d~x, (9.214c)

i.e., the curl theorem. Moving on to the two-form

ω =
1

2
ωiεijkdx

j ∧ dxk, (9.215)

the integral of its exterior derivative over the volume V is given by∫
V

dω =
1

2

∫
V

(∂`ωi)εijkdx
` ∧ dxj ∧ dxk =

1

2

∫
V

(∂`ωi) εijkε`jk︸ ︷︷ ︸
=2δi`

dx1dx2dx3

=

∫
V

(∂iωi)dV =

∫
V

(∇ · ~ω)dV, (9.216a)

while the integral of ω itself over the boundary surface ∂V becomes∮
∂V

ω =
1

2

∮
∂V

ωiεijkdx
j ∧ dxk =

1

2

∮
∂V

ωi εijkεjk`︸ ︷︷ ︸
=2δi`

dS`

=

∮
∂V

ωidSi =

∮
∂V

~ω · d~S. (9.216b)

From Stokes’ theorem we now obtain∫
V

(∇ · ~ω)dV =

∫
V

dω =

∮
∂V

ω =

∮
∂V

~ω · d~S, (9.216c)

which is nothing other than the divergence theorem.
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γ̇ ds S

J dΦ

Figure 9.22 The two-dimensional case of a flux through a one-dimensional surface S, i.e., a curve.
The differential flux dΦ of the tangent vector J through the surface is proportional to the volume
spanned by the tangent vector γ̇ ds and J .

9.5.4 The continuity equation revisited
A basic ingredient used to model physical systems in Chapter 3 was the continuity equation,
derived from equating the change of an extensive property within a volume to the production
minus the flux out of the volume. We are now equipped to perform the corresponding
considerations in a general manifold of arbitrary dimension N .

9.5.4.1 Flux

Since we will deal with the flux out of the volume, we first need to examine the generalisation
of the flux integral. In the Euclidean setting, the flux of the vector field ~ through the N−1-
dimensional surface S was given by

Φ =

∫
S

~ · d~S (9.217)

and so we expect our flux integral to reduce to this when the special case is considered.
Let us assume that the flux is described by some tangent vector field J determining the
direction and magnitude of the flux. If S is parametrised with the N − 1 parameters si for
i = 1, 2, . . . , N − 1, then the the flux through a small surface element should be equal to
the volume spanned by J together with the tangent vectors γ̇idsi (no sum), see Fig. 9.22.
Knowing the physical volume N -form, we therefore find that the flux is given by

dΦ = η(J, γ̇1, . . . , γ̇N−1)ds1 . . . dsN−1. (9.218)

Summing up the small contributions to the flux to obtain the total flux, we find that

Φ =

∫
S

η(J, γ̇1, . . . , γ̇N−1)ds1 . . . dsN−1. (9.219)

This is exactly the result we would obtain from integrating the N − 1 form iJη given by

iJη(X1, . . . , XN−1) ≡ η(J,X1, . . . , XN−1) (9.220a)

whose components are
iJη(∂a1 , . . . , ∂aN−1

) = Jbηba1...aN−1
. (9.220b)
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Note that since iJη is an N − 1-form, it is given by

iJη =
1

(N − 1)!
(iJη)a1...aN−1

dya1 ∧ . . . ∧ yaN−1

=
1

(N − 1)!
Jbηba1...aN−1

dya1 ∧ . . . ∧ yaN−1 (9.221)

in terms of the N − 1-form basis, cf. Eq. (9.174). This type of construction is called the
interior product of J with the differential form η and we find that the flux integral can be
written as

Φ =

∫
S

iJη, (9.222)

where η is the physical volume form.

Example 9.36 Let us make sure that the above definition of the flux integral gives back the
expression we have previously used in a three-dimensional Euclidean space with Cartesian
coordinates. In this case, the physical volume element is just ηijk = εijk, which means that∫

S

iJη =
1

2

∫
S

J iεijkdx
j ∧ dxk =

1

2

∫
S

J i εijkεjkm︸ ︷︷ ︸
=2δim

dSm =

∫
S

J idSi =

∫
S

~J · d~S (9.223)

as expected.

In addition to reducing to the expected formula in the Euclidean setting, we also note
that the flux is going to be zero if J is linearly dependent on the tangent vectors γ̇i of the
surface S, i.e., if the J is parallel to the surface.

9.5.4.2 Production, concentration, and continuity

Just as we did when deriving the continuity equation in Chapter 3, we assume that the
production of the extensive property within a volume V is given by a source density κ and
that the extensive property Q itself is related to an intensive property q, which we will refer
to as the concentration. We can express Q and its production K in V as the integrals

Q =

∫
V

qη and K =

∫
V

κη, (9.224)

respectively. We can now go through exactly the same motions as we originally did when
deriving the continuity equation. The time derivative of Q is going to be given by

dQ

dt
=

∫
V

∂q

∂t
η (9.225)

as long as we select a volume V that does not change with time. The continuity assumption
is now given by dQ/dt = K − Φ, leading to∫

V

∂q

∂t
η −

∫
V

κη +

∮
∂V

iJη =

∫
V

(
∂q

∂t
η − κη + diJη

)
= 0, (9.226)

where we have used Stokes’ theorem for the flux integral. For this to hold for any volume V ,
we obtain the continuity requirement

∂q

∂t
η + diJη = κη. (9.227)
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This may be simplified to get rid of the volume form η. We start by expressing the exterior
derivative of iJη as

diJη =
1

(N − 1)!
∂a1(Jb

√
gεba2...aN ) dya1 ∧ . . . ∧ dyaN

=
1

(N − 1)!
εba2...aN ε

a1...aN (
√
g∂a1J

b + Jb∂a1
√
g) dy1 ∧ . . . ∧ dyN

= δa1b (
√
g ∂a1J

b + Jb∂a1
√
g) dy1 ∧ . . . ∧ dyN

= (
√
g ∂bJ

b + Jb∂b
√
g) dy1 ∧ . . . ∧ dyN

= (∂bJ
b)η + Jb[∂b ln(

√
g)]η. (9.228)

Using the relation Γbab = ∂a ln(
√
g), see Problem 2.18, we can rewrite this as

diJη = (∂bJ
b + ΓbabJ

a)η = (∇bJb)η. (9.229)

Inserted into Eq. (9.227), we find the continuity equation

∂q

∂t
+∇bJb = κ, (9.230)

which is of exactly the same form as the continuity equation we are familiar with, where
the divergence ∇ · ~ has been replaced by the generalised divergence ∇bJb.

Example 9.37 Taking the case of diffusion into consideration, Fick’s law may be gener-
alised to

Ja = −λgab∂bq. (9.231)

This leads us to the divergence of the current

∇aJa = −λgab∇a∂bq = −λgab(∂a∂b − Γcab∂c)q ≡ −λ∇2q, (9.232)

where we have introduced the generalised Laplace operator

∇2 = gab(∂a∂b − Γcab∂c) (9.233)

that was also mentioned in Eq. (2.101).

9.6 EMBEDDINGS
Although a manifold, such as the sphere, is well defined without considering it as a subspace
of a higher-dimensional space, it is often of interest to do so. In particular, when embedding
a manifold in a higher-dimensional space it will turn out that some properties, such as the
metric tensor, may be inherited from it. Before we can discuss this properly, we need to go
through some of the underlying concepts. We start by looking at a map f from a manifold
M to another manifold N . For any given point p in M , the map f induces a natural map f∗,
called the pushforward , between the tangent spaces TpM and Tf(p)N . As a tangent vector
is a directional derivative, the pushforward should bring a directional derivative of functions
on M to a directional derivative of functions on N . Taking a vector V in TpM , we define
the pushforward by its action on a function ϕ on N as

(f∗V )ϕ = V (ϕ ◦ f), (9.234)
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Figure 9.23 The projection of the geodesics going from New York to Paris and from New York
to Anchorhage, respectively, onto the two-dimensional chart of the Earth’s surface given by the
Mercator projection and the corresponding three-dimensional paths in R3 shown together with the
natural embedding of the Earth’s surface.

where ϕ ◦ f is the composite function of ϕ and f such that

(ϕ ◦ f)(p) = ϕ(f(p)). (9.235)

Since ϕ is a function on N and f is a function from M to N , this composition is a function
on M , which we may act upon with the vector V . If we introduce coordinates ya on M and
zµ on N , the chain rule results in

(f∗V )µ∂µϕ = V a∂a(ϕ ◦ f) = V a
∂zµ

∂ya
∂µϕ, (9.236)

where ∂zµ/∂ya are the partial derivatives of the coordinates zµ with respect to ya given
the function f . We can here identify the components of f∗V as

(f∗V )µ = V a
∂zµ

∂ya
. (9.237)

Example 9.38 Since this definition of the pushforward is rather abstract, let us see how
it works in practice when considering the tangent vector of a curve γ in M . By definition,
γ is a function taking a single parameter t and mapping it to M . If we have a map f from
M to N , there is a corresponding curve γ̃ = f ◦ γ, which is the composition of f and γ and
therefore maps t to N instead, see Fig. 9.23. With the coordinates ya on M and zµ on N ,
the tangent vector of γ has the components

γ̇a =
dya

dt
, (9.238a)

while the tangent vector of γ̃ has the components

˙̃γµ =
dzµ

dt
. (9.238b)

Using the relation we found for the pushforward, we find that

(f∗γ̇)µ = γ̇a
∂zµ

∂ya
=
dya

dt

∂zµ

∂ya
=
dzµ

dt
= ˙̃γµ. (9.239)
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In other words, the pushforward of γ̇ is just the tangent vector of γ̃.

Example 9.39 Consider the natural map from the sphere S2 to R3 given by

x1 = R sin(θ) cos(ϕ), x2 = R sin(θ) sin(ϕ), and x3 = R cos(θ), (9.240)

where R is a constant, θ and ϕ the coordinates on the sphere, and the xi are Cartesian
coordinates on R3. Taking a curve γ in S2 given by

θ(t) = t+ θ0, ϕ(t) = ϕ0, (9.241)

where θ0 and ϕ0 are constants, the corresponding tangent vector γ̇ is given by

γ̇ = γ̇a∂a = ∂θ, (9.242)

or in other terms γ̇θ = 1 and γ̇ϕ = 0. It follows that the pushforward of this vector is given
by

˙̃γ =
∂xi

∂θ
∂i = R[cos(θ) cos(ϕ)∂1 + cos(θ) sin(ϕ)∂2 − sin(θ)∂3]. (9.243)

Identifying this with the basis vectors of R3 expressed in spherical coordinates,
see Eq. (1.209), we find that

˙̃γ = R~eθ = ~Eθ. (9.244)

With the function f inducing a map from TpM to Tf(p)N , we can also construct a map
from dual vectors on N to dual vectors on M . For a dual vector ω in T ∗f(p)N , we define the
pullback f∗ω by its action on any tangent vector X in TpM according to

f∗ω(X) = ω(f∗X). (9.245)

This is well defined as the pushforward f∗X is a tangent vector in Tf(p)N . For the compo-
nents of f∗ω in the coordinate systems ya defined above, we find that

(f∗ω)a = f∗ω(∂a) = ω(f∗∂a) =
∂zµ

∂ya
ωµ. (9.246)

Thus, the pullback transforms with exactly the same coefficients ∂zµ

∂ya as the pushforward,
but with the other index contracted.

Although both the pushforward and pullback will always be defined, they may not be
invertible. However, if one of them is invertible, so is the other. Any map f that induces an
invertible pushforward and pullback is called an immersion of M into N . If, in addition, f
itself is invertible, then it is an embedding of M in N . For any embedding, the image f(M)
in N is called a submanifold of N .

Example 9.40 Let us look at one of the most straightforward examples of a map f that is
not an immersion. We consider the map from the real line R to R2 with global coordinate
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systems t and x1, x2, respectively, such that

x1(t) = t2 and x2(t) = t3. (9.247)

For any tangent X vector at t = 0, this implies that the pushforward is given by

f∗X = Xt dx
1

dt
∂1 +Xt dx

2

dt
∂2 = 0. (9.248)

Since any vector is mapped to the zero vector by the pushforward, it is clearly not invertible,
even though f itself is.

Example 9.41 We now look for an example where we have a map f that is an immersion,
but not an embedding. We do so by looking at a map from the circle S1, parametrised by
an angle θ, to R2, again with the coordinates x1 and x2, defined by

x1(θ) = cos(θ) and x2(θ) = sin(2θ). (9.249)

The pushforward of a vector X in TθS
1 with the component Xθ is given by

f∗X = Xθ

(
dx1

dθ
∂1 +

dx2

dθ
∂2

)
= Xθ(− sin(θ)∂1 + 2 cos(2θ)∂2). (9.250)

Since sin(θ) = 0 only when θ is an integer multiple of π and cos(2πn) = 1 when n is an
integer, the pushforward is always invertible. The function f itself is not invertible since the
points θ = π/2 and θ = 3π/2 both map to

x1 = cos
(π

2

)
= cos

(
3π

2

)
= 0 and x2 = sin(π) = sin(3π) = 0. (9.251)

Note that while θ = π/2 and θ = 3π/2 map to the same point x1 = x2 = 0 in R2, the
pushforward of the respective tangent spaces are linearly independent. Because of this, f is
an immersion, but not an embedding of the circle S1 in R2. However, it is perfectly possible
to embed the circle in the plane, the most common embedding being given by

x1(θ) = R cos(θ) and x2 = R sin(θ), (9.252)

which maps the circle to the set of points in R2 which are a distance R away from the origin,
see Fig. 9.24. In the same way, the map from the sphere to R3 discussed in Example 9.39 is
also an embedding.

The pushforward and pullback may be generalised to higher order contravariant and
covariant tensors, respectively. For example, the pullback of a type (0, 2) tensor ω to M is
given by

f∗ω(X,Y ) = ω(f∗X, f∗Y ). (9.253)

In particular, this works very well if we have a metric g on N and wish to select a suitable
metric on M as well. If f is an embedding, the pullback tensor f∗g will be a metric on M
called the induced metric.
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x2 x2

x1x1

Figure 9.24 The images of the two mappings from the circle S1 to R2 discussed in Example 9.41.
The left figure shows an immersion that is not an embedding due to two points on the circle
mapping to the origin of R2. The right figure shows the canonical embedding, where S1 is mapped
to a circle of constant radius.

We have already seen that the metric tensor is directly related to the path length of
curves through the relation

sγ =

∫
γ

ds =

∫ 1

0

√
g(γ̇, γ̇) dt, (9.254)

where we have assumed the curve parameter to go from 0 to 1. So how does this relate to
the induced metric? Consider the curve γ in M with the induced metric f∗g, where g is a
metric on N . The curve length of γ in M is now given by

sγ =

∫ 1

0

√
f∗g(γ̇, γ̇) dt =

∫ 1

0

√
g(f∗γ̇, f∗γ̇) dt =

∫ 1

0

√
g( ˙̃γ, ˙̃γ) dt = sγ̃ , (9.255)

where γ̃ is the curve f ◦ γ in N . The path length of a curve in M can therefore be found by
computing the length of the corresponding path in N induced by the map f . Considering
that the line element ds can be written in terms of the metric tensor components

ds2 = gabdy
adyb = gµν

∂zµ

∂ya
∂zν

∂yb
dyadyb = gµνdz

µdzν , (9.256)

where we have used gab to denote the components of f∗g and gµν for the components of the
original metric g, we find that the easiest way of computing the components of the induced
metric is to take the line element and restrict it to displacements within the submanifold.

Example 9.42 Consider the embedding of the sphere into R3 discussed in Example 9.39.
The metric tensor on R3 is given by

g11 = g22 = g33 = 1 (9.257a)

and the off-diagonal terms all being equal to zero. Consequently, the line element is given
by

ds2 = gijdx
idxj = (dx1)2 + (dx2)2 + (dx3)2. (9.257b)
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q

p

P

q′

Figure 9.25 The stereographic projection based on the point p is constructed by projecting a point
q to the the point q′ in the plane P by where a straight line through p and q passes through P .
The stereographic projection is a chart that covers all of the sphere S2 except the point p itself.

Expressing the differentials dxi in terms of the differentials dθ and dϕ, we find that

dx1 = R[cos(θ) cos(ϕ)dθ − sin(θ) sin(ϕ)dϕ], (9.258a)

dx2 = R[cos(θ) sin(ϕ)dθ + sin(θ) cos(ϕ)dϕ], (9.258b)

dx3 = −R sin(θ)dθ. (9.258c)

Squaring and inserting into the expression for the line element now results in

ds2 = R2[dθ2 + sin2(θ)dϕ2] (9.259)

from which we can directly identify the components

gθθ = R2, gϕϕ = R2 sin2(θ), and gθϕ = gϕθ = 0 (9.260)

of the induced metric. If we use R = 1, i.e., if we consider the unit sphere in R3, this exactly
corresponds to the metric which was first introduced in Example 9.22.

9.7 PROBLEMS
Problem 9.1. We can construct a set of coordinates on the two-dimensional sphere covering
everything but a single point through the stereographic projection. It is produced by selecting
a point p on the sphere and the plane P through the sphere’s center which is orthogonal to
the radius going to p. For any other point q on the sphere, a straight line through p and q
will cross P at a single point q′ which is unique for each q, see Fig. 9.25. We can therefore
use the coordinates x1 and x2 in P as a coordinate system for the sphere. Derive the set of
coordinate transformations going from the usual coordinates on the sphere θ and ϕ to x1

and x2.

Problem 9.2. The set of possible positions for a double pendulum, see Fig. 2.10, can be
described as a two-dimensional manifold. Construct an atlas for this manifold and explicitly
write down the coordinate transformations between the different charts.
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Figure 9.26 The Möbius strip is a non-orientable two-dimensional manifold for which Problem 9.3
asks for the construction of an atlas.

Problem 9.3. The Möbius strip, see Fig. 9.26, is a two-dimensional example of a non-
orientable manifold. Construct an atlas for the Möbius strip and explicitly write down the
coordinate transformations in the regions where the charts overlap.

Problem 9.4. Consider the curve given by

θ(t) =
π

2
+ cos(t) and ϕ(t) = t (9.261)

in the regular coordinates on a two-dimensional sphere. Compute the components of the
tangent vector of this curve at an arbitrary point along the curve in the given coordinates
as well as in the stereographic coordinates introduced in Problem 9.1.

Problem 9.5. Show that the components dfa = ∂af of the differential df transform as
you would expect the components of a dual vector to transform under arbitrary coordinate
transformations.

Problem 9.6. Verify that the maps ω + ξ and aω defined in Eqs. (9.25) are dual vectors,
i.e., that they are linear maps from the tangent vector space TpM to real numbers.

Problem 9.7. On the two-dimensional sphere, consider the vector fields X and Y with the
components

Xθ = 0, Xϕ = 1, and Y θ = sin(ϕ), Y ϕ = cot(θ) cos(ϕ), (9.262)

respectively. Find the scalar fields resulting from letting these vector fields act on the scalar
fields

f1 = cos(θ), f2 = sin(ϕ). (9.263)

Problem 9.8. Determine how the term Xa(∂aY
b)∂b appearing in the expression for XY in

Eq. (9.40) transforms under coordinate transformations and use the result to argue why it
cannot be a component of a tangent vector Z. Having done so, determine the transformation
properties of the Lie bracket [X,Y ] = XY − Y X and argue that it is a tangent vector.

Problem 9.9. Compute the flow lines of the vector field X on the two-dimensional sphere
as defined in Problem 9.7 starting at an arbitrary point θ(0) = θ0 and ϕ(0) = ϕ0. Also
write down the differential equations that need to be satisfied for the flow lines of the vector
field Y .
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Problem 9.10. On the two-dimensional sphere, compute the dual vector df when the
scalar field f is given by

a) f = sin(θ),

b) f = cos(θ) sin(ϕ), and

c) f = cos(2θ)[sin(2ϕ)− cos(ϕ)], respectively.

Problem 9.11. Show that there is no scalar field f on the circle for which df is non-zero
everywhere and, thus, that the dual vector ω = dθ cannot be written as the differential of
a scalar field. Note: The coordinate function θ is not a scalar field on the full circle, only
on a particular chart, cf. Example 9.4.

Problem 9.12. Compute the Lie bracket between the vector fields X and Y given by:

a) X = ∂θ and Y = [1/ sin(θ)]∂ϕ

b) X = [1/(1 + (x2)2)]∂1 and Y = [1/(1 + (x1)2)]∂2

Problem 9.13. Given N vector fields of the form Xi = fi(y
i)∂i (no sum), on an N -

dimensional manifold, show that all of them Lie commute with each other, i.e., [Xi, Xj ] = 0.

Problem 9.14. Use the product rule

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2), (9.264)

where T1 and T2 are arbitrary tensors to deduce the components of the result of ∇X acting
on a type (n,m) tensor.

Problem 9.15. In this chapter, we have seen two different connections on the two-
dimensional sphere, one which was based on a particular set of vector fields being parallel
and one which was the Levi-Civita connection based on the natural embedding of the sphere
in a three-dimensional Euclidean space. In order to illustrate that vector fields that are par-
allel with respect to one affine connection are not necessarily parallel with respect to others,
compute ∇θX, ∇θY , ∇ϕX, and ∇ϕY , where the connection is the Levi-Civita connection
with the non-zero Christoffel symbols

Γθϕϕ = − sin(θ) cos(θ) = −1

2
sin(2θ) and Γϕθϕ = Γϕϕθ = cot(θ) (9.265)

and the vector fields X and Y are given by

X = ∂θ and Y =
1

sin(θ)
∂ϕ, (9.266)

respectively.

Problem 9.16. Verify that Eqs. (9.84) hold and use them to conclude that the torsion
T (X,Y ) only depends on the components of X and Y and not on their derivatives.

Problem 9.17. In an N -dimensional manifold M with an affine connection, a map fp(X)
from TpM to M can be defined in such a way that fp(X) is the point given by following
the geodesic with the tangent vector X at p while increasing the geodesic parameter by
one. Given a set of N linearly independent vectors Xi at the point p in an N -dimensional
manifold M , verify that fp(X) defines a local coordinate system on M by mapping the N
coordinates ti to M according to

φ(t1, . . . , tN ) = fp(t
iXi). (9.267)

In other words, show that this map is locally invertible.
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Problem 9.18. For an arbitrary coordinate change, deduce the transformation rules of
the curvature tensor components specified in Eq. (9.103b). By doing so, verify that they
transform in exactly the way you would expect a type (1, 3) tensor to transform under
coordinate changes.

Problem 9.19. For a general affine connection that may not be torsion free, write down the
condition on the deviation Γ̃cab of the connection coefficients from the Christoffel symbols

Γ̃cab = Γcab −
1

2
gcd (∂agdb + ∂bgad − ∂dgab) (9.268)

that must be satisfied in order for the connection to be metric compatible.

Problem 9.20. In Example 9.15, we introduced an affine connection on the sphere for
which the only non-zero connection coefficient was Γϕθϕ = cot(θ). Show that this connection
is compatible with the standard metric

gθθ = 1, gϕϕ = sin2(θ), and gθϕ = gϕθ = 0 (9.269)

given by the embedding of the sphere in R3.

Problem 9.21. In the punctured three-dimensional space for which r > 0 and sin(θ) 6= 0
in spherical coordinates, define a connection such that the vector fields

X1 = ∂r, X2 =
1

r
∂θ, and X3 =

1

r sin(θ)
∂ϕ (9.270)

are all parallel. Show that this connection is compatible with the standard Euclidean met-
ric and compute the connection coefficients and the components of the torsion tensor in
spherical coordinates.

Problem 9.22. When an N -dimensional manifold is endowed with a metric tensor, we can
define a vielbein as a set of N tangent vectors Xi such that

g(Xi, Xj) = δij . (9.271)

When working in a specific set of coordinates, the vielbein vector fields may be expressed
through their components eai

Xi = eai ∂a. (9.272)

Show that any vector Y = Y a∂a can be written as a linear combination Y = Y iXi and
express the numbers Y i in terms of the coordinate components Y a and the vielbein com-
ponents eai .

Problem 9.23. Use the vielbein from Problem 9.22 in order to construct a local coordi-
nate system at the point p based on the procedure in Problem 9.17. Using the Levi-Civita
connection, show that the first order partial derivatives of the metric components vanish
at p in this coordinate system and that the Christoffel symbols are therefore all zero at p.
These coordinates are called normal coordinates at p.

Problem 9.24. Verify that the Lie bracket satisfies the Jacobi identity

a) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

In addition to its symmetries, the curvature tensor has some additional properties. In par-
ticular, show that
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b) R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 and

c) (∇XR)(Y, Z)W + (∇YR)(Z,X)W + (∇ZR)(X,Y )W = 0

in the case of a torsion free connection. These relations are known as the first and second
Bianchi identities, respectively.

d) Write down the relations between the components of the curvature tensor that corre-
spond to the Bianchi identities.

Problem 9.25. Determine the number of independent components of the curvature tensor
using the following line of argumentation:

a) Determine the number of independent components that are allowed by the symmetries
of the curvature tensor.

b) The component form of the first Bianchi identity introduced in Problem 9.24(d) can be
used to further constrain the number of independent components. For each choice of
the indices in the first Bianchi identity which is not trivially satisfied by the curvature
tensor symmetries, an additional constraint is implied and the number of independent
components decreases by one. Determine the number of such additional constraints.

c) Find the total number of independent constraints by comparing your results from (a)
and (b).

Problem 9.26. The length of a curve γ in a manifold with a metric is given by

sγ =

∫ 1

0

√
g(γ̇, γ̇) dt, (9.273)

where we have assumed that the curve parameter goes from zero to one. Show that this
curve length is independent of the parametrisation of the curve, i.e., if we select a different
curve parameter s such that s = s(t) is a monotonically increasing function, then

sγ =

∫ s(1)

s(0)

√
g(γ′, γ′) ds, (9.274)

where γ′ is the tangent vector of the curve when parametrised by s.

Problem 9.27. Show that the inverse metric tensor gab is a parallel tensor field for any
metric compatible connection and that the Kronecker delta δba is always a parallel tensor
field regardless of the connection.

Problem 9.28. Using the standard coordinates θ and ϕ on the unit sphere with the
standard metric, write down the generalised Laplace operator and show that it corresponds
exactly to the operator −Λ̂ appearing in the Laplace operator in spherical coordinates on
R3

∇2 =
1

r2
∂rr

2∂r −
1

r2
Λ̂. (9.275)

Problem 9.29. In a manifold M with a metric g, consider a set of geodesics γX(t) of length
s0 originating at the point p such that the unit tangent vectors X at p vary continuously
with the parameter t. The resulting curve endpoints of the geodesics form a curve γ̃s0(t)
in M . Show that this curve is orthogonal to the geodesics, i.e., that

g(γ̇X(s0), ˙̃γs0) = 0 (9.276)

for all t.
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(1)

(2)
(3)

γ

Figure 9.27 In Problem 9.32 we consider the parallel transport of a vector X around the loop γ
formed by the three curves (1), (2), and (3).

Problem 9.30. The scalar curvature S at a point p in a two-dimensional manifold with a
metric g can be computed as

S = −6
d2

dρ2

(
`p(ρ)

2πρ

)∣∣∣∣
ρ=0

, (9.277)

where `p(ρ) is the circumference of a circle of radius ρ around p, which is defined as the
set of points that are a distance ρ from p (defined as in Problem 9.29). Compute the scalar
curvature of a unit sphere and verify that it is equal to the Ricci scalar.

Problem 9.31. Find the expressions for the components of the metric tensor on the two-
dimensional sphere in stereographic coordinates, see Problem 9.1, and use it to derive the
Christoffel symbols of the Levi-Civita connection in those coordinates.

Problem 9.32. On the two-dimensional sphere with the standard metric and the Levi-
Civita connection, consider the parallel transport of the vector X = Xθ∂θ +Xϕ∂ϕ around
the curve γ given by the three segments

(1) : θ(t) =
π

2
, ϕ(t) = tϕ0, (0 ≤ t ≤ 1) (9.278a)

(2) : θ(t) =
π

2
− tθ0, ϕ(t) = ϕ0, (0 ≤ t ≤ 1) (9.278b)

(3) : θ(t) =
π

2
− (1− t)θ0, ϕ(t) = ϕ0(1− t), (0 ≤ t ≤ 1) (9.278c)

in that order, see Fig. 9.27. Find the angle between the original vector X and the vector that
has been parallel transported once around γ. How does your result change if you instead
use the connection defined in Example 9.15?

Problem 9.33. In Problem 8.29, you should have found a parametrisation of a general
great circle on the sphere. Check whether or not this parametrisation leads to a tangent
vector of constant length. If it does not, find a parametrisation of the great circle such that
the length of the tangent vector is constant.

Problem 9.34. In the case of the Levi-Civita connection, a Killing vector field is a vector
field X that satisfies the relation

g(∇YX,Z) + g(Y,∇ZX) = 0 (9.279)

for all other vector fields Y and Z.
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ϕ

θ

Figure 9.28 The coordinates θ and ϕ on the torus, here shown embedded in R3 as described in
Problem 9.36.

a) Show that the Killing vector field satisfies

∇aXb +∇bXa = 0 (9.280)

in any coordinate system and that this is also a sufficient condition for the vector field
X to be a Killing vector field.

b) Show that the Lie bracket of any two Killing vector fields is also a Killing vector field.

c) For any geodesic γ with an affine parameter t, show that

Q = g(X, γ̇), (9.281)

where γ̇ is the tangent vector of γ, is constant along the geodesic.

Problem 9.35. Combining Problems 9.33 and 9.34, verify that the vector field

X = ∂ϕ (9.282)

is a Killing vector field and compute the conserved quantity Q = g(X, γ̇) for the vector field
X when γ is a great circle parametrised by its curve length.

Problem 9.36. A two-dimensional torus, denoted T 2, is a manifold that may be
parametrised using two cyclic angular coordinates θ and ϕ, see Fig. 9.28. For two constants
R > ρ > 0, we can define an embedding of the torus into R3 as

x1 = [R+ ρ sin(ϕ)] cos(θ), (9.283a)

x2 = [R+ ρ sin(ϕ)] sin(θ), (9.283b)

x3 = ρ cos(ϕ). (9.283c)

Based on this embedding, compute the following:

a) The components gab of the induced metric on the torus resulting from the standard
Euclidean metric in R3.

b) The Christoffel symbols of the Levi-Civita connection.

c) The independent non-zero component Rθϕθϕ of the curvature tensor.
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d) The components of the Ricci tensor Rab and the Ricci scalar R. Verify that R is not
constant and that it has a different sign on different points in the manifold.

In addition, argue for why the requirement ρ < R is necessary for the mapping from T 2

to R3 to be an embedding. Note: If you are worried about having a proper atlas, we can
construct charts for the torus in much the same way as we created charts for the circle in
Example 9.4. In fact, the circle is a one-dimensional torus!

Problem 9.37. In an arbitrary coordinate system with coordinates ya on a four-
dimensional manifold, write down the coordinate basis for all p-forms for 0 ≤ p ≤ 4.

Problem 9.38. Write down an explicit expression for the components of the exterior
product ω∧ ξ, where ω is a p-form and ξ an r-form, in terms of the components of ω and ξ.
In particular, find how ω∧ξ is related to ξ∧ω and use your result to discuss the requirements
for ω2 = ω ∧ ω to be non-zero.

Problem 9.39. We defined the exterior derivative of a p-form as

dω =
1

p!
(∂a1ωa2...ap+1) dya1 ∧ . . . ∧ dyap+1 . (9.284)

Normally we could not use the partial derivative ∂a1 on the tensor components and obtain
a new tensor, but instead we would need to use the operator ∇a1 . Show that the anti-
symmetry of dya1 ∧ . . .∧ dyap+1 solves this problem and that using the partial derivative is
equivalent to using ∇a1 .

Problem 9.40. Show that acting twice with the exterior derivative on any p-form ω gives
zero, i.e., that d2ω = 0.

Problem 9.41. Compute the components of the area form η on the torus defined in Prob-
lem 9.36. Also use your results from Problem 9.36 to find an expression for the generalised
Laplace operator on the torus.

Problem 9.42. Working in the Euclidean space R2 and considering the integral of the
one-form ω = P dx1 +Qdx2 around a closed loop γ, show that Stokes’ theorem∮

γ

ω =

∫
S

dω, (9.285)

where S is the area bounded by γ, reduces to Green’s formula in the plane.

Problem 9.43. We wish to study heat conduction in a thin isolated paraboloid that is
embedded in R3 with the relation x3 = k[(x1)2 + (x2)2]. Generalise Fourier’s law to the
case of heat conduction on a manifold and derive an expression for the resulting partial
differential equation in polar coordinates ρ and φ.

Problem 9.44. For a stationary flow J(θ, φ) on the sphere, the flow at the curves φ = 0
and φ = π/2 are given by

J(θ, 0) = sin(θ)∂θ + ∂ϕ and J(θ, π/2) = − sin(θ)∂θ +
sin(2θ)

sin(θ)
∂ϕ, (9.286)

respectively. Compute the total source in the region 0 < ϕ < π/2.
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Problem 9.45. Consider the two-dimensional plane with the line element

ds2 = dρ2 +R2
0 sinh2

(
ρ

R0

)
dφ2 (9.287)

in polar coordinates, where R0 is a constant. Determine the value of the Ricci scalar for
this space and write down the geodesic equations for the Levi-Civita connection. This is an
example of a hyperbolic space.

Problem 9.46. Verify that the standard mapping of the sphere S2 into R3

x1 = R sin(θ) cos(ϕ), (9.288a)

x2 = R sin(θ) sin(ϕ), (9.288b)

x3 = R cos(θ) (9.288c)

is an embedding, i.e., that both the mapping itself and its corresponding pushforward are
invertible.

Problem 9.47. The punctured plane, i.e., a two-dimensional plane with a single point
removed, can be mapped to R3 with the embedding

x1 = r0 cos(ϕ), x2 = r0 sin(ϕ), and x3 = r0 ln

(
ρ

r0

)
, (9.289)

where ρ and ϕ are polar coordinates on the plane centred on the removed point.

a) Compute the induced metric in the coordinates ρ and ϕ on the punctured plane.

b) Compute the Christoffel symbols of the corresponding Levi-Civita connection.

c) Verify that the metric is flat, i.e., that the curvature tensor vanishes.

Problem 9.48. Consider the embedding of the punctured two-dimensional plane as a cone
in a three-dimensional Euclidean space given by

x1 = ρ cos(ϕ), x2 = ρ sin(ϕ), x3 = kρ. (9.290)

Write down an expression for the physical area form corresponding to the induced metric
tensor.

Problem 9.49. For the cone submanifold discussed in Problem 9.48, show that a parallel
transport of a vector around a closed loop enclosing the cone apex at ρ = 0 results in a net
rotation and compute the corresponding rotation angle, see Fig. 9.29. Also verify that the
manifold itself is flat and, consequently, any parallel transport around a closed loop that
does not enclose the apex returns the the same vector.

Problem 9.50. Using your result from Problem 9.48, find the area on the surface of the
cone that is enclosed by the closed curve

ρ(t) = r0 + r1 cos(t), ϕ(t) = t, (9.291)

where 0 < t < 2π and r1 < r0.
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α

Figure 9.29 When parallel transporting a vector around a closed loop that encloses the cone apex,
the resulting vector will be turned an angle α in relation to the original vector.

Problem 9.51. An alternative chart for the two-dimensional sphere embedded in R3 that
covers all but one point on the sphere has coordinates t and s given by the relations

x1 = t
R

ρ
sin
( ρ
R

)
, x2 = s

R

ρ
sin
( ρ
R

)
, x3 = R cos

( ρ
R

)
, (9.292)

where ρ =
√
t2 + s2 < R.

a) Verify that including ρ = R in the chart is not possible as all t and s satisfying this
condition would map to the same point.

b) Compute the components of the metric tensor in the t and s coordinates.

Problem 9.52. For a two-dimensional submanifold M of R3 given by the hyperboloid

(x1)2 − (x2)2 − (x3)2 = R2, (9.293)

show that the pullback of the type (0, 2) tensor

ω = −dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 (9.294)

to the M is a metric although ω is not. Compute the components of this metric after
introducing polar coordinates in the x2-x3-plane. Note: The tensor ω is a pseudo metric
on R3.

Problem 9.53. The two dimensional submanifold of R3 defined by

z2 = 4rs(ρ− rs) (9.295)

in cylinder coordinates, see Fig. 9.30, is called Flamm’s paraboloid .

a) Using the cylinder coordinates ρ and φ as coordinates on a chart for z > 0, find the
components of the metric tensor on this surface.

b) Write down the geodesic equations and determine whether the coordinate lines of
constant ρ or constant φ are geodesics.

Problem 9.54. Consider an embedding f of the manifold M1 in the manifold M2 and a
p-form ω on M2. Furthermore, let K be a p-dimensional subspace of M1 and f(K) its image
under the embedding. Prove the integral relation∫

f(K)

ω =

∫
K

f∗ω, (9.296)

i.e., that the integral of ω over the image of K is equal to the integral of the pullback f∗ω
over K.
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Figure 9.30 The submanifold of R3 called Flamm’s paraboloid. It is sometimes used to illustrate
the spatial geometry of a Schwarzschild black hole.



C H A P T E R 10

Classical Mechanics and Field
Theory

Throughout this book, we have introduced many mathematical concepts that have appli-
cations in a wide variety of advanced physics subjects, including quantum mechanics and
general relativity. However, we have also seen a large number of examples where these new
concepts have been applied to more familiar physics. In many cases, these examples have
been taken from the field of classical mechanics. In order to wrap things up, we will therefore
take some time to discuss the application of the introduced concepts to classical mechanics
in more detail. Starting with a quick look at Newton’s formulation, we will then treat both
the Lagrangian and Hamiltonian formulations and conclude with a short introduction to
field theory.

10.1 NEWTONIAN MECHANICS
As most students at this level will be familiar with, Newton’s formulation of classical me-
chanics is based upon Newton’s laws of mechanics:

1. A body upon which no force is acting remains at rest or in rectilinear motion.

2. The net force on a body is equal to the rate of change in its momentum

~F =
d~p

dt
. (10.1)

3. The forces with which two bodies affect each other are equal in magnitude and opposite
in direction

~F12 = −~F21, (10.2)

where ~Fij is the force on body j from body i.

These axioms are assumed to hold in any inertial frame and different inertial frames are
related through the Galilei transformations (see Section 4.6.2.3). Within this formulation
there is an inherent assumption of an underlying homogeneous Euclidean space as well
as a universal time, assumptions that would later be overthrown by the arrival of special
relativity. However, Newton’s mechanics is a very good approximation for most cases that
we encounter in daily life and of which we have an intuitive understanding. We have already
used Newton’s mechanics extensively in examples and problems, but let us remind ourselves

603
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of some basic concepts in rigid body mechanics, where the dynamics of a rigid body are
considered.

Example 10.1 For an object with mass m, the momentum is given by

~p = m~v = m~̇x, (10.3)

where ~x is its center of mass position. As a result of the second law, ~x satisfies the differential
equation

m~̈x = ~F (10.4)

when the mass m is constant. If the net force ~F = 0, the solution to this differential equation
results in ~x = ~p t/m + ~x0, where ~p is the constant momentum and ~x0 the initial position.
This describes a rectilinear motion with velocity ~v = ~p/m, in accordance with the first law.

Example 10.2 Apart from providing a way of relating how two objects affect each other,
the third law ensures the conservation of overall momentum as long as all systems are
considered. If the only forces on two objects are those acting between them, the rate of
change of the total momentum ~p = ~p1 + ~p2 is given by

d~p

dt
=
d~p1

dt
+
d~p2

dt
= ~F21 + ~F12 = 0, (10.5)

where the last step is provided by the third law. However, it should be noted that this
conservation in general will require us to consider an isolated system, which is something
we might not always be interested in doing.

10.1.1 Motion of a rigid body
In order to consider the motion of an extended rigid body , not only its position but also its
orientation in space is of relevance. We will here consider a rigid body initially occupying a
volume V0, see Fig. 10.1. For any given point in the body, we will assume that its position
at time t is given by ~x(~ξ, t), where ~ξ is its position at t = 0. In order for the body to be rigid,
the separation vector between any two points in the body can only change by a rotation
that generally depends on the time t, i.e.,

~x(~ξ2, t)− ~x(~ξ1, t) = R̂(t)(~ξ2 − ~ξ1), (10.6)

where R̂(t) is the time-dependent rotation operator. Selecting a particular point ~ξ0 in the
rigid body, its motion can be described by the function

~x0(t) = ~x(~ξ0, t). (10.7)

If we know the movement of this point and the rotation R̂(t), we can find the position of
an arbitrary point in the rigid body through the relation

~x(~ξ, t) = ~x0(t) + R̂(t)(~ξ − ~ξ0) (10.8)
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O

~x0(t)

A R̂(t)(~ξ − ~ξ0)

A

~ξ − ~ξ0

~ξ0

V0

Figure 10.1 The motion of a point A in a rigid body relative to a fixed origin O if originally at the

position ~ξ can be described by the motion ~x0(t) of a reference point originally at ~ξ0 and a rotation
R̂(t) of the separation vector between A and the reference point.

that follows directly from Eq. (10.6) with ~ξ1 = ~ξ0 and ~ξ2 = ~ξ. Consequently, the motion
of the rigid body can be uniquely described by specifying the motion of a single reference
point ~x0(t) and the time-dependent rotation R̂(t). The choice of the point ~ξ0 is arbitrary,

but selecting it to be the center of mass ~ξcm defined by

~ξcm =
1

M

∫
V0

~ξρ0(~ξ)dV0, (10.9a)

where ρ0(~ξ) is the mass density distribution of the rigid body at time t = 0 and the total
mass M is given by

M =

∫
V0

ρ0(~ξ)dV0, (10.9b)

is often preferable from a practical point of view.

Example 10.3 The motion of the rigid body generally results in a time-dependent density
ρ(~x, t). Since the motion is rigid, it follows that

ρ(~x(~ξ, t), t) = ρ0(~ξ), (10.10)

i.e., the density at the point ~x(~ξ, t) is the same as that at the point ~ξ at time t = 0. This
relation can be used in order to show that the center of mass motion ~xcm(t) defined by

~xcm(t) =
1

M

∫
V (t)

~xρ(~x, t)dV, (10.11)

where V (t) is the volume occupied by the rigid body at time t coincides with the motion of

the original center of mass, defined by ~x(~ξcm, t), see Problem 10.2.
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An alternative choice for ~ξ0 that also significantly simplifies the expressions we will
encounter is possible if the rigid body is restricted to rotate around a fixed point ~ξfix. In
this situation, it is useful to select ~ξ0 = ~ξfix such that

~x(~ξ0, t) = ~x(~ξfix, t) = ~ξfix =⇒ ~x(~ξ, t) = ~ξfix + R̂(t)(~ξ − ~ξfix), (10.12)

where ~ξfix does not depend on time. Consequently, the only time dependence in this situation
is encoded in the rotation R̂(t). In addition, in these situations it is often useful to select

a coordinate system such that ~ξfix = 0, which will reduce the expressions even further.
However, we will keep a general ~ξfix for the sake of generality.

Given the position ~x(~ξ, t) of a point in the rigid body as a function of time, we can find
its velocity by differentiating with respect to time

~v(~ξ, t) ≡ ∂~x

∂t
= ∂t[~x0(t) + R̂(t)(~ξ − ~ξ0)] = ~v0(t) +

˙̂
R(t)(~ξ − ~ξ0), (10.13)

where ~v0(t) = ~̇x0(t) is the velocity of the reference point ~ξ0. For the second term, we note
that

R̂(t+ dt)− R̂(t) ' [R̂ω dt~n − 1]R̂(t), (10.14)

where ~nω = ~ω(t) is the angular velocity at time t and Rθ~n is the rotation introduced in
Section 4.4.1. Since ω dt is a small angle, we can use the small angle expansion of Eq. (4.38)
and find

˙̂
R(t)~a dt ≡ [R̂(t+ dt)− R̂(t)]~a ' ~ω × R̂(t)~a dt (10.15)

for any vector ~a. In particular, this implies that

~v(~ξ, t) = ~v0(t) + ~ω(t)× R̂(t)(~ξ − ~ξ0) = ~v0(t) + ~ω(t)× [~x(~ξ, t)− ~x0(t)]. (10.16)

The velocity of an arbitrary point can therefore be determined in terms of the velocity
~v0(t) of the reference point, the instantaneous angular velocity ~ω(t), and the instantaneous

displacement ~x(~ξ, t)− ~x0(t) from the reference point.

Example 10.4 The expression for the velocity of an arbitrary point in the rigid body
becomes particularly simple in the case when the body is rotating around a fixed point ~ξfix

that we use as reference. In this case ~v0(t) = 0 and consequently

~v(~ξ, t) = ~ω(t)× [~x(ξ, t)− ~ξfix]. (10.17)

10.1.2 Dynamics of a rigid body
So far we have only discussed the kinematics of how a rigid body may move. In order to find
out how external forces affect the body, we now move on to studying its dynamics using
Newton’s laws. The momentum of a small volume dV0 around the point defined by ~ξ in the
rigid body is given by d~p = dm~v(~ξ, t) = ρ0(~ξ)~v(~ξ, t)dV0. Consequently, the total momentum
of the body at time t is given by

~p(t) =

∫
d~p =

∫
V0

ρ0(~ξ)~v(~ξ, t)dV0. (10.18a)
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As the only time dependence in this expression arises from the velocity ~v(~ξ, t), we find that
the time derivative of the total momentum, i.e., the force on the rigid body, is

~F (t) = ~̇p(t) =

∫
V0

ρ0(~ξ)
∂~v

∂t
dV0 ≡

∫
V0

ρ0(~ξ)~a(~ξ, t)dV0, (10.18b)

where ~a(~ξ, t) is the acceleration of the point in the rigid body defined by ~ξ at time t. Looking

at a small volume element around ~ξ, the forces acting on it at time t must satisfy

~f(~ξ, t) = ρ0(~ξ)~a(~ξ, t) (10.19)

according to Newton’s second law, where ~f(~ξ, t) is the force density. The force density can
be split into two contributions

~f(~ξ, t) = ~fint(~ξ, t) + ~fext(~ξ, t), (10.20)

where the first contribution is due to internal forces in the rigid body and the second is due
to external forces. Because of Newton’s third law, it must hold that∫

V0

~fint(~ξ, t)dV0 = 0 =⇒ ~F (t) =

∫
V0

~fext(~ξ, t)dV0 (10.21)

as any force from one part of the rigid body on another is equal in magnitude but opposite
in direction to the force of the second part from the first. We therefore conclude that the
total force on the rigid body is the sum of the external forces on all its parts.

In order to find out what this implies for the movement of the rigid body, let us again
look at the total momentum ~p(t), but now inserting our explicit expression for ~v(~ξ, t), which
results in

~p(t) =

∫
V0

ρ0(~ξ)[~v0(t) + ~ω(t)× (~x(~ξ, t)− ~x0(t))]dV0

= M [~v0(t)− ~ω(t)× ~x0(t)] + ~ω(t)×
∫
V0

ρ0(~ξ)~x(~ξ, t)dV0, (10.22)

where we have used that neither ~v0(t), ~x0(t), or ~ω(t) depend on the integration variable ~ξ.
Applying the definition of the center of mass to the last term, we finally find that

~p(t) = M [~v0(t) + ~ω(t)× (~xcm(t)− ~x0(t))]. (10.23)

Taking the time derivative of this expression now leads to

~F (t) = M [~a0(t) + ~α(t)× (~xcm(t)− ~x0(t)) + ~ω(t)× {~ω(t)× (~xcm(t)− ~x0)(t)}], (10.24)

where ~α(t) = ~̇ω(t) is the angular acceleration of the rotation.
While these are a rather cumbersome expression, the expression for the momentum

simplifies to
~p(t) = M~vcm(t) (10.25a)

when ~ξ0 = ~ξcm and to
~p(t) = M~ω(t)× R̂(t)(~ξcm − ~ξfix) (10.25b)

when ~ξ0 is a fixed point ~ξfix of the motion. In particular, by differentiating the first of these
relations, we find that

~F (t) = ~̇p(t) = M~̇vcm(t) ≡M~acm(t), (10.26)

where ~acm(t) is the center of mass acceleration. In other words, Newton’s second law takes

the familiar form ~F = m~a for a rigid body with fixed mass m = M when the acceleration
is taken to be the center of mass acceleration.
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~Ffix

cm

~δcm

~fext,vol

~ω

Figure 10.2 From the angular velocity ~ω and the external volume forces ~fvol,ext on a rigid object

rotating around a fixed point we can find the force ~Ffix that needs to be applied at that fixed point.

Example 10.5 For a rigid body with a fixed point ~ξfix, we can use the above reasoning
in order to derive a condition on the external force at the fixed point, see Fig. 10.2. If we
define the force ~Ffix(t) at the fixed point through the relation

~fext(~ξ, t) = ~fext,vol(~ξ, t) + ~Ffix(t)δ(3)(~ξ − ~ξ0), (10.27)

where the first term describes all other external forces, we find that

~F (t) = ~Ffix(t) +

∫
V0

~fext,vol(~ξ, t)dV0

= M~α(t)× ~δcm(t) +M~ω(t)× [~ω(t)× ~δcm(t)], (10.28)

where ~δcm(t) = R̂(t)(~ξcm − ~ξ0). Solving for ~Ffix(t) now results in

~Ffix(t) = M~α(t)× ~δcm(t) +M~ω(t)× [~ω(t)× ~δcm(t)]− ~Fext,vol(t), (10.29)

where ~Fext,vol(t) is the volume integral of ~fext,vol(~ξ, t). We will soon see how the angular
acceleration ~α(t) can be related to the external force density. However, we can already here
note that if there is no angular acceleration and no net external force apart from the force
at ~ξ0, then

~Ffix(t) = M~ω(t)× [~ω(t)× ~δcm(t)], (10.30)

which is just the regular expression for the centripetal force of an object with mass M
moving in a circle with angular velocity ~ω(t) offset from the center of the circle by the

displacement ~δcm(t), see Fig. 10.3. It should be noted that there can be a non-zero angular
acceleration even when the external force density is equal to zero.

Studying the change in the momentum of the entire rigid body essentially resulted in a
differential equation for the movement of its center of mass. In order to know the complete
motion of the body we also need to find out how the rotation evolves with time based on
the forces that act upon it. We can do so by studying the angular momentum ~L(t) of the
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M

~Ffix

~ω

cm

~δcm~Ffix

~ω

~δcm

Figure 10.3 If the net external force density apart from ~Ffix is zero and the angular acceleration
~α is zero, then the force at the fixed point will be the same as the force needed to keep a particle
placed in the center of mass with the same total mass as the rigid body rotating about the fixed
point. Note that the external force density ~fext,vol = 0 does not necessarily imply zero angular
acceleration.

body relative to the point ~x0(t), which is given by

~L(t) =

∫
V0

[~x(~ξ, t)− ~x0(t)]× ρ0(~ξ)~v(~ξ, t)dV0. (10.31)

Inserting the expressions for ~x(~ξ, t), ~v(~ξ, t), and suppressing the ~ξ and t dependence of all
the quantities for brevity, we find that

~L =

∫
V0

(~x− ~x0)× ρ0[~v0 + ~ω × (~x− ~x0)]dV0

= −~v0 ×
∫
V0

(~x− ~x0)ρ0dV0 +

∫
V0

(~x− ~x0)× [~ω × (~x− ~x0)]dV0

= M~δcm × ~v0 +

∫
V

ρ(~x− ~x0)× [~ω × (~x− ~x0)]dV, (10.32)

where in the last step we have used the definition of the center of mass and changed integra-
tion variables in the remaining integral to ~x instead of ~ξ. Writing down the ith component
of the last term of this relation in Cartesian coordinate tensor notation, we find that

Li −M(~δcm × ~v0)i =

∫
V

ρεijk(xj − xj0)εk`mω
`(xm − xm0 )dV

= ω`
∫
V

ρ(δi`δjm − δimδj`)(xj − xj0)(xm − xm0 )dV

= ω`
∫
V

ρ[δi`(x
j − xj0)(xj − xj0)− (xi − xi0)(x` − x`0)]dV

≡ Ii`ω`, (10.33)

where we have introduced the moment of inertia tensor

Ii` =

∫
V

ρ[δi`(x
j − xj0)(xj − xj0)− (xi − xi0)(x` − x`0)]dV (10.34)

relative to ~x0, see also Section 2.6.3.1. Summarising, this leads to

Li = Mεijkδ
j
cmv

k
0 + Iijω

j . (10.35)
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For both of the choices ~ξ0 = ~ξcm and ~ξ0 = ~ξfix, the first term vanishes and we find that

Li = Iijω
i. (10.36)

In the first case this is due to ~δcm = 0 and in the second it is due to ~v0 = 0. This is the
relation between the angular momentum and the angular velocity that we used when first
introducing tensors in the beginning of Chapter 2.

As we did in the case of the momentum, we can now compute the time derivative of the
angular momentum and insert the explicit expressions for ~x and ~v, resulting in

~̇L =

∫
V

(~x− ~x0)× ρ~adV +

∫
V

(~v − ~v0)× ρ~vdV

=

∫
V

(~x− ~x0)× ~fextdV − ~v0 ×
∫
V

ρ~vdV = ~τ − ~v0 × ~p, (10.37)

where we have introduced the torque

~τ =

∫
V

(~x− ~x0)× ~fextdV (10.38)

relative to ~x0. Again, this expression takes a particularly simple form in the cases ~ξ0 = ~ξcm

and ~ξ0 = ~ξfix. In the former case, ~vcm × ~p = 0 as ~p = M~vcm, while in the latter ~v0 = 0, for
both cases resulting in

~̇L = ~τ (10.39a)

or, in terms of the Cartesian components,

L̇i =
d

dt
Iijω

j = İijω
j + Iijω̇

j = τ i. (10.39b)

This is reminiscent of Newton’s second law, replacing the momentum ~p by the angular
momentum ~L and the force ~F by the torque ~τ . Using the results from Problem 2.45, we
find that the differential equation governing the rotation is given by

Iijα
j = τ i − İijωj = τ i − εijkωjIk`ω`, (10.40)

where ~α is the angular acceleration.

Example 10.6 Returning to the rigid body rotating around a fixed point ~ξfix of Exam-
ple 10.5, we note that the torque ~τ is given by

~τ =

∫
V

(~x− ~ξfix)× [~fext,vol + δ(3)(~x− ~ξfix)~Ffix]dV =

∫
V

(~x− ~ξfix)× ~fext,voldV (10.41)

and therefore is independent of the force ~Ffix, since ~x− ~ξfix = 0 at its point of application.
As a consequence, the differential equation for the rotation can be solved without knowledge
of ~Ffix and the resulting angular acceleration can be inserted into Eq. (10.29) in order to

find the force ~Ffix.
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The moment of inertia tensor does not only show up in the expression for the angular
momentum. Indeed, if we wish to express the total kinetic energy of the rigid body, we note
that the kinetic energy of a small part of the body is given by dT = ρ~v 2dV/2. As a result
the total kinetic energy is

T =

∫
dT =

∫
V

ρ

2
~v 2dV =

1

2

∫
V

ρ[~v0 + ~ω × (~x− ~x0)]2dV

=
1

2

∫
V

ρ[~v 2
0 + 2~v0 · [~ω × (~x− ~x0)] + [~ω × (~x− ~x0)]2]dV

=
M~v 2

0

2
+M~v0 · [~ω × (~xcm − ~x0)] +

1

2
~ω ·
∫
V

ρ(~x− ~x0)× [~ω × (~x− ~x0)]dV

=
M~v 2

0

2
+M~v0 · [~ω × (~xcm − ~x0)] +

1

2
ωiIijω

j . (10.42)

For the case ~ξ0 = ~ξcm, the middle term is zero and the total kinetic energy is given by

T =
M~v 2

cm

2
+

1

2
ωiIcm

ij ω
j . (10.43a)

In the case with a fixed point, both the first term and the middle term vanish due to ~v0 = 0
and we obtain

T =
1

2
ωiIfix

ij ω
j . (10.43b)

This is an example of a case in classical mechanics where the kinetic energy is quadratic
in the variables describing the movement of the system, here given by ~v0 and ~ω, and also
generally depends on the configuration of the system, here through the dependence of the
moment of inertia tensor on how the rigid body is oriented.

10.1.3 Dynamics in non-inertial frames
Newton’s three laws are invariant under the Galilei transformations, discussed in Sec-
tion 4.6.2, that relate different inertial frames to each other. However, for some applications,
it happens that there is a non-inertial frame, see Fig. 10.4, that is more natural to use as
a reference. For a non-inertial frame, we will generally want to describe a process using the
coordinates ya based on an origin that is undergoing an arbitrary motion ~x0(t) in an inertial
frame as well as with a set of basis vectors ~ea(t) that depend on time. Let us consider the
motion of an object with the position vector ~x(t) in an inertial frame. For any given time,
we must then have

~x(t) = ~x0(t) + ~y(t), (10.44a)

where
~y(t) = ya(t)~ea(t) (10.44b)

describes the motion of the object relative to the origin of the non-inertial frame using
the coordinates ya(t) corresponding to the basis ~ea(t) of that frame. By differentiating this
relation with respect to time, we find that

~v(t) = ~̇x(t) = ~̇x0(t) + ~̇y(t) = ~v0(t) + ~̇y(t), (10.45)

where ~v(t) is the velocity of the object in the inertial frame, ~v0(t) is the velocity of the
origin of the non-inertial reference frame, and

~̇y(t) = ẏa(t)~ea(t) + ya(t)~̇ea(t). (10.46)
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~e1(0)

~e2(0)
~e1(t)

~e2(t)

~x(t)

y2(t)

y1(t)

~y(t)

~x0(t)

Figure 10.4 The relation between the non-inertial frame and the inertial frame that coincides
with the non-inertial frame at t = 0. The origin of the non-inertial frame moves according to the
function ~x0(t) and the basis vectors generally depends on t as well. The coordinates ya(t) used in
the non-inertial frames are the coordinates with respect to the changing basis vectors.

We now introduce the vector
~̊y(t) = ẏa(t)~ea(t) (10.47)

that has the time derivative of the non-inertial frame coordinates ya as its components.
This lets us write

~̇y = ~̊y + ~ω × ~y, (10.48)

where we have suppressed, and will continue to suppress, the time-dependence of the vectors
for brevity and used that ~̇ea = ~ω×~ea, where ~ω is the angular velocity with which the basis
vectors of the non-inertial frame rotate. With this notation, we find that the velocity in the
non-inertial frame can be written as

~̊y = ~v − ~v0 − ~ω × ~y. (10.49)

Example 10.7 There are two basic examples of non-inertial reference frames that we
will have a closer look at in this example. The first example is a uniformly accelerated
non-rotating frame, for which

~x0 =
~a0t

2

2
and ~ω = 0. (10.50)

For this frame we find that ~v0 = ~a0t and therefore

~̊y = ~v − ~a0t. (10.51)

If the acceleration of an object in the inertial frame is ~a0, it will therefore move with constant
velocity in the accelerated frame. As an example of this, consider an object moving under
the influence of a homogeneous gravitational field ~g. The velocity of this object in an inertial
frame is given by

~v = ~v(0) + ~gt, (10.52)

where ~v(0) is the velocity of the object at time t = 0. If we go to a frame with acceleration
~g, the velocity of the object will be given by

~̊y = ~v(0) + ~gt− ~gt = ~v(0) (10.53)
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~v

~e1(0)

~e2(0)

~e1(t)

~ω

~e2(t)

~y

Figure 10.5 A point with fixed ya(t) coordinates in a system that rotates about its origin with
angular velocity ~ω will move with a velocity ~v = ~ω × ~y in an inertial frame. If ~ω is constant, the
point will move in a circle around the axis of rotation.

and therefore be constant. In particular, this holds for a frame where the position of the
object itself is used as the origin, for which we would also have ~v(0) = 0 and therefore ~̊y = 0.

The second basic example of a non-inertial frame is a frame for which ~x0 = 0 and ~ω
is a constant vector, i.e., a frame that rotates around a fixed axis with a constant angular
velocity. For this frame, we find that

~̊y = ~v − ~ω × ~y. (10.54)

In particular, we find that if an object is at rest relative to this frame, i.e., if ~̊y = 0, then

~v = ~ω × ~y. (10.55)

This is the familiar expression for the velocity of an object rotating about the origin with
angular velocity ~ω, see Fig. 10.5.

In the same fashion as we introduced the velocity ~̊y in the non-inertial frame, we can
introduce the acceleration in the non-inertial frame as

˚̊~y = ÿa~ea. (10.56)

By taking the second derivative of ~y with respect to time, we find that

~̈y = ÿa~ea + 2ẏa~̇ea + ya~̈ea = ˚̊~y + 2~ω × ~̊y + ~α× ~y + ~ω × (~ω × ~y), (10.57)

where ~α = ~̇ω is the angular acceleration. For an object moving with acceleration ~̈x = ~a in
the inertial frame, we obtain the relation

~a = ~a0 + ~̈y, (10.58)

where ~a0 = ~̈x0 is the acceleration of the origin of the non-inertial frame. Solving for ˚̊~y results
in

˚̊~y = ~a− ~a0 − 2~ω × ~̊y − ~α× ~y − ~ω × (~ω × ~y). (10.59)

If the object is moving under the influence of a force ~F in the inertial frame, its acceleration
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~a0

~g

~g~g ′

−~a0

Figure 10.6 In an inertial system (upper figure) a car is accelerating with acceleration ~a0. In the
presence of gravitational field ~g, an object will be subject to gravitational acceleration in the inertial
frame. In an accelerating frame fixed to the car (lower figure), the object will be subjected to an
effective gravitational field ~g ′ = ~g − ~a0.

will be given by ~a = ~F/m, where m is the mass of the object. In the non-inertial frame, we
would therefore find that

m ˚̊~y = ~F −m~a0 − 2m~ω × ~̊y −m~α× ~y −m~ω × (~ω × ~y). (10.60)

If attempting to interpret this in terms of Newton’s second law in the non-inertial frame, it
will appear as if the force acting on the object is given by

~Facc = ~F + ~Finertial, (10.61a)

where
~Finertial = −m[~a0 + 2~ω × ~̊y + ~α× ~y + ~ω × (~ω × ~y)] (10.61b)

is referred to as an inertial force (also commonly called fictitious force or pseudo force).

Example 10.8 Returning to the first example presented in Example 10.7, the inertial force
on an object in the uniformly accelerated frame is given by

~Finertial = −m~a0, (10.62)

since ~ω = ~α = 0. As an example of such a situation, consider the reference system of an
accelerating car, see Fig. 10.6. If an object is subjected to a gravitational force m~g and an
additional external force ~F , the total force on the object in the frame of the car will be
given by

~Facc = m(~g − ~a0) + ~F . (10.63)

This situation is completely equivalent to movement in an inertial frame where the gravi-
tational field is instead given by

~g ′ = ~g − ~a0. (10.64)
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Figure 10.7 A mass rotating around the origin of an inertial frame (left) requires a centripetal force
~Fc in order to maintain the circular motion. The centrifugal field in a coordinate system rotating
with the same angular velocity ω is shown to the right. In such a system, the mass is at rest and
the centrifugal acceleration exactly cancels the acceleration due to ~Fc.

Example 10.9 Looking at the second example of Example 10.7, the inertial force on an
object in a frame rotating with constant angular velocity ~ω is found to be

~Finertial = −2m~ω × ~̊y −m~ω × (~ω × ~y). (10.65)

The first of these terms is known as the Coriolis force while the second is referred to as the
centrifugal force. The centrifugal force is always directed away from the axis of rotation and
depends only on the position of an object in the rotating frame and the angular velocity ~ω,
see Fig. 10.7. On the other hand, the Coriolis force requires the object to be moving relative
to the non-inertial frame and results in a force orthogonal to both the direction of motion
~̊y and the angular velocity ~ω.

Considering two persons sitting still on a carousel, the centrifugal force will be apparent
for them both as the centrifugal force will need to be countered by a centripetal force in
order for them not to fly off. In an inertial frame, this centripetal force will instead keep
the persons moving in a circle along with the carousel. The Coriolis force does not become
apparent until the persons try to move on the carousel or attempt to throw a ball between
each other, see Fig. 10.8.

10.2 LAGRANGIAN MECHANICS
As we have already briefly discussed in Chapter 8, Lagrangian mechanics is a reformulation
of classical mechanics based on Hamilton’s principle (also often referred to as the principle
of stationary action), a variational principle that states that a physical system will evolve
according to the stationary functions of the action functional

S =

∫
L dt, (10.66)

where L is the Lagrangian of the system. For many cases that do not involve dissipative
forces, Lagrangian mechanics is equivalent to Newtonian mechanics if the Lagrangian is
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ω

A B A B

Figure 10.8 Two persons A and B sitting on a carousel spinning with angular velocity ω simulta-
neously throw a ball in the other’s direction as seen in the rotating frame. The left figure shows
the trajectories of the balls in an inertial frame with the dashed positions of A and B being the
positions of the persons at the time the ball from A reaches the radius at which B is located. The
right figure shows the corresponding trajectories in the rotating frame. In this frame, the initial
deviation from a straight line is due to the Coriolis force while, for later times, both the centrifugal
and Coriolis forces bend the trajectory. The Coriolis force is always perpendicular to the velocity
and therefore does not change the speed of the balls, while the centrifugal force in general affects
both speed and direction.

chosen to be
L = T − V, (10.67)

where T is the kinetic energy and V the potential energy of the system. However, in a more
general setting, the Lagrangian may take a different form and then defines the physical
system. In this sense, specifying Hamilton’s principle along with the Lagrangian is the
equivalent of stating Newton’s laws and modelling the forces between objects in Newtonian
mechanics.

10.2.1 Configuration space
We just mentioned that the action S is a functional, but we did not specify the functions
on which it depends. Given a physical system, we will assume that its configuration at a
given time t can be described by a set of numbers q(a, t), called generalised coordinates,
where a is a label that belongs to some indexing set. In general this set may not be finite,
or even countable, but if it is we will instead use the notation qa(t). The set of all q(a, t)
that describe a physically possible configuration for a given t is called the configuration
space of the system. The functions that the action depends upon are functions of time to
the configuration space, i.e., paths in configuration space, and generally the Lagrangian is
a function of the generalised coordinates q(a, t), their time derivatives q̇(a, t), and time t.

Example 10.10 In the case of a particle moving in three dimensions, the configuration
space consists of the three coordinates x1, x2, and x3 that can take any real value and the
corresponding index set can be taken to be {1, 2, 3}. The Lagrangian, given by the difference
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of the kinetic and potential energies, is a function of ~x, ~̇x, and t and can be written as

L(~x, ~̇x, t) = T − V =
m

2
~̇x 2 − V (~x, t), (10.68)

where the potential is assumed to be a function of the system configuration and time and
m is the mass of the particle.

Example 10.11 A situation for which the configuration space has an uncountable index
set is given by a string of length ` that undergoes transversal oscillations. The configuration
of the system is then the shape of the string, which may be described by a function u(x)
whose value is the transversal displacement from the equilibrium position, where the index
set is the interval 0 < x < `. As discussed in Example 8.25, the Lagrangian of this system
is given by

L =
1

2

∫ `

0

[ρ`ut(x, t)
2 − Sux(x, t)2]dx, (10.69)

where ρ` is the linear density of the string and S its tension.

The choice of the numbers q(a, t) that define the configuration space is generally not
unique and the configuration space can be described in many different equivalent ways.
Selecting a different representation of the configuration space in terms of the numbers Q(b, t)
amounts to a coordinate change. Such a coordinate change should always be invertible for
any t, i.e., we must be able to write the Q(b, t) as functions of the q(a, t) and vice versa. That
such coordinate changes does not change the physical solution was discussed in Section 8.5.

Example 10.12 For the particle moving in three dimensions described in Example 10.10,
the configuration space may be described in any coordinate system. For example, we may
use the spherical coordinates r, θ, and ϕ instead of the Cartesian coordinates x1, x2, and
x3. The configuration space is then restricted to the ranges

r ≥ 0, 0 ≤ θ ≤ π, and 0 ≤ ϕ < 2π. (10.70)

Example 10.13 In the case of Example 10.11 with homogeneous Dirichlet boundary
conditions, the function u(x) is completely determined by its Fourier series

u(x) =
∞∑
n=1

un sin
(πnx

`

)
. (10.71)

Instead of using the function u(x) to describe the configuration space, we could therefore
decide to use the Fourier coefficients un instead. The index set will then no longer be the
interval 0 < x < `, but instead the countable set of positive integers N+ = {1, 2, 3, . . .}.
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Inserting the Fourier series into the definition of the Lagrangian, we find that it is now given
by

L = `
∞∑
n=1

[
ρ`u̇n(t)2 − S π

2n2

`2
un(t)2

]
. (10.72)

The configuration space in terms of the Fourier coefficients with this Lagrangian is equivalent
to the configuration space in terms of the functions u(x, t) and the Lagrangian of Eq. (10.69).

Once the configuration space and the action have been identified, we can find out whether
a particular path q(a, t) in configuration space provides a stationary value for the action
using the variational principles discussed in Chapter 8. In general, a path provides a station-
ary action if the variation δS of the action around that path is equal to zero. Such a path
describes a physical time evolution of the system and it is clear that not every possible path
in configuration space is going to fulfil this condition. A path that provides a stationary
action is generally referred to as being on-shell , whereas a path that does not is referred to
as off-shell . Comparing to Newtonian mechanics, a path is on-shell if it satisfies Newton’s
equations and off-shell if it does not.

10.2.2 Finite number of degrees of freedom
The evolution of a system that has a finite index set can be described using only a finite
number N of functions qa(t), where the index set may be taken to just be the numbers 1
through N . In this situation, the action is a functional that depends on N functions and a
path in configuration space is on-shell if it satisfies the Euler–Lagrange equations

∂L
∂qa
− d

dt

∂L
∂q̇a

= 0, (10.73)

where we have assumed that L does not depend on higher order derivatives of qa. In many
situations, the generalised coordinates qa will define the spatial position of an object or an
angle describing its orientation in space.

Example 10.14 Consider a rigid body in two dimensions, see Fig. 10.9. The configuration
space for such a body can be described by the spatial coordinates x1 and x2 of its center of
mass relative to its position at time t = 0 and its rotation angle θ relative to some reference
orientation. As discussed earlier, the kinetic energy of this body is given by

T =
M

2
~̇x 2 +

I

2
θ̇2, (10.74)

where ~x = x1~e1 + x2~e2, M is the mass of the body, and I its momentum of inertia with
respect to the center of mass. With the Lagrangian given by L = T − V (θ, ~x), the Euler–
Lagrange equations result in

m~̈x = −∇V, (10.75a)

Iθ̈ = −∂θV, (10.75b)

where we have defined ∇ = ~e1∂1 + ~e2∂2 to act on the position coordinates only. For a
conservative force, we have earlier seen that the force ~F can be written in terms of the
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θ

~x

Figure 10.9 The configuration space of a rigid body in two dimension can be constructed using the
location of its center of mass ~x and its rotation angle θ relative to those at time t = 0.

potential as ~F = −∇V . Consequently, the first of the Euler–Lagrange equations is just
Newton’s second law applied to the rigid body. In the same fashion, we can identify −∂θV
with the torque τ relative to the center of mass. This results in the relation

Iθ̈ = τ, (10.76)

which in two dimensions, where the moment of inertia is constant, is nothing but the
equivalent of Eqs. (10.39).

As illustrated by the example above, the equations of motion resulting from generalised
coordinates that are positions will be of the same form as Newton’s second law, relating

acceleration to the applied force. We had also already noted that the relation ~̇L = ~τ between
the angular momentum and the torque was very reminiscent of Newton’s second law and
the Lagrangian approach makes it clear that this stems from being derived in the same way,
but with the generalised coordinate being an angle instead of a position. In general, if the
kinetic energy is quadratic in q̇a, then the Lagrangian is of the form

L =
1

2
Mabq̇

aq̇b − V, (10.77)

where Mab and V are functions of the generalised coordinates and time, i.e., they should
be independent of q̇a. The equation of motion now becomes

dpa
dt

= −∂aV +
1

2
q̇bq̇c∂aMbc, (10.78a)

where we have introduced the canonical momentum

pa =
∂L
∂q̇a

= Mabq̇
b. (10.78b)

This is the equation of motion corresponding to the variation of the action with respect
to the generalised coordinate qa. The functions Mab together form the generalised inertia
tensor that was briefly discussed in Section 2.6.3.
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Figure 10.10 The motion of a particle of mass m in a plane described in polar coordinates reduce
to an equation describing the radial acceleration and one describing the change in the angular
momentum as the torque τ . The torque only depends on the tangential component F̃φ of the force
~F .

Example 10.15 Let us look at the two-dimensional motion of a particle under the influence
of a force ~F = −∇V in polar coordinates. The kinetic energy is

T =
m

2
~̇x 2 =

1

2
mδij ẋ

iẋj =
1

2
mgabẏ

aẏb (10.79)

and so the generalised inertia tensor in this case is

Mab = mgab. (10.80)

In polar coordinates, this implies that

Mρρ = m, Mφφ = mρ2, and Mρφ = Mφρ = 0. (10.81)

The canonical momenta become

pρ = mρ̇ and pφ = mρ2φ̇, (10.82)

respectively, where pφ can be identified with the angular momentum L with respect to the
origin ρ = 0. The equations of motion are now given by

mρ̈ = −∂ρV +mρφ̇2 = F̃ρ +mρφ̇2, (10.83a)

L̇ = −∂φV = ρF̃φ = τ, (10.83b)

where F̃a are the physical components of the force relative to the orthonormal set of basis
vectors ~eρ and ~eφ, and τ is the torque, see Fig. 10.10. The second term in the equation of
motion for the ρ-coordinate arises from the coordinate system being curvilinear.
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10.2.3 Non-inertial frames in Lagrangian mechanics
In our discussion on Newtonian mechanics, we spent a lot of effort on finding the proper
equations of motion in a non-inertial coordinate frame. The corresponding procedure is
rather straightforward in Lagrangian mechanics. As we have already discussed, the action
is invariant under changes of generalised coordinates, even changes that depend on time t.
When going to a non-inertial frame, we introduce its coordinates in the same fashion as we
did before, by requiring that

~x = ~x0 + ~y (10.84)

and using time-dependent basis vectors ~ea. For a point object of mass m, the kinetic energy
is given by

T =
m

2
~̇x 2 =

m

2
[~v 2

0 + 2~v0 · (~̊y + ~ω × ~y) + ~̊y 2 + 2~̊y · (~ω × ~y) + ~ω · (~y × (~ω × ~y))]. (10.85)

The components of the vectors ~v0 and ~ω depend only on the time t and the first term will
therefore not affect the equations of motion. With the Lagrangian L = T − V , this now
results in

∂L
∂ya

= −∂aV −mεabcωb[vc0 + ẏc + εcdeω
dye], (10.86a)

d

dt

∂L
∂ẏa

= m(v̇a0 + ÿa + εabcω̇
byc + εabcω

bẏc) (10.86b)

and multiplying both of these by ~ea gives us the relation

m ˚̊~y = ~F −m~a0 − 2m~ω × ~̊y −m~α× ~y −m~ω × (~ω × ~y), (10.87)

where we have used the fact that ~a0 ≡ ~̇v0 = ~̊v0 + ~ω × ~v0 and that ~α ≡ ~̇ω = ~̊ω + ~ω × ~ω = ~̊ω.
This is precisely the same relation as that presented in Eq. (10.60). The corresponding
conclusions for the inertial forces follow in the same fashion as in the Newtonian case.

Example 10.16 The change of variables to a rotating system in Lagrangian mechanics
are well illustrated by considering the motion of an object in two dimensions. We define the
coordinates y1 and y2 in the rotating system by the time-dependent coordinate transfor-
mation

x1 = y1 cos(ωt)− y2 sin(ωt) and x2 = y1 sin(ωt) + y2 cos(ωt), (10.88)

see Fig. 10.11. The resulting time derivatives of the inertial coordinates x1 and x2 are given
by

ẋ1 = (ẏ1 − ωy2) cos(ωt)− (ẏ2 + ωy1) sin(ωt), (10.89a)

ẋ2 = (ẏ1 − ωy2) sin(ωt) + (ẏ2 + ωy1) cos(ωt), (10.89b)

directly leading to

~̇x 2 = (ẏ1)2 + (ẏ2)2 − 2ω(ẏ1y2 − ẏ2y1) + ω2[(y1)2 + (y2)2]. (10.90)

With the kinetic energy given by T = m~̇x 2/2, the Euler–Lagrange equations imply that

mÿ1 = 2mωẏ2 +mω2y1, (10.91a)

mÿ2 = −2mωẏ1 +mω2y2 (10.91b)
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x1

x2

y2

y1

ωt

Figure 10.11 A graphical representation of the relation between the coordinates y1 and y2 of a
point in a rotating coordinate system to the coordinates x1 and x2 in an inertial frame. As the
angle ωt increases with time, the ya coordinates for the same point in space will change.

in the absence of a potential energy V . The terms on the right-hand side exactly correspond
to the inertial Coriolis and centrifugal forces, respectively. The same result can be found
by restricting the expressions for the three dimensional motion to a plane, upon which
the angular velocity ~ω is constrained to be equal to ~ω = ω~n, where ~n is a unit vector
perpendicular to the plane.

10.2.4 Noether’s theorem
Throughout this book, we have several times referred to Noether’s theorem as one of the
more important results in classical physics and it is time that we discuss what it is and
how it is applied. We will start by discussing the theorem for a finite number of degrees of
freedom and return to a field theory discussion of the theorem later in this chapter. When
we discussed constants of motion in Section 8.3, we found that if the Lagrangian L does
not depend explicitly on the generalised coordinate qa, then the corresponding canonical
momentum is conserved, i.e,

dpa
dt

=
d

dt

∂L
∂q̇a

= 0. (10.92)

We also found that if L does not depend explicitly on the time t, then we have a corre-
sponding conserved quantity H given by

H = q̇a
∂L
∂q̇a
− L, (10.93)

i.e., dH/dt = 0. These statements will both turn out to be special cases of Noether’s theorem.
In order to state Noether’s theorem, we start by defining a continuous one-parameter

transformation of time and the configuration space such that

t→ τ(t, s) and qa → Qa(q, s) (10.94)

such that τ(t, 0) = t and Qa(q, 0) = qa. In order to find how the generator of this transfor-
mation acts on time and configuration space, we use an infinitesimal parameter s = ε and
define

τ(t, ε) = t+ ε δt and Qa(q, ε) = qa + ε δqa, (10.95)
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where we ignore terms quadratic in ε or higher. For our purposes here, we will also restrict
ourselves to the cases where δt = 0 or 1. Since infinitesimal symmetry transformations
involving time can be rewritten in such a way that δt = 1 by normalisation of the continuous
parameter s, this poses no real restriction on the types of symmetries that we consider.
Noether’s theorem deals with transformations such that

ε δL ≡ L(Q(q, ε), Q̇(q, ε), τ(t, ε))− L(q, q̇, t) = ε
dF

dt
, (10.96)

where F is some function that may depend on t, qa and the derivatives of qa. Trans-
formations of this sort are called quasi-symmetries or, when F = 0, symmetries, of the
Lagrangian. The statement of Noether’s theorem is that if there exists a quasi-symmetry
of the Lagrangian, then there exists a corresponding constant of motion, i.e., a function J
that is generally an expression in terms of t, qa, and the derivatives of qa that does not
change with time for any on-shell solution to the equations of motion.

In order to show that Noether’s theorem holds, let us start by examining the quantity
δL, which to leading order in ε is given by

δL =
∂L
∂qa

δqa +
∂L
∂q̇a

δq̇a +
∂L
∂t
δt. (10.97)

The partial derivative of L with respect to t is part of the total derivative of L with respect
to t and can therefore be written as

∂L
∂t

=
dL
dt
− ∂L
∂qa

q̇a − ∂L
∂q̇a

q̈a. (10.98)

For any on-shell solution, the Euler–Lagrange equations of Eq. (10.73) must hold and we
therefore find that

δL = δqa
d

dt

∂L
∂q̇a

+
∂L
∂q̇a

d

dt
δqa +

(
dL
dt
− q̇a d

dt

∂L
∂q̇a
− ∂L
∂q̇a

dq̇a

dt

)
δt

=
d

dt
(paδq

a −H δt) , (10.99)

where pa = ∂L/∂q̇a is the canonical momentum corresponding to qa and

H = paq̇
a − L (10.100)

is the Hamiltonian function of the system. If the transformation is a quasi-symmetry of the
Lagrangian, it follows that

d

dt
(H δt− paδqa + F ) = 0 (10.101a)

and therefore that
J = H δt− paδqa + F (10.101b)

is a constant of motion.

Example 10.17 As a first example of an application of Noether’s theorem, let us see
how the conservation of momentum and energy follow from the Lagrangian being indepen-
dent of the generalised coordinate qa and time t, respectively. We start by looking at the
transformation for which

δt = 0 and δqa = −δab (10.102)
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for some fixed b and find that

δL =
∂L
∂qa

δqa +
∂L
∂q̇a

δq̇a = − ∂L
∂qa

δab = − ∂L
∂qb

= 0 (10.103)

if the Lagrangian is assumed to not depend explicitly on qb. In this case, we can pick F = 0
and it follows that there exists a corresponding conserved quantity

J = paδ
a
b = pb, (10.104)

i.e., the canonical momentum pb is a constant of motion. In the same fashion, if the La-
grangian is assumed not to depend explicitly on t, we can study the transformation given
by

δt = 1 and δqa = 0. (10.105)

Under this transformation

δL =
∂L
∂t

= 0, (10.106)

due to our assumption on the Lagrangian. Again, we may pick F = 0 and thus

J = H δt = H (10.107)

is a constant of motion.

Example 10.18 In Problem 8.37, it was shown that the angular momentum

L = mρ2φ̇ (10.108)

is a constant of motion for a particle of massmmoving in a two-dimensional central potential
V (ρ) by looking at the behaviour of the Lagrangian in polar coordinates. If we stick to
Cartesian coordinates x1 and x2, the potential can be seen as a function of ~x 2 and we find
that

L =
m

2
~̇x 2 − V (~x 2). (10.109)

This Lagrangian is invariant under the rotation

x1 → x1 cos(s) + x2 sin(s), x2 → −x1 sin(s) + x2 cos(s), (10.110a)

which corresponds to
δt = 0, δx1 = x2, and δx2 = −x1 (10.110b)

for small transformations. The resulting constant of motion is therefore

J = −x2 ∂L
∂ẋ1

+ x1 ∂L
∂ẋ2

= m(x1ẋ2 − x2ẋ1). (10.111)

We can verify that this is the angular momentum from Problem 8.37 by again introducing
polar coordinates, leading to

ẋ1 = −ρ sin(φ)φ̇+ ρ̇ cos(φ), ẋ2 = ρ cos(φ)φ̇+ ρ̇ sin(φ) (10.112a)

and therefore
x1ẋ2 − x2ẋ1 = ρ2φ̇. (10.112b)
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Example 10.19 Some transformations that are quasi-symmetries of the Lagrangian re-
sult in the same conserved quantity as a symmetry of the Lagrangian. Consider again the
case where the Lagrangian does not depend explicitly on time and take the infinitesimal
transformation to be given by

δt = 0, and δqa = −q̇a. (10.113)

With this transformation, we find that

δL = − ∂L
∂qa

q̇a − ∂L
∂q̇a

q̈a = −dL
dt
, (10.114)

since ∂L/∂t = 0. In this case, we can pick F = −L and it follows that the corresponding
constant of motion is

J = − ∂L
∂q̇a

δqa + F = paq̇
a − L = H. (10.115)

Thus, using this transformation is merely an alternative way to deduce that the Hamiltonian
is a constant of motion if the Lagrangian does not depend explicitly on time.

10.2.5 Effective potentials
In many situations of physical interest, it is possible to use external constraints or constants
of motion in order to rewrite a problem in terms of an effective potential . Let us first
consider the situation where we have N generalised coordinates QA and impose a holonomic
constraint f(Q, t) = 0. We furthermore assume that the Lagrangian takes the form

L =
1

2
MABQ̇

AQ̇B − V (Q, t). (10.116)

Based on the holonomic constraint, the coordinates QA can be written as functions QA(q, t)
of N − 1 coordinates qa and we find that

Q̇A = ∂tQ
A + (∂aQ

A)q̇a. (10.117)

Inserting this into the Lagrangian, we find the effective Lagrangian

Leff =
1

2
MAB

[
(∂aQ

A)(∂bQ
B)q̇aq̇b + 2(∂tQ

A)(∂bQ
B)q̇b + (∂tQ

A)(∂tQ
B)
]
− V, (10.118)

where it should be noted that both ∂tQ
A and V are now functions of qa and t. If we can

find coordinates qa such that

MAB(∂tQ
A)(∂bQ

B) = 0 (10.119)

for all b, this simplifies to

L =
1

2
Mabq̇

aq̇b − Veff(q, t), (10.120a)

where we have introduced the effective inertia tensor

Mab = (∂aQ
A)(∂bQ

B)MAB (10.120b)
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m

~g

ω

θ
r0

Figure 10.12 A bead of mass m moving freely on a ring with radius r0 that rotates with angular
frequency ω in a gravitational field ~g. The motion of the bead can be described as motion on a
sphere parametrised by the angles θ and ϕ with the constraint ϕ = ωt.

and the effective potential

Veff(q, t) = V (Q(q, t), t)− (∂tQ
A)(∂tQ

B)MAB . (10.120c)

We have then reduced the problem with a potential V (Q, t) and a holonomic constraint
f(Q, t) = 0 to a lower-dimensional problem with an effective potential Veff(q, t).

Example 10.20 Consider a bead of mass m moving on a rotating circular loop in a
gravitational field parallel to the rotational axis, see Fig. 10.12. This situation may be
described as the bead moving on the surface of a sphere with radius r0 subjected to the
holonomic constraint

f(θ, ϕ, t) = ϕ− ωt = 0, (10.121)

where ω is the angular velocity of the rotation. The Lagrangian for this motion is given by

L =
m

2
gABQ̇

AQ̇B − V (Q) =
mr2

0

2
(θ̇2 + sin2(θ)ϕ̇2)−mgr0 cos(θ). (10.122)

Using the holonomic constraint, we can express the coordinates on the sphere using only a
single coordinate θ and time t as

θ(θ, t) = θ and ϕ(θ, t) = ωt. (10.123)

Note that this is a slight abuse of notation as we have used θ both as one of the coordinates
QA as well as the coordinate q, but this really does not result in any confusion in this case
since θ(θ, t) is equal to θ and ϕ(θ, t) is independent of θ. We find that, with this choice of
coordinates,

gAB(∂tQ
A)(∂θQ

B) = r2
0(∂tθ)(∂θθ) + r2

0 sin2(θ)(∂tωt)(∂θωt) = 0 (10.124)

and we therefore satisfy the requirement of Eq. (10.119). We could also see this by direct
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insertion of the holonomic constraint into the Lagrangian, upon which we find the effective
Lagrangian

Leff =
mr2

0

2
θ̇2 +

mr2
0ω

2

2
sin2(θ)−mgr0 cos(θ). (10.125)

From this expression, we can identify the effective potential

Veff = mr0

(
g cos(θ)− r0ω

2

2
sin2(θ)

)
. (10.126)

Instead of using the Lagrangian with the two-dimensional configuration space, we can there-
fore study the motion of the bead based only on this effective potential with just one degree
of freedom.

The equation of motion for θ is given by

mr2
0 θ̈ = −V ′eff(θ) (10.127)

and therefore the possible equilibrium points of the system are given by the stationary
points of the effective potential. Differentiating the potential, we find that

V ′eff(θ) = −mr0 sin(θ)
[
g + r0ω

2 cos(θ)
]

(10.128)

and it is therefore clear that the points θ = 0 and θ = π are always stationary due to the
factor sin(θ). In addition, if r0ω

2 > g, then we have two additional stationary points that
satisfy

cos(θ) = − g

r0ω2
, (10.129)

see Fig. 10.13. From the shape of the potential, we conclude that for r0ω
2 < g, the point

θ = π is a stable equilibrium for the system while the point θ = 0 is unstable. In particular,
this is compatible with our expectation from the case when the angular velocity ω = 0.
However, as the angular velocity is increased such that r0ω

2 > g, θ = 0 remains unstable
whereas θ = π now also becomes an unstable stationary point. Instead, the new stationary
points given by Eq. (10.129) are both stable. We also note that when r0ω

2 � g, these
stable points approach cos(θ) = 0, corresponding to θ = π/2 and θ = 3π/2. This is also in
accordance to our intuition. In the rotating frame, the centrifugal force drives the bead to
be as far away from the rotational axis as possible and when the gravitational field is weak,
this will be the dominating effect.

There are some conclusions that can be drawn directly from looking at the effective
potential. We first note that the time-translation symmetry of the effective Lagrangian
indicates that

H = θ̇
∂Leff

∂θ̇
− L =

mr2
0

2
θ̇2 + Veff = E (10.130)

is a constant of motion that may be interpreted as the total energy in the rotating frame.
Since θ̇2 ≥ 0, we find that

Veff ≤ E, (10.131)

indicating that the effective potential at any time must be smaller than the constant E.
The maximum of the effective potential is at the point θ = 0 and is given by

Veff,max = Veff(0) = mr0g. (10.132)
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g < r0ω
2g > r0ω

2

π θ

θπ

V V

Figure 10.13 The effective potential for the bead on the rotating ring for the two cases of g > r0ω
2

(left) and g < r0ω
2 (right), respectively. The thick curve shows the effective potential Veff while

the thin light and dark curves show the gravitational and rotational contributions, respectively. In
the former case there is one global minimum at θ = π and in the latter two global minima develop
on either side of this point, which itself becomes a local maximum.

Thus, if E < mr0g, then the bead will never be able to reach θ = 0 and instead oscillate
between the extremal points given by

Veff(θextr) = E, (10.133)

where θ̇ = 0. On the other hand, if E > mr0g, then θ̇2 > 0 and the bead will never change
direction and therefore go around the loop indefinitely. In the case when r0ω

2 < g, these
are the only two possibilities, but when r0ω

2 > g, the former case can be further split into
two different cases. For this case, the local maximum of the effective potential at θ = π is
given by

Veff(π) = −mr0g. (10.134)

It follows that if E < −mr0g, then the bead can never pass this point and will be constrained
to move on one side of the ring. However, if −mgr0 < E < mgr0, then θ̇ cannot change sign
anywhere except at the extremal points on either side of θ = π and will therefore oscillate
between those, see Fig. 10.14.

A general comment about the period of motion in a potential is in order as we shall use
this in the next section. If a one-dimensional motion has a constant of motion of the form

E =
M(q)

2
q̇2 + V (q) (10.135)

with M(q) > 0 and V (q) is such that the motion is constrained to be between two extremal
points given by

V (qextr) = E, (10.136)

then q̇2 > 0 everywhere in between the extremal points and will not change sign in this
region. The time τ to go from one extremal point q1 to the other q2 can be found by solving
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1 2 3

Figure 10.14 Depending on the total energy of the system and the relation between g and r0ω
2, the

motion of the bead will fall into one of three categories. In the first category (1), the energy is large
enough for the bead to pass the global maximum of the effective potential and the bead will go
around the ring indefinitely. If the energy is lower than the maximum of the effective potential the
bead will oscillate between two points on the ring. If the bead has enough energy to pass θ = π, i.e.,
the lower part of the ring, it will oscillate between two points at the same height on opposite sides
of the ring (2). The third case (3), when the bead cannot pass θ = 0, only occurs when g < r0ω

2

and the bead will then oscillate between two points on the same side of the ring. For reference, we
also show the effective potentials in both cases with examples of the energy levels corresponding to
each case, see also Fig. 10.13. In principle, there are also special cases on the boundary between the
cases, where the bead will asymptotically move towards a local maximum of the effective potential.
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Figure 10.15 The period of a bead moving on a ring of radius r0 in a gravitational field g. The solid
curve corresponds to the exact result while the dashed line represents the small angle approximation.

for q̇ and integrating

τ =

∫ t2

t1

dt =

∫ q2

q1

dq

q̇
=

∫ q2

q1

√
M(q)

2(E − V (q))
dq, (10.137)

where we have assumed that q1 < q2 in order to fix the sign. The period of this movement
is then given by T = 2τ .

Example 10.21 A bead of mass m moving on a ring with radius r0 with total energy
E < mgr0 in a gravitational field has turning points at the angles θ0 that solve the equation

E = mgr0 cos(θ0). (10.138)

This implies that

θ0 − π = ± arccos

(
− E

mgr0

)
≡ α (10.139)

and the period of the resulting oscillations is given by

T =

∫ α

−α

√
2mr2

0

mgr0[cos(s)− cos(α)]
ds =

√
8r0

g

∫ α

0

ds√
cos(s)− cos(α)

. (10.140)

For small α, the integral in the last expression is approximately equal to π/
√

2 and we find
that T = 2π

√
r0/g. For larger α, the integral can still be computed numerically and the

result is shown in Fig. 10.15 as a function of α.

Another situation where a problem may be rewritten in terms of an effective one for
fewer generalised coordinates arises in some cases where the Lagrangian does not depend
explicitly on time, indicating that H is a constant of motion, and there is another constant
of motion on top of this. Assume that we have a Lagrangian of the form

L =
1

2
Mabq̇

aq̇b − V (q). (10.141)
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The Lagrangian not depending explicitly on time results in the conserved quantity

H =
1

2
Mabq̇

aq̇b + V (q) = E, (10.142)

which may replace one of the equations of motion. Let us furthermore assume that Mab

and V (q) do not depend explicitly on the coordinate qc = Q for some fixed c. With this
assumption, it follows that we have a constant of motion

J =
∂L
∂q̇c

= Mcaq̇
a = µQ̇+ λiq̇

i, (10.143)

where we have denoted Mcc = µ (no sum) and Mci = λi and i can take all values except c.
Squaring J , we find that

J2

µ
= µQ̇2 + 2λiQ̇q̇

i +
λiλj
µ

q̇iq̇j . (10.144)

At the same time, we can rewrite the first term in the expression for H according to

1

2
Mabq̇

aq̇b =
1

2

(
µQ̇2 + 2λiQ̇q̇

i +Mij q̇
iq̇j
)

=
1

2

(
Mij −

λiλj
µ

)
︸ ︷︷ ︸

=mij

q̇iq̇j +
J2

2µ
, (10.145)

which is completely independent of Q and its time derivative Q̇. Since the potential V was
also assumed to be independent of Q, the new integrated equation of motion becomes

E =
1

2
mij q̇

iq̇j + Veff(q), (10.146a)

where we have introduced the effective potential

Veff(q) = V (q) +
J2

2µ
. (10.146b)

as well as the effective inertia mij . Based on this, one might imagine that the equations of
motion would be equivalent to those of the effective Lagrangian

L0,eff =
1

2
mij q̇

iq̇j − Veff . (10.147a)

However, this is not necessarily true as any effective Lagrangian of the form

Leff = L0,eff + q̇iκi(q) (10.147b)

will lead to the same constant of motion E although having different equations of motion
unless κi(q) = ∂iK(q) for some function K(q), which would make the additional term a
total derivative. Deriving the equations of motion based on Leff and identifying them with
the equations of motion for the full problem, we find that the correct equations of motion
for the qi are obtained when

κi(q) =
Jλi
µ
. (10.148)

The effective Lagrangian giving rise to the correct equations of motion for the qi is therefore
on the form

Leff =
1

2
mij q̇

iq̇j + q̇i
Jλi
µ
− Veff . (10.149)
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Note that, in the case of a one-dimensional effective problem, the additional term q̇κ(q) will
always be a total derivative and therefore not affect the equations of motion.

A word of warning is in order. We obtained this result by using the fact that J is a
constant of motion. This is only true for an on-shell solution to the equations of motion
and we therefore cannot insert this result directly into the Lagrangian as the Lagrangian is
necessary to derive the equations of motion in the first place. However, inserting it into the
equation of motion is perfectly fine as the equation of motion is only valid on-shell anyway.

Example 10.22 Consider a particle of mass m moving freely on the surface of a sphere
with radius r0 under the influence of an external gravitational field, see Fig. 10.16. This
situation is equivalent to that of Example 10.20 with the holonomic constraint removed and
we can write the Lagrangian as

L =
mr2

0

2
[θ̇2 + sin2(θ)ϕ̇2]−mgr0 cos(θ). (10.150)

As this Lagrangian does not depend explicitly on time t nor on the angle ϕ, we have two
corresponding constants of motion

E =
mr2

0

2
[θ̇2 + sin2(θ)ϕ̇2] +mgr0 cos(θ) and L = mr2

0 sin2(θ)ϕ̇. (10.151)

The first of these constants correspond to the total energy of the particle and the second to
the angular momentum about the vertical axis. Solving for ϕ̇ in terms of L and inserting
the result into the expression for the energy E, we find that

E =
mr2

0

2
θ̇2 +

L2

2mr2
0 sin2(θ)

+mgr0 cos(θ), (10.152)

indicating that effective potential of the problem with the ϕ coordinate removed is given by

Veff(θ) =
L2

2mr2
0 sin2(θ)

+mgr0 cos(θ). (10.153)

The shape of this effective potential is shown in Fig. 10.17 and since the potential becomes
infinite for θ = 0 and θ = π if L 6= 0, the particle can never pass through these points.
Instead, for a given energy E and angular momentum L, we find that the particle will move
between the two angles θ for which

L2

2mr2
0 sin2(θ)

+mgr0 cos(θ) = E (10.154)

and therefore θ̇ = 0.

10.3 CENTRAL POTENTIALS AND PLANAR MOTION
An important problem that will apply to several different settings is that of a particle of
mass m moving in a central potential such that

L =
m

2
~̇x 2 − V (r), (10.155)
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ϕ

mr0 θ

~g

Figure 10.16 A particle with mass m allowed to move freely on the surface of a sphere of radius r0.
The particle is furthermore subjected to a gravitational field ~g. The configuration space is described
by the spherical coordinates θ and ϕ.

θπ/2

V

Figure 10.17 To the left, the shape of the effective potential for the particle moving freely on the
sphere is shown as a thick curve along with its gravitational (light curve) and angular momentum
(dark curve) contributions. The right figure shows a typical region on the sphere to which the
motion is constrained for a particular energy along with an actual trajectory for the same values
of E and L.
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where r = |~x| is the particle’s distance from the origin. This Lagrangian is completely
rotationally invariant as can be seen from making an arbitrary rotation around the vector
~n, which for small rotations is given by

δ~x = ~n× ~x. (10.156)

This results in

δL =
∂L
∂~x
· (~n× ~x) +

∂L
∂~̇x
· (~n× ~̇x) = −V

′(r)

r
~x · (~n× ~x) +m~̇x · (~n× ~̇x) = 0 (10.157)

and by Noether’s theorem the quantity

J~n =
∂L
∂~̇x
· δ~x = m~̇x · (~n× ~x) = ~n · (~x×m~̇x) (10.158)

is a constant of motion. Since this is true for any ~n, it follows that the angular momentum
vector

~L = ~x×m~̇x (10.159)

is a constant of motion. By selecting coordinates such that ~L = L~e3, we find that

~x · ~L = Lx3 = ~x · (~x×m~̇x) = 0, (10.160)

indicating that x3 = 0 and the motion occurs completely in the x1-x2-plane. Because of
this, we can neglect the x3 direction completely and it is further convenient to use polar
coordinates in the plane of motion so that

L =
m

2
(ρ̇2 + ρ2φ̇2)− V (ρ). (10.161)

Example 10.23 There are two examples of motion in central potentials that will likely be
familiar. The first of these is motion in a harmonic potential given by

V (r) =
1

2
kr2. (10.162)

This potential describes a situation where a force acts to restore any deviation from the
origin at r = 0 with a magnitude proportional to the distance

~F = −∇V = −k~x. (10.163)

The second is the potential proportional to the reciprocal of r

V (r) = −k
r
. (10.164)

This potential is encountered both in Newton’s law of gravitation with k = Gm1m2 and
in the electrostatic Coulomb law with k = −Q1Q2/4πε0. The corresponding force for this
type of potential is given by

~F = −∇V = −k ~x
r3

= −k~er
r2
. (10.165)



Classical Mechanics and Field Theory � 635

r

V V

r

Figure 10.18 The effective potentials for motion in a central harmonic potential (left) and in a
Kepler potential (right) are shown as thick curves. The individual contributions from the potential
V (r) itself and the angular momentum barrier are shown as light and dark curves, respectively.

With the restriction to planar motion, we already know that L = m(x1ẋ2 − x2ẋ1) is
a conserved quantity. We can also see this directly from the two-dimensional Lagrangian,
which does not depend explicitly on the angle φ and therefore has the constant of motion

L =
∂L
∂φ̇

= mρ2φ̇. (10.166)

Using the results of Section 10.2.5, we find that the problem can be rewritten as an effective
one-dimensional problem for ρ with the effective Lagrangian

Leff =
m

2
ρ̇2 − Veff(ρ), (10.167a)

where we have introduced the effective potential

Veff(ρ) =
L2

2mρ2
+ V (ρ) (10.167b)

in which the first term is sometimes referred to as the angular momentum barrier . The total
energy of the system is given by

E =
m

2
ρ̇2 + Veff(ρ) (10.168)

and is also a constant of motion.

Example 10.24 For both of the cases discussed in Example 10.23, the effective potentials
for L 6= 0 are shown in Fig. 10.18. As Veff →∞ as ρ→ 0 for both of these cases, there will
be a minimal radius ρmin > 0 for any value of E. In the case of the harmonic potential, we
also find that Veff →∞ as ρ→∞ and thus there will also exist a maximal radius ρmax for
any energy E. The minimal and maximal radii are the solutions to the equation

Veff(ρ) =
L2

2mρ2
+

1

2
kρ2 = E =⇒ ρ2 =

E

k
±
√
E2

k2
− L2

mk
. (10.169)

For the 1/r potential and a positive k, i.e., an attractive potential, we find that Veff → 0
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as ρ→∞. Thus, ρ will eventually grow to infinity if E > 0, corresponding to an unbound
state. If E < 0, then we will have a maximal radius just as in the case of the harmonic
potential, corresponding to a bound state. Note that the effective potential will be negative
for all ρ > L2/2mk if k > 0 and so bound states with negative E will exist for any value of
the angular momentum L.

If the effective potential has a minimum at ρ = ρ0, then the solution with

E = Veff(ρ0) ≡ V0 (10.170)

will only allow ρ̇ = 0 and so the motion will be completely circular with radius ρ0. For
energies slightly larger than this value, only small deviations from ρ = ρ0 will be allowed
and we can use perturbation theory to find the linear effects. In order to do this, we assume
that ρ = ρ0 + x, where x is assumed to be small at all times. The effective potential now
takes the form

Veff(ρ) ' V0 +
1

2
V ′′eff(ρ0)x2 ≡ V0 +

1

2
V ′′0 x

2 (10.171)

to second order in x. If the energy is assumed to be

E = V0 + ε, (10.172)

then the turning points are given by

x± ' ±

√
2ε

V ′′0
. (10.173)

The period of small oscillations around ρ0 is therefore found through the expression

Tρ = 2

∫ x+

x−

√
m

2ε− V ′′0 x2
dx = 2π

√
m

V ′′0
. (10.174)

This should not come as a surprise as the equation of motion for x to leading order is the
same as that for a harmonic oscillator with angular frequency ω =

√
V ′′0 /m. The period Tρ

is the period of small oscillations in the ρ coordinate, which we can compare with the time
Tφ taken for the angular coordinate to increase by 2π. To leading order, we find that

φ̇ =
L

mρ2
0

=⇒ Tφ =

∫ 2π

0

dφ

φ̇
= 2π

mρ2
0

L
. (10.175)

Generally, there is nothing requiring the periods Tρ and Tφ to be the same and if they
are not, the point at which the radius ρ takes its smallest value will not be the same for
successive orbits. This phenomenon is known as orbital precession and the angle between
successive closest approaches is approximately given by

∆φ = 2π
Tφ − Tρ
Tφ

= 2π

(
1− L√

mρ4
0V
′′
0

)
, (10.176)

see Fig. 10.19. Note that we have here only computed the orbital precession to leading
order in deviations from the fully circular orbit. In order to conclude that there is no orbital
precession at all, we would have to verify that the higher order corrections also vanish or
use exact methods.
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∆φ

Figure 10.19 If the period of radial oscillations does not match the orbital period, the point of
closest approach to the center of the potential will precess. The angle ∆φ between successive
closest approaches can be found by comparing the periods.

Example 10.25 Consider a central potential of the form

V (r) =
k

α
rα, (10.177)

where α is a fixed number. The effective potential for the ρ coordinate is given by

Veff(ρ) =
L2

2mρ2
+
k

α
ρα (10.178)

and its minimum is found for the ρ0 that satisfies

V ′eff(ρ0) = − L2

mρ3
0

+ kρα−1
0 = 0 =⇒ ρ0 =

(
L2

mk

) 1
α+2

. (10.179)

A second differentiation now results in

mρ4
0V
′′
0 = 3L2 +mk(α− 1)ρα+2

0 = (α+ 2)L2. (10.180)

It follows that

∆φ = 2π

(
1− 1√

α+ 2

)
(10.181)

and, in particular, ∆φ = π for the special case α = 2 of the harmonic potential. Thus, for
the harmonic potential, the motion reaches the smallest ρ value twice per orbit. While we
here have only shown this to leading order, it is a result that holds to all orders and is rather
straightforward to derive by solving the problem exactly. It follows that the orbit is closed,
i.e., the orbit returns to the same position with the same velocity on every turn. The same
is true when α = −1, which results in ∆φ = 0. This result is also true to all orders and we
will discuss this case in detail below.
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10.3.1 The two-body problem and Kepler’s laws
One of the more important applications of motion in a central potential is the two-body
problem in a 1/r potential, also known as the Kepler problem. We here assume that two
masses m1 and m2 are moving freely apart from a mutual potential given by by Newton’s
gravitational potential. This situation is described by the Lagrangian

L =
m1

2
~̇x 2

1 +
m2

2
~̇x 2

2 +G
m1m2

|~x2 − ~x1|
(10.182)

and has six degrees of freedom in the two position vectors ~x1 and ~x2 of the corresponding
masses. It is preferable to rewrite this Lagrangian in a different set of coordinates by using
the center of mass position and separation vector, given by

~X =
m1~x1 +m2~x2

m1 +m2
=

µ

m2
~x1 +

µ

m1
~x2 and ~x = ~x2 − ~x1, (10.183)

respectively, where

µ =
m1m2

m1 +m2
=
m1m2

M
(10.184a)

is the reduced mass of the system and M = m1 + m2 the total mass. For future reference,
we note that the inversion of this transformation is given by

~x1 = ~X − µ

m1
~x and ~x2 = ~X +

µ

m2
~x. (10.184b)

In this coordinate system, the Lagrangian takes the simpler form

L =
M

2
~̇X2 +

µ

2
~̇x+G

m1m2

|~x|
, (10.185)

which does not have any cross terms involving both ~X and ~x and therefore can be treated
as two separate problems, one for ~X and the other for ~x. Since the Lagrangian does not
depend explicitly on the center of mass coordinates ~X, the center of mass momentum

~P = M ~̇X (10.186)

is a constant of motion and therefore the center of mass moves at constant velocity

~v0 =
~P

M
. (10.187)

The problem for the separation vector is a central potential problem with mass µ and
potential

V (r) = −Gm1m2

r
= −GµM

r
. (10.188)

Let us therefore examine the properties of the orbits of this type of potential in more detail
to see if we can find some familiar results.

We start by looking at the conserved energy E, which is given by

E =
µ

2
ρ̇2 +

L2

2µρ2
−GµM

ρ
. (10.189)

In order to determine the spatial shape of the orbit, we would like to find ρ as a function of
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ρ0

1−ε

ρ0

b

a f

ρ0

1+ε

Figure 10.20 Some different parameters that may be used in describing an ellipse. The semi-major
axis a, the semi-minor axis b, the semi-latus rectum ρ0, and the focal distance f . The eccentricity
ε is defined as the quotient f/a. The black dot represents one of the foci of the ellipse.

the angle φ rather than time t. Luckily, φ is a monotonic function of t and we can therefore
make the substitution

ρ̇ =
dρ

dt
=
dρ

dφ

dφ

dt
=
dρ

dφ
φ̇ = ρ′

L

µρ2
, (10.190)

where we have introduced the notation ρ′ = dρ/dφ and used the expression for the angular
momentum in the last step. Substituting this into the expression for the energy and solving
for ρ′2 results in

ρ′2 =
2µ

L2

(
Eρ4 +GµMρ3

)
− ρ2. (10.191)

While this differential equation might look unfamiliar, consider an ellipse of eccentricity
ε < 1 and one of its focal points in the origin. Such an ellipse is described by the curve

ρ(φ) =
ρ0

1 + ε cos(φ)
, (10.192)

where the parameter ρ0 determines the size of the ellipse, see Fig. 10.20. Differentiating this
expression and substituting in the expression for ρ(φ) results in

ρ′2 =
ε2 − 1

ρ2
0

ρ4 +
2

ρ0
ρ3 − ρ2. (10.193)

Identification with the differential equation for the orbit, we find that

ρ0 =
L2

Gµ2M
and ε2 = 1 +

2L2E

G2µ3M2
. (10.194)

Note that the condition ε < 1 is satisfied as long as we have a bound state, i.e., as long as
E < 0. We have thus showed that the shape of the orbit is an ellipse with a focal point at
ρ = 0 and determined its orbital parameters ρ0 and ε in terms of the constants of motion.
The fact that the orbit is an ellipse is Kepler’s first law . For unbound states with E > 0,
the bodies no longer orbit each other and the relative trajectory takes a different shape, see
Problem 10.33.

Having determined that the orbits of the Kepler problem are ellipses, let us find a
geometrical implication of the conservation of angular momentum. Consider a general curve
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ρ(φ) in polar coordinates. The area swept by the separation line between the origin and the
curve between the angles φ = 0 and φ = φ0 is given by

A(φ0) =

∫ φ0

φ=0

∫ ρ(φ)

r=0

dA =

∫ φ0

φ=0

∫ ρ(φ)

r=0

r dr dφ =

∫ φ0

0

ρ(φ)2

2
dφ. (10.195)

If the angle φ0 increases with time at a rate φ̇, then the time derivative of the swept area is

Ȧ =
dA

dφ
φ̇ =

ρ2

2
φ̇. (10.196)

In the case of the Kepler problem, we can use this to eliminate φ̇ from the expression for
the angular momentum and find that

Ȧ =
L

2µ
. (10.197)

The area swept per time unit in the Kepler problem is therefore constant, which is Kepler’s
second law , and equal to L/2µ.

Finally, we look at the semi-major axis a of an ellipse, see Fig. 10.20, which is given by

a =
ρ0

2

(
1

1− ε
+

1

1 + ε

)
=

ρ0

1− ε2
. (10.198)

At the same time, the semi-minor axis b satisfies the relation

b2 = (1− ε2)a2 (10.199)

and the squared area of the ellipse is therefore given by

A2 = π2a2b2 = π2(1− ε2)a4 = π2a3ρ0 = π2a3 L2

Gµ2M
. (10.200)

Since the area swept per time is constant, we can relate the area to the orbital period
through the relation

T =
A

Ȧ
=⇒ T 2 =

A2

Ȧ2
=

4π2

GM
a3, (10.201)

where we have used the expressions for Ȧ and A from Eqs. (10.196) and (10.200), respec-
tively. We therefore find that, regardless of the orbital parameters E and L, the square of
the orbital period is proportional to the cube of the semi-major axis, which is the statement
of Kepler’s third law . In addition, if one of the bodies is much heavier than the other, i.e.,
if M ' m1 � m2, then the proportionality constant does not depend significantly on the
lesser mass. In particular, our solar system is dominated by the mass of the Sun, and all
the planets are significantly lighter. This means that all planets will have approximately the
same proportionality constant in the relation between the orbital period and the semi-major
axis, which is what led Kepler to draw the conclusion of the third law in the first place. We
have now derived all of Kepler’s laws directly from Newton’s theory of gravitation. It should
be pointed out that Kepler did not have this luxury as Newton had not yet presented his
theory and worked out the implications. Kepler based his conclusions solely on experimental
observations. An argument for Kepler’s third law for the case of a circular orbit can also be
made using dimensional analysis only, see Problem 3.43.

So what about orbital precession? As we have seen, Newton’s theory predicts that the
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orbits are closed ellipses and therefore that there should not be any orbital precession in the
case of the pure two-body problem. In reality, the solar system is not a two-body system,
but all constituents affect each other gravitationally, leading to corrections to the first order
approximation where the Sun is the only gravitational attractor. Taking the disturbances of
other bodies into account will generally lead to orbital precession. However, even in doing
so, the orbit of Mercury shows a precession that is not compatible with Newton’s theory.
This observation was one of the earliest experimental evidence for general relativity, which
matches the experimental data perfectly.

10.3.2 The restricted three-body problem
Having solved the two-body problem, the next natural question is whether we can solve
the general three-body problem as well. Ultimately, this turns out to be a situation that
cannot be solved by exact methods although some particular solutions do exist. We will
therefore constrain our discussion to the special case of the restricted three-body problem,
which assumes that the three masses satisfy m1 ≥ m2 � m3 so that the motion of the two
heavier bodies is not significantly affected by the third and therefore can be approximated
with the solution to the two-body problem. We furthermore assume that all of the motion
occurs in the plane and that the orbit of the two heavier masses have an eccentricity ε = 0,
i.e., their orbits are circular. We therefore find that

E = −G
2µ3M2

L2
= Veff(ρ0) (10.202)

and that the constant orbital angular velocity is given by

ω2 =
4π2

T 2
=
GM

ρ3
0

, (10.203)

in accordance with Kepler’s third law.
When looking at the motion of the third body in the plane, it is preferable to do so in

the co-rotating frame where the other two bodies are at rest, which rotates with angular
frequency ω. We also restrict ourselves to look at the case where the center of mass is
stationary at the origin as the case when the center of mass is moving can be obtained by
performing a Galilei boost of the resulting solution. The Lagrangian for the third body in
the rotating frame is given by

L3 =
m3

2
~̊y 2

3 −m3ω(ẏ1
3y

2
3 − ẏ2

3y
1
3) +

m3

2
ω2~y 2

3 − V31(r13)− V32(r23), (10.204)

where V3i is the gravitational potential of the interaction between the ith and third bodies
and ri3 the distance between them

V3i = −Gmim3

ri3
. (10.205)

Furthermore, we are free to select coordinates in the rotating frame in such a way that
the separation between the first two bodies lies entirely along the ~e1 direction. With the
solution to the two-body problem, this means that the positions of the first two masses are
given by (cf. Eq. (10.184b))

~y1 = −µρ0

m1
~e1 and ~y2 =

µρ0

m2
~e1, (10.206)
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respectively, and that

ri3 =
√

(y1
3 − y1

i )2 + (y2
3)2. (10.207)

Defining the effective potential

V3eff = −m3

2
ω2~y 2 + V31(r13) + V32(r23), (10.208)

we find that the equations of motion are given by

m3ÿ
1
3 = 2m3ωẏ

2
3 −

∂V3eff

∂y1
3

, (10.209a)

m3ÿ
2
3 = −2m3ωẏ

1
3 −

∂V3eff

∂y2
3

. (10.209b)

As the Coriolis force depends linearly on the velocity of the body, it does not affect the
stationary points of the problem for which the coordinates being constant is a valid solution
to the equations of motion. Instead, such a solution will still be given by the stationary
points of the effective potential V3eff , i.e., the points where its gradient is equal to zero.
Imposing this condition results in

ω2y1
3 =

Gm1

r3
13

(
y1

3 +
µρ0

m1

)
+
Gm2

r3
23

(
y1

3 −
µρ0

m2

)
, (10.210a)

ω2y2
3 =

Gm1

r3
13

y2
3 +

Gm2

r3
23

y2
3 . (10.210b)

The latter of these equations is trivially solved by y2
3 = 0, which is also intuitive since the

effective potential is symmetric about the y1
3-axis, so let us start by looking for solutions to

the first one where this is the case. In Fig. 10.21, the behaviour of the left- and right-hand
sides of the first equation for this situation is shown. In particular, regardless of the masses
m1 and m2, the right-hand side will always be monotonically decreasing and go from zero
to −∞ to the left of the first mass, from ∞ to −∞ in the region between the two masses,
and from ∞ to zero to the right of the second mass. As a result, the straight line given by
ω2y1

3 must intersect the graph for the right-hand side once in each of these regions, each
providing one stationary solution to the equations of motion. These points are known as
Lagrange points of the m1-m2-system and are labelled L1, L2, and L3 as shown in the
figure. If a small body is placed at one of those points, the force of gravity of the two other
bodies and the centrifugal force exactly cancel out and the smaller body will rotate along
with the other two at a fixed position in the rotating frame.

Let us examine whether there are any Lagrange points away from y2
3 = 0. In this

situation, Eq. (10.210b) can be divided by y2
3 and we find that

Gm1

r3
13

= ω2 − Gm2

r3
23

. (10.211)

Inserting this into Eq. (10.210a) now yields

ω2 =
GM

r3
23

(10.212)

and comparison with Eq. (10.203) directly gives r23 = ρ0, which also implies that r13 = ρ0

and thus
r13 = r12 = ρ0. (10.213)
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Figure 10.21 The behaviour of the left- and right-hand sides of Eq. (10.210a) for y2
3 = 0, repre-

senting the centrifugal (dark) and gravitational (light) forces in the co-rotating frame. When the
two-contributions are equal, the net force on a third body at rest at that point is zero and the
point is stable. Such points are Lagrange points of the system and there are three such points with
y2

3 = 0, called L1, L2, and L3.

Since ρ0 is the distance between the first and second masses, this implies that any of the
stationary points we seek along with the positions of the first two masses form the vertices
of an equilateral triangle. There are two such points in the plane, labelled L4 and L5, see
Fig. 10.22, where we show the shape of the effective potential V3eff along with the positions
of all five Lagrange points.

10.4 HAMILTONIAN MECHANICS
Apart from the Newtonian and Lagrangian formulations of classical mechanics, there is a
third formulation that is also equivalent in many situations. The idea behind Hamiltonian
mechanics is to treat the generalised coordinates and their corresponding canonical mo-
menta on a more equal footing and while problems are not necessarily easier to solve in
this formulation, it provides a deeper understanding for how classical mechanics work. In
addition, many of the concepts of Hamiltonian mechanics will be recognisable in quantum
mechanics, which might otherwise appear as a set of ad hoc assumptions.

10.4.1 Phase space
In Lagrangian mechanics, we were faced with a Lagrangian that generally depended on the
generalised coordinates qa and their time derivatives q̇a, leading N second order differential
equations in the case of N generalised coordinates. Such a differential requires 2N initial
conditions in order for the solution to be completely specified. For a function x(t) that is
determined by a second order differential equation with initial conditions x(0) = x0 and
ẋ(0) = v0, it is possible to introduce an additional auxiliary variable

v(t) = ẋ(t) (10.214)
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L1 L2L3

L4

L5

Figure 10.22 The shape of the effective potential in the rotating frame for the three-body problem.
Also shown are the Lagrange points L1–L5 that represent the stable points for the third body
in the rotating frame. The points that are vertices of both triangles in the right figure show the
positions of the two heavier bodies and the equilateral triangles formed by these positions and the
Lagrange points L4 and L5 are also drawn explicitly.

in order to rewrite the second order differential equation as a first order one, replacing
ẍ(t) with v̇(t). The new differential equation along with Eq. (10.214) will then form a set
of two coupled first order differential equations and will therefore also require two initial
conditions, just as the original second order one, given by x(0) = x0 and v(0) = v0.

Example 10.26 For the harmonic oscillator, the equations of motion are given by

mẍ(t) + kx(t) = 0. (10.215)

Introducing v(t) = ẋ(t), this second order differential equation is equivalent to the set

mv̇(t) + kx(t) = 0, (10.216a)

ẋ(t)− v(t) = 0 (10.216b)

of first order differential equations. In this particular case, the differential equations are
linear and may be written as(

v̇(t)
ẋ(t)

)
=

(
0 − k

m
1 0

)
︸ ︷︷ ︸

=Ω

(
v(t)
x(t)

)
︸ ︷︷ ︸

=X

⇐⇒ Ẋ = ΩX. (10.217)

This differential equation has the solution X = exp(Ωt)X(0). The eigenvalues λ of the
matrix Ω are given by the characteristic equation

λ2 +
k

m
= 0 =⇒ λ = ±i

√
k

m
≡ ±iω. (10.218)

Since the eigenvalues are purely imaginary, the resulting solution will describe periodic
oscillations with the characteristic frequency ω of the harmonic oscillator.
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The above discussion and example demonstrates the possibility of rewriting a second
order differential equation in terms of two first order ones. However, it is not always the case
that the most convenient choice for the auxiliary variable is just the time derivative of the
original one. In fact, as we shall see shortly, in classical mechanics with a set of generalised
coordinates qa, it will be natural to use the canonical momenta

pa =
∂L
∂q̇a

(10.219)

instead. The set of N generalised coordinates along with the N corresponding canonical
momenta is known as the phase space of a system and describes not only its configuration,
but also its current state of motion.

Example 10.27 In the case of the harmonic oscillator, the Lagrangian is given by

L =
m

2
ẋ2 − k

2
x2. (10.220)

The canonical momentum is therefore given by

p =
∂L
∂ẋ

= mẋ (10.221)

and the corresponding equations of motion in phase space are given by this definition and

ṗ+ kx = 0. (10.222)

This second equation is just Newton’s second law for the linear restoring force −kx.

Viewing qa and pa as coordinates on the phase space, the time derivative of the coordi-
nates will be uniquely determined by a function of the coordinates themselves. This means
that if we draw a diagram of phase space, we can represent the evolution from every point
in phase space by a vector with components q̇a and ṗa at that point, given by the 2N dif-
ferential equations. The time evolution of the system will be the flow lines of the resulting
vector field. Since these lines are the flow lines of a vector field, they will never cross each
other.

Example 10.28 The vector field with components ẋ and ṗ in phase space in the case
of the harmonic oscillator is shown in Fig. 10.23. The corresponding flow lines are closed
circles, illuminating the fact that the harmonic oscillator solutions are periodic.

Example 10.29 Let us consider a bead of mass m moving on a ring in a gravitational
field of strength g. Using the angle θ between the bead’s position and the position on top
of the ring as the generalised coordinate, the Lagrangian is given by

L =
mr2

0

2
θ̇2 −mgr0 cos(θ). (10.223)
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p

x

Figure 10.23 The phase space of the harmonic oscillator and the vector field with components ẋ
and ṗ. The black circle represents one of the flow lines of the vector field.

The corresponding canonical momentum now takes the form

p =
∂L
∂θ̇

= mr2
0 θ̇, (10.224)

which can be interpreted as the angular momentum about the ring’s center. This results in
the equations of motion

θ̇ =
p

mr2
0

and ṗ = mgr0 sin(θ) (10.225)

and the corresponding phase space flow is shown in Fig. 10.24.

10.4.2 The Hamiltonian
We have already encountered the Hamiltonian

H = paq̇
a − L (10.226)

as a quantity that is conserved whenever the Lagrangian L is invariant under time transla-
tions. In the Hamiltonian formalism, it will take a much more prominent role. In general,
the differential of the Hamiltonian will be given by

dH = q̇adpa + padq̇
a − ∂L

∂qa
dqa − ∂L

∂q̇a
dq̇a − ∂L

∂t
dt = q̇adpa − ṗadqa −

∂L
∂t
dt, (10.227)

where the second step follows from the definition of the canonical momentum and the
equations of motion and therefore holds for on-shell solutions. When we dealt with the
Hamiltonian earlier, we viewed the canonical momenta pa as functions of the generalised
coordinates and their time derivatives. However, we can use the definition of the canonical
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2π

θ

p

Figure 10.24 The phase space flow for a bead moving on a ring in a gravitational field with the
generalised coordinate θ on the horizontal axis and its corresponding canonical momentum p on
the vertical one. Note that the θ = 0 and θ = 2π correspond to the same point in phase space
and flowing out on the right edge means flowing in on the left edge. Marked in black are the flows
corresponding to the solutions separating the families of solutions where the bead motion oscillates
around the bottom of the ring and where the bead continues around the loop indefinitely. These
flows move asymptotically toward the unstable fixed point at θ = 0.

momenta to express q̇a, and therefore also the Hamiltonian, as a function of qa, pa, and t
and as such, we find that

dH =
∂H
∂qa

dqa +
∂H
∂pa

dpa +
∂H
∂t

dt. (10.228)

Comparing the two expressions for dH now gives us the relations

q̇a =
∂H
∂pa

, ṗa = − ∂H
∂qa

, and
∂H
∂t

= −∂L
∂t
. (10.229)

The first two of these equations are Hamilton’s equations of motion and are precisely the
first order differential equations in phase space that we need to solve in order to determine
the time evolution of the system. If we have an expression for the Hamiltonian, we can
therefore find the corresponding equations of motion by taking its partial derivatives with
respect to the phase space coordinates qa and pa.

It should be noted that just as the configuration space and the Lagrangian defines a
physical model in Lagrangian mechanics, the phase space and the Hamiltonian along with
Hamilton’s equations of motion define the model in Hamiltonian mechanics. The above
argumentation serves only to conclude that with the Hamiltonian defined according to
Eq. (10.226) with respect to the Lagrangian, known as the Legendre transform of the La-
grangian with respect to q̇a, then Hamilton’s equations are equivalent to the equations of
motion based on Lagrangian mechanics.
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Example 10.30 The harmonic oscillator Lagrangian defined in Eq. (10.220) has the cor-
responding Hamiltonian

H = ẋ
∂L
∂ẋ
− L =

m

2
ẋ2 +

k

2
x2. (10.230)

With the canonical momentum given by p = mẋ, we find that, as a function of x and p, the
Hamiltonian takes the form

H(x, p) =
p2

2m
+
k

2
x2. (10.231)

Hamilton’s equations of motion now take the form

ẋ =
∂H
∂p

=
p

m
and ṗ = −∂H

∂x
= −kx, (10.232)

which, hardly surprising, are the exact same equations as those we found in Examples 10.26
and 10.27.

Example 10.31 Consider a particle moving in a central potential V (r). According to our
previous discussion on central potentials, this motion occurs in a plane in which we can
introduce polar coordinates ρ and φ upon which the Lagrangian takes the form

L =
m

2
(ρ̇2 + ρ2φ̇2)− V (ρ). (10.233)

The canonical momenta corresponding to the ρ and φ coordinates are given by

pρ =
∂L
∂ρ̇

= mρ̇ and pφ =
∂L
∂φ̇

= mρ2φ̇, (10.234)

respectively, resulting in the Hamiltonian

H =
p2
ρ

2m
+

p2
φ

2mρ2
+ V (ρ). (10.235)

The equations of motion for the angular coordinate φ are now given by

φ̇ =
∂H
∂pφ

=
pφ
mρ2

and ṗφ = −∂H
∂φ

= 0. (10.236)

These are just the expressions of the angular momentum pφ in terms of the angular velocity

φ̇ and the conservation of angular momentum, respectively. We also find the equations of
motion for the radial coordinate to be

ρ̇ =
∂H
∂pρ

=
pρ
m

and ṗρ = −∂H
∂ρ

=
p2
φ

mρ3
− V ′(ρ), (10.237)

which coincides with the equations of motion derived in Lagrangian mechanics.
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10.4.3 Poisson brackets
Hamilton’s equation can be written in a rather abstract manner with the help of a math-
ematical construct called the Poisson bracket . Given two functions f and g of the phase
space coordinates qa and pa, we define the Poisson bracket between those functions as

{f, g} =
∂f

∂qa
∂g

∂pa
− ∂g

∂qa
∂f

∂pa
. (10.238)

This construction has a few important properties that are good to keep in mind when doing
computations:

1. Anti-symmetry : From the definition of the Poisson bracket, it follows directly that
{f, g} = −{g, f}.

2. Linearity : Due to the derivatives being linear, it is always true that

{α1f1 + α2f2, g} = α1 {f1, g}+ α2 {f2, g} (10.239)

for any constants αi. The fact that the Poisson bracket is anti-symmetric also means
that a similar relation holds for the second argument.

3. Leibniz rule: Due to the Leibniz rule for partial derivatives, the Poisson bracket au-
tomatically satisfies the Leibniz rule

{fg, h} = f {g, h}+ {f, h} g. (10.240)

4. Jacobi identity : The Poisson bracket satisfies the relation

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0. (10.241)

This relation also follows from directly inserting the definition of the Poisson bracket,
upon which all terms cancel pairwise.

Example 10.32 The most basic functions of the phase space coordinates, apart from
constant functions, are just the coordinates themselves. Taking the Poisson bracket between
different coordinates, we find the canonical commutation relations

{
qa, qb

}
=
∂qa

∂qc
∂qb

∂pc
− ∂qb

∂qc
∂qa

∂pc
= 0, (10.242a)

{pa, pb} =
∂pa
∂qc

∂pb
∂pc
− ∂pb
∂qc

∂pa
∂pc

= 0, (10.242b)

{qa, pb} =
∂qa

∂qc
∂pb
∂pc
− ∂pb
∂qc

∂qa

∂pc
= δac δ

c
b = δab . (10.242c)

In words, all of the Poisson brackets between the phase space coordinates are zero except
for that between a generalised coordinate qa and its corresponding canonical momentum
pa.
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Taking the Poisson bracket between the Hamiltonian and the phase space coordinates
qa and pa, we find that

{qa,H} =
∂qa

∂qb
∂H
∂pb
− ∂H
∂qb

∂qa

∂pb
= δab

∂H
∂pb

=
∂H
∂pa

, (10.243a)

{pa,H} =
∂pa
∂qb

∂H
∂pb
− ∂H
∂qb

∂pa
∂pb

= −∂H
∂qb

δba = − ∂H
∂qa

. (10.243b)

With the Poisson bracket, Hamilton’s equations of motion therefore take the form

q̇a = {qa,H} and ṗa = {pa,H} . (10.244)

So what about other functions of the phase space coordinates? Let us consider an arbitrary
function f that generally depends on qa, pa, and t and a HamiltonianH. Using the definition
of the Poisson bracket, we find that

{f,H} =
∂f

∂qa
∂H
∂pa
− ∂H
∂qa

∂f

∂pa
=

∂f

∂qa
q̇a + ṗa

∂f

∂pa
. (10.245)

We can also look at the total derivative of f with respect to time, which is given by

df

dt
=

∂f

∂qa
q̇a +

∂f

∂pa
ṗa +

∂f

∂t
= {f,H}+

∂f

∂t
. (10.246)

In particular, if the function f does not depend explicitly on time, then

ḟ ≡ df

dt
= {f,H} . (10.247)

If, in addition, f Poisson commutes with the Hamiltonian, i.e., if

{f,H} = 0, (10.248)

then the function f is a constant of motion. We have encountered constants of motion
earlier in this chapter when we discussed Noether’s theorem in Lagrangian mechanics. We
will discuss the corresponding statements in Hamiltonian mechanics once we have developed
the framework a bit further.

Example 10.33 The Hamiltonian itself is a function of qa and pa and we find that

Ḣ = {H,H}+
∂H
∂t

=
∂H
∂t

, (10.249)

where we have used that the anti-symmetry of the Poisson bracket implies that {H,H} = 0.
It follows that the Hamiltonian is a constant of motion if it does not depend explicitly on
t. This sounds familiar. In the framework of Lagrangian mechanics, we found that the
Hamiltonian was a constant of motion if the Lagrangian did not depend explicitly on time.
These statements are equivalent as we have already established the relationship

∂H
∂t

= −∂L
∂t
. (10.250)

Hence, if the Lagrangian does not depend explicitly on time, neither does the Hamiltonian
and vice versa.
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Example 10.34 Consider a particle of mass m moving in a potential V (~x). The corre-
sponding Hamiltonian is given by

H =
~p 2

2m
+ V (~x) (10.251)

and the angular momentum relative to the origin ~x = 0 is given by

~L = ~x× ~p ⇐⇒ Li = εijkx
jpk. (10.252)

It follows that

L̇i = {Li,H} = εijk(
{
xj ,H

}
pk + xj

{
pk,H

}
) = εijk

(
pj

m
pk − xj∂kV

)
= −εijkxj∂kV. (10.253a)

or, in other words,
~̇L = ~x× ~F , (10.253b)

where ~F = −∇V is the force acting on the particle. We recognise ~x× ~F as the torque ~τ on
the particle relative to the origin.

Given two functions f1 and f2 of the phase space coordinates, we may ask the question
of how their Poisson bracket evolves. Just as any function depending only on the phase
space coordinates, the Poisson bracket {f1, f2} will evolve according to

d

dt
{f1, f2} = {{f1, f2} ,H} . (10.254)

Using the Jacobi identity for the Poisson bracket, we can rewrite this as

{{f1, f2} ,H} = −{{f2,H} , f1} − {{H, f1} , f2} = −
{
ḟ2, f1

}
+
{
ḟ1, f2

}
. (10.255)

In particular, if both f1 and f2 are constants of motion, then so is their Poisson bracket
{f1, f2}. Assuming the Poisson bracket is non-zero and independent from the functions
themselves, we can therefore extend the number of known constants of motion by including
the Poisson bracket {f1, f2}.

Example 10.35 The angular momentum vector ~L = ~x × ~p has three components as
described in Example 10.34. Taking the Poisson bracket between two of those components
using a Cartesian basis, we find that

{Li, Lj} = εik`εjmn
{
xkp`, xmpn

}
= εik`εjmn(p`xmδkn − xkpnδ`m)

= (δimδ`j − δijδ`m)(p`xm − x`pm) = xipj − xjpi. (10.256)

We also note that a general property of the angular momentum components is

εijkLk = εijkεk`mx
`pm = xipj − xjpi (10.257)
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and therefore
{Li, Lj} = εijkLk. (10.258)

Thus, the Poisson bracket of two of the angular momentum components is equal to the
third. It follows that if two of the components are constants of motion, then so is the third.
Also note how this relation is very reminiscent of the Lie bracket between the generators of
the rotation group SO(3), see Eq. (4.41). In fact, taking Li = Ji, it is the Lie bracket and
the angular momentum components may be seen as the generators of rotation. As we shall
see in a while, this is not something coincidental. Instead, the angular momentum will be
seen to generate rotations in a very explicit manner.

10.4.4 Liouville’s theorem
With the introduction of Hamiltonian mechanics, the generalised coordinates and their
canonical momenta have very similar roles. After the introduction of the Poisson bracket,
their equations of motion are completely symmetric. In what follows, we therefore introduce
a new short-hand for denoting both of them at the same time with the notation yr such
that yr = qr for 1 ≤ r ≤ N and yr = pr−N for N + 1 ≤ r ≤ 2N . We will here use indices
from the latter part of the alphabet, i.e., r, s, t, to denote indices taking values from one
to 2N and reserve the earlier part of the alphabet for indices taking values between one
and N . With this notation, the Poisson bracket can be written as

{f, g} =
∂f

∂qa
∂g

∂pa
− ∂g

∂qa
∂f

∂pa
=

∂f

∂ya
∂g

∂ya+N
− ∂g

∂ya
∂f

∂ya+N
=

∂f

∂yr
ωrs

∂g

∂ys
, (10.259)

where we have introduced ωrs = δr+N,s − δr,s+N . By construction ωrs is anti-symmetric
and has constant components.

Example 10.36 Consider a particle moving in one dimension with coordinate x. Denoting
its canonical momentum by p, we introduce the phase space coordinates

y1 = x and y2 = p. (10.260)

The Poisson bracket in this system may be described as

{f, g} =
∂f

∂x

∂g

∂p
− ∂f

∂p

∂g

∂x
=

∂f

∂y1

∂g

∂y2
− ∂f

∂y2

∂g

∂y1
. (10.261)

In this case, we find that ωrs has the non-zero entries

ω12 = 1 and ω21 = −1. (10.262)

Let us now consider the time evolution of the phase space coordinates yr themselves.
By construction, we know that

ẏr =
∂yr

∂ys
ωst

∂H
∂yt

= ωrt
∂H
∂yt

. (10.263)

This equation describes the phase space flow of the system and we know from Section 3.9.3
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Figure 10.25 The phase space flow of the initially circular region (darker shading) of phase space
at different times for a bead moving on a ring in a gravitational field, cf. Fig. 10.24. As time goes
by, the shape of the region moves and becomes distorted but retains the same phase space area in
accordance with Liouville’s theorem.

that a flow preserves volumes if ∇ · ~v = 0, where ~v is the flow velocity field. In our case, we
indeed find that

∂rẏ
r =

∂

∂yr
ωrt

∂H
∂yt

= ωrt
∂2H
∂yr∂yt

= 0 (10.264)

due to the second derivative of the Hamiltonian being symmetric and ωrt being anti-
symmetric. The phase space flow is therefore incompressible, i.e., the phase space volume
does not change under this flow. This statement is known as Liouville’s theorem.

Example 10.37 In the case of the harmonic oscillator, the phase space flow is given by

x(t) = x0 cos(ωt) +
p0

mω
sin(ωt), (10.265a)

p(t) = p0 cos(ωt)−mωx0 sin(ωt). (10.265b)

This is a rotation of the phase space coordinates by an angle ωt and in general areas, in
this case the phase space area, are invariant under rotations.

Example 10.38 Liouville’s theorem only states that the phase space volume is preserved
under the phase space flow. The shape of this volume may still be significantly distorted.
Consider the phase space flow in the case of the bead moving on a ring in a gravitational
field of Example 10.29. In Fig. 10.25 we show the evolution of a circular region in phase
space under the phase space flow. As we can see from this figure, the area of the region
remains the same under the flow while the shape does not. In particular, the phase space
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orbits for which the bead oscillates closer to the equilibrium have a shorter period and
therefore the other orbits lag behind, leading to an elongation of the flowing phase space
volume.

So what does it mean for the phase space volume to be preserved? If we consider an
ensemble of systems that do not interact with each other but that are described by the same
phase space and Hamiltonian, then the phase space density ρ(q, p, t) is defined such that

N(Vp, t) =

∫
Vp

ρ(q, p, t)dVp (10.266)

for any phase space volume Vp, where N(Vp, t) is the number of systems within Vp at time
t and dVp is the phase space volume element. If we now consider the phase space flow Vp(t)
of the volume Vp, i.e., Vp(t) is the volume to which Vp maps for the phase space flow during
time t, then we must have the relation

N(Vp(t), t) = N(Vp, 0). (10.267)

Since this must hold for any volume and the volume of Vp(t) is the same as the volume of
Vp, it follows that

dρ

dt
=
∂ρ

∂t
+

∂ρ

∂qa
q̇a +

∂ρ

∂pa
ṗa = 0. (10.268)

Note that this is just a statement saying that the density along the flow does not change
under an incompressible flow. Inserting Hamilton’s equations of motion now results in

∂ρ

∂t
=
∂H
∂qa

∂ρ

∂pa
− ∂H
∂pa

∂ρ

∂qa
= {H, ρ} . (10.269)

This equation describes how the evolution of the phase space density with time depends on
the phase space density itself and the dynamics of the system and is known as Liouville’s
equation. Using phase space distributions and considering their time evolution is a central
part in the study of statistical mechanics. In many cases, it will not be possible to consider
an ensemble as non-interacting. In such situations, Liouville’s equation must be modified
and the result will generally contain terms that are non-linear in the phase space density ρ.

Example 10.39 An example of an ensemble with non-interacting systems is given by an
ideal gas. In this case, the molecules of the gas are assumed to bounce around in a container
with a certain temperature and pressure and without colliding with each other. The motion
of each particle is then described independently by the same phase space and Hamiltonian.
For most practical purposes, there are so many molecules in any given container that the
phase space density ρ can be considered continuous.

Liouville’s theorem has another important implication. Let us look at the flow of the
phase space region P and define Pk as the volume to which P flows in time kτ , where τ is
some fixed time. If all of the phase space regions Pk are disjoint, then the total volume of
the first n such regions is given by

V = nV0, (10.270)

where V0 is the phase space volume of P , since all of the regions have the same volume
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according to Liouville’s theorem. Therefore, if the flow of P is restricted to a region with
finite phase space volume, a k such that Pk and P are not disjoint must exist. Since we can
select P arbitrarily small as long as it has a finite volume, we can conclude that, with this
assumption, a system described by Hamiltonian mechanics will eventually come arbitrarily
close to its initial state. This statement is known as the Poincaré recurrence theorem.

Example 10.40 Consider the harmonic oscillator and look at a region of phase space P
for which the total energy E varies between Emin and Emax. Since energy is a constant of
motion, it follows that

Emin ≤
p2

2m
+
kx2

2
≤ Emax (10.271)

for any point in parameter space to which P can flow. This describes an elliptic band in
phase space and has the finite phase space area π(Emax−Emin)/ω. It follows that Poincaré’s
recurrence theorem applies to the harmonic oscillator, which should not be surprising as we
know that the harmonic oscillator solutions are periodic.

Note that, while the recurrence theorem states that a system satisfying its assumptions
will eventually return to a state arbitrarily close to its original state, the time for this to
occur may in practice be prohibitively large.

10.4.5 Canonical transformations
In Lagrangian mechanics, the result of applying Hamilton’s principle does not depend on
the generalised coordinates chosen to describe the system and so we were free to use any
coordinates that could be useful for solving the equations of motion for a particular system.
We therefore ask ourselves what the corresponding statement in Hamiltonian mechanics is.
Let us briefly summarise the basis of Hamiltonian mechanics and define the condition that
we wish to impose on a phase space coordinate transformation in order to keep the same
formulation of mechanics.

The basis of Hamiltonian mechanics is the phase space with coordinates qa and pa, or
equivalently yr, a function H that depends on those coordinates, and the Poisson bracket
that determines the equations of motion. The Poisson bracket is given by

{f, g} =
∂f

∂yr
ωrs

∂g

∂ys
. (10.272)

Let us now introduce a different set of coordinates Qa and Pa, or equivalently Y r, that
describe the same phase space. If we want to keep the same formulation of Hamiltonian
mechanics in these coordinates, the corresponding Poisson bracket must be given by

{f, g}Y =
∂f

∂Y r
ωrs

∂g

∂Y s
. (10.273)

If we want the theory to remain the same, this new Poisson bracket must coincide with the
original one, i.e.,

{f, g}Y = {f, g}y (10.274)

for any functions f and g on the phase space. In terms of the coordinates, this condition
takes the form

∂f

∂Y r
ωrs

∂g

∂Y s
=

∂f

∂yr
ωrs

∂g

∂ys
=

∂f

∂Y r
∂Y r

∂yt
ωtu

∂Y s

∂yu
∂g

∂Y s
, (10.275)
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where we have used the chain rule in the last step. In order for this to be satisfied for all
functions f and g we need to impose the condition

ωrs =
∂Y r

∂yt
ωtu

∂Y s

∂yu
. (10.276)

If this is satisfied, the transformation is called a canonical transformation. Alternatively,
this can be written on matrix form as

Ω = JTΩJ, (10.277)

where the matrices Ω and J have ωrs and ∂Y s/∂yr, respectively, as their components.

Example 10.41 For a particle of mass m moving in one dimension, we can define the
phase space rotation

X = x cos(α) +
p

mω0
sin(α), P = p cos(α)−mω0x sin(α), (10.278)

where ω0 is a constant with units 1/T and α is some angle. We find that the matrix J is
given by

J =

(
∂X
∂x

∂X
∂p

∂P
∂x

∂P
∂p

)
=

(
cos(α) 1

mω0
sin(α)

−mω0 sin(α) cos(α)

)
(10.279)

and the matrix Ω by construction takes the form

Ω =

(
0 1
−1 0

)
. (10.280)

Inserting this into the right-hand side of Eq. (10.277), we find that the identity is indeed
satisfied and that this is a canonical transformation.

It should also be noted that Eq. (10.275) can also be rewritten as

{f, g}Y =
∂f

∂Y r
∂g

∂Y s
{Y r, Y s}y =

∂f

∂Y r
∂g

∂Y s
ωrs. (10.281)

Thus, another way of writing the requirement for the transformation to be canonical is that
the Poisson bracket between the new coordinates with respect to the old satisfies

{Y r, Y s}y = ωrs. (10.282a)

This implies that the canonical commutation relations{
Qa, Qb

}
y

= {Pa, Pb}y = 0 and {Qa, Pb}y = δab (10.282b)

must be satisfied.

Example 10.42 Looking at the phase space rotation of Example 10.41, we find that

{X,X}xp = {P, P}xp = 0 (10.283)
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are trivially fulfilled by virtue of the Poisson bracket being anti-symmetric. For the Poisson
bracket between X and P , we find that

{X,P}xp =
∂X

∂x

∂P

∂p
− ∂X

∂p

∂P

∂x
= cos2(α) +

mω0

mω0
sin2(α) = 1, (10.284)

which also shows that the phase space rotation is a canonical transformation.

When we considered coordinate transformations in the Lagrangian formalism, we found
that any transformation of the general coordinates was allowed. In contrast, we have now
found that only canonical transformations are allowed in the Hamiltonian formalism and
it is therefore instructive to examine how the general coordinate transformation translates
to a canonical transformation, since it must be allowed. We therefore consider a general
coordinate transformation such that the new coordinates Qa can be written as functions
of the old coordinates qa and the relation can be inverted, as for the general coordinate
transformations in Lagrangian mechanics. We find that

q̇a =
∂qa

∂Qb
Q̇b =⇒ ∂q̇a

∂Q̇b
=
∂qa

∂Qb
. (10.285)

The canonical momentum related to the new coordinates is then given by

Pa =
∂L
∂Q̇a

=
∂L
∂qb

∂qb

∂Q̇a
+
∂L
∂q̇b

∂q̇b

∂Q̇a
=
∂L
∂q̇b

∂qb

∂Qa
= pb

∂qb

∂Qa
, (10.286)

which results in

∂Pa
∂qb

= pc
∂

∂qb
∂qc

∂Qa
= pc

∂Qd

∂qb
∂2qc

∂Qd∂Qa
and

∂Pa
∂pb

=
∂qb

∂Qa
. (10.287)

Let us now verify that this transformation is indeed canonical. For the commutation relations
of the new phase space coordinates, we find that{

Qa, Qb
}
qp

=
∂Qa

∂qc
∂Qb

∂pc
− ∂Qb

∂qc
∂Qa

∂pc
= 0, (10.288a)

{Pa, Pb}qp =
∂Pa
∂qc

∂Pb
∂pc
− ∂Pb
∂qc

∂Pa
∂pc

= peδ
d
b

∂2qe

∂Qd∂Qa
− peδda

∂2qe

∂Qd∂Qb

= pe

(
∂2qe

∂Qb∂Qa
− ∂2qe

∂Qa∂Qb

)
= 0, (10.288b)

{Qa, Pb}qp =
∂Qa

∂qc
∂Pb
∂pc
− ∂Pb
∂qc

∂Qa

∂pc
=
∂Qa

∂qc
∂qc

∂Qb
= δab (10.288c)

and the transformations are indeed canonical. It should be noted that, while the generalised
coordinates Qa are functions of qa only, the corresponding canonical momenta will generally
depend on both qa and pa as displayed in Eq. (10.286).

Example 10.43 For a particle of mass m moving in two dimensions, we can use either
Cartesian or polar coordinates. Starting from the formulation using Cartesian coordinates
x1 and x2, the polar coordinates are defined through the relations

x1 = ρ cos(φ) and x2 = ρ sin(φ). (10.289)
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We therefore find that the relation between the canonical momenta in Cartesian and polar
coordinates are given by

pρ = p1
∂x1

∂ρ
+ p2

∂x2

∂ρ
= p1 cos(φ) + p2 sin(φ) =

~p · ~x
ρ
, (10.290a)

pφ = p1
∂x1

∂φ
+ p2

∂x2

∂φ
= −p1ρ sin(φ) + p2ρ cos(φ) = p2x

1 − p1x
2, (10.290b)

where ~p = p1~e1 + p2~e2 and we can again identify pφ with the angular momentum relative
to the origin.

10.4.6 Phase space flows and symmetries
Just as we considered infinitesimal transformations in the Lagrangian formalism in Sec-
tion 10.2.4, let us now consider infinitesimal canonical transformations in phase space such
that

qa → Qa = qa + ε δqa and pa → Pa = pa + ε δpa, (10.291)

where δqa and δpa generally are functions of all of the phase space coordinates. In order for
this transformation to be canonical, we obtain the following conditions from the Poisson
brackets

0 =
{
Qa, Qb

}
' ε

(
∂δqb

∂pa
− ∂δqa

∂pb

)
, (10.292a)

0 = {Pa, Pb} ' ε
(
∂δpa
∂qb

− ∂δpb
∂qa

)
, (10.292b)

δab = {Qa, Pb} ' δab + ε

(
∂δqa

∂qb
+
∂δpb
∂pa

)
, (10.292c)

where we have used ' to denote equality up to first order in ε. All of these conditions can
be satisfied by letting

δqa =
∂G

∂pa
= {qa, G} and δpa = − ∂G

∂qa
= {pa, G} , (10.293)

where G is an arbitrary function of the phase space coordinates. Now this looks rather
familiar, if we let G = H, it is just Hamilton’s equations of motion for an infinitesimal
time t. In general, it is the infinitesimal form of a continuous phase space transformation
with parameter s such that qa0 → qa(q0, p0, s) and p0a → pa(q0, p0, s) satisfying

dqa

ds
= {qa, G} and

dpa
ds

= {pa, G} (10.294)

as well as the initial conditions qa(q0, p0, 0) = qa0 and pa(q0, p0, 0) = p0a. We say that the
function G is the generator of this canonical transformation and the functions qa(q0, p0, s)
and pa(q0, p0, s) are the phase space flows generated by G.
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Example 10.44 Comparing Examples 10.37 and 10.41, the phase space flow generated
by the harmonic oscillator Hamiltonian is exactly the same as the canonical phase space
rotation with α = ωt and ω0 = ω. In fact, we should expect the time evolution of a system
to define a canonical transformation as it is equivalent to the phase space flow generated
by the Hamiltonian, what we have earlier referred to as the phase space flow. This holds
for any Hamiltonian and we establish the Hamiltonian as the generator of time translations
as it maps a given set of phase space coordinates to the phase space coordinates describing
the system a time t later.

Example 10.45 For a particle moving in one dimension with position x and correspond-
ing canonical momentum p, let us consider the canonical transformation generated by the
function G = p. The phase space flow generated by G satisfies the differential equations

dx

ds
= {x, p} = 1 and

dp

ds
= {p, p} = 0. (10.295)

The solution to this set of differential equations is

x = x0 + s and p = p0. (10.296)

For a fixed value of the parameter s, this is a translation in space and we say that the
canonical momentum p generates translations in the position x.

If a function F does not change its value under a canonical transformation, then we say
that the transformation is a symmetry of F . In practice, this means that for infinitesimal
canonical transformations under which F → F + ε δF we have

δF =
∂F

∂yr
δyr =

∂F

∂yr
{yr, G} =

∂F

∂yr
ωrs

∂G

∂ys
= {F,G} = 0. (10.297)

Since the Poisson bracket is anti-symmetric {F,G} = 0 implies that {G,F} = 0 and so G is
a symmetry of F if F is a symmetry of G. In particular, if we let F be the Hamiltonian H,
we have already seen that a constant of motion G satisfies

Ġ = {G,H} = 0. (10.298)

This is the same statement as saying that H is a symmetry of G, which therefore does not
change under the phase space flow generated by H. We have now also seen that this means
that G is a symmetry of H and therefore H does not change under the phase space flow
generated by G. This is the Hamiltonian version of Noether’s theorem, for every symmetry
of the Hamiltonian, the generator of that symmetry is a constant of motion. In addition,
the converse is also true and if there exists a constant of motion, then the canonical trans-
formation generated by it is a symmetry of the Hamiltonian.

Example 10.46 For a particle of mass m moving freely in one dimension, the Hamiltonian
is given by

H =
p2

2m
. (10.299)
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Since the Hamiltonian does not contain x, the canonical momentum p Poisson commutes
with it and is a constant of motion. As we saw in Example 10.45, the canonical transforma-
tion generated by p is given by x → x + s and p → p. Inserting this into the Hamiltonian
gives H → H and it the transformation is indeed a symmetry of the Hamiltonian.

Given two functions G1 and G2, we can look at and compare their respective phase
space flows. In particular, we are interested in what happens if we first follow the flow of G1

and then the flow of G2 and compare the result to first following the flow of G2 and then
the flow of G1. On the infinitesimal level, let us look at following the flows for a parameter
distance ε1 and ε2, respectively. Looking at the flow from the phase space coordinates yr0
and first following the flow of G1, we find that we end up at the point given by

yr1 ' yr0 + ε1 {yr, G1} , (10.300)

which is exact to first order in ε1. Under this flow, we also change the function G2 according
to

G2 → G2 + ε1δG2 = G2 + ε1 {G2, G1} . (10.301)

By following the flow of G2 from yr1 we will therefore end up at the coordinates

yr21 ' yr1 + ε2 {yr, G2 + ε1 {G2, G1}}
= yr0 + ε1 {yr, G1}+ ε2 {yr, G2}+ ε1ε2 {yr, {G2, G1}} . (10.302)

By exchanging the roles of G1 and G2 and first following the flow generated by G2, we find
that the difference in the coordinates of the final points is given by

yr21 − yr12 = 2ε1ε2 {yr, {G2, G1}} . (10.303)

In particular, this implies that if the functions G1 and G2 Poisson commute, then the flows
generated by them commute and it does not matter which flow we follow first.

Example 10.47 A particle moving in a central potential V (r) described in polar coordi-
nates has the Hamiltonian

H =
p2
ρ

2m
+

p2
φ

2mρ2
+ V (ρ). (10.304)

Since this Hamiltonian does not depend explicitly on the polar coordinate φ, we find that

{pφ,H} = 0 (10.305)

and therefore the flow generated by pφ under which φ→ φ+s, i.e., a rotation by an angle s
in the plane of motion, should commute with the time evolution of the system. It therefore
does not matter if we first rotate the system and apply the equations of motion and then the
rotation or vice versa. This also means that rotating a solution to the equations of motion
will result in a solution to the equations of motion that also has had its initial conditions
rotated by the same angle, see Fig. 10.26.
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s

Figure 10.26 Due to the rotational symmetry of the Hamiltonian in the case of a central potential,
rotating one solution by an angle s will result in a new solution to the equations of motion. This
is here illustrated for the elliptic solutions to the Kepler problem. Both ellipses share the center of
the potential as one of their foci and have the same size and eccentricity.

10.5 MANIFOLDS AND CLASSICAL MECHANICS
If you have read Chapter 9, you are likely to have noticed several passages in this chapter
where the mathematics would be more conveniently expressed in terms of the calculus on
manifolds. From the definition of configuration space, a configuration space was indeed our
first example of a manifold, see Example 9.1, to the commutation of phase space flows
in Hamiltonian mechanics, remember that two commuting flows imply that their velocity
vector fields Lie commute. Indeed you are right and the calculus on manifolds is very well
suited to express the ideas of classical mechanics in general. Although a full exposition
is beyond the scope of this book, we will briefly discuss its application within both the
Lagrangian and the Hamiltonian formalisms.

10.5.1 The Lagrangian formalism revisited
Starting with the most pressing issue, we have already seen that the configuration space
of a system can be described by N coordinates qa and that the coordinates chosen do not
really matter as we end up with the same theory regardless. In many situations, such as that
of the spherical pendulum, the coordinate system chosen is not necessarily a good global
coordinate system in the sense of being a chart on a manifold. Instead, we will often need
several charts to cover the full configurations space. In many cases, we can therefore define
configuration space as a manifold M describing the configuration of a given system.

Example 10.48 Consider the bead of mass m moving on a ring in a gravitational field.
The configuration of the system is given by the position of the bead on the ring, which can
be described by an angle θ. We know that this description is 2π periodic and θ = θ0 and
θ = θ0 + 2π correspond to the same configuration. We can avoid covering the same point
several times within a chart by considering two different charts as described in Example 9.4.
The configuration space of this physical system is therefore just the circle S1. This is well in
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line with our intuition, the position of a bead on a ring can be given by providing a position
on the ring.

In most of the physical systems we have considered, the Lagrangian L has been a function
of the generalised coordinates qa as well as their time derivatives q̇a along some path γ in
configuration space that takes time t as its parameter. The tangent vector γ̇ of this path is
expressed as

γ̇(t) = q̇a(t)∂a (10.306)

in any coordinate system. This tangent vector belongs to the point γ(t) in the configuration
space and is therefore an element of the tangent space Tγ(t)M . Having established that the
Lagrangian is a function of the tangent vector components and the point in configuration
space at which the tangent vector is located, we identify it with a function on the tangent
bundle TM , which is the union of all tangent spaces TpM , i.e., an element of TM is any
tangent vector of the manifold M and may be specified by specifying the point p and the
tangent vector X at that point in some local coordinate system and we will write this as
(p,X). If the point p can be implicitly understood from X, such as when X = γ̇ is a tangent
vector of a curve γ and therefore must be evaluated at the corresponding point of the curve,
it is often easier to just denote the element of the tangent bundle by writing the tangent
vector itself.

Example 10.49 For a particle of mass m moving freely in three dimensions, the Lagrangian
is given by

L(~x, ~̇x) =
m

2
~̇x 2, (10.307)

where ~x is the position vector. In an arbitrary coordinate system, this takes the form

L(X) =
m

2
g(X,X), (10.308)

where g is the metric tensor at the point p where X is defined. Evaluated for the tangent
vector γ̇ in a local coordinate system with coordinates qa, this takes the form

L(γ̇) =
m

2
gabq̇

aq̇b, (10.309)

which is an expression we recognise from Eq. (10.79).

For a tangent bundle, we also define the projection operator π that is a map from TM
to M such that

π(X) = p, (10.310)

where X belongs to the tangent space TpM , i.e., it maps an element of the tangent bundle
to the point in the manifold where the vector is located. A large class of Lagrangians that
we have encountered and will encounter will be of the form

L(X) =
1

2
M(X,X)− V (π(X)) =

1

2
MabX

aXb − V (π(X)), (10.311)

where M is the generalised inertia tensor and V is the potential, which is a function on



Classical Mechanics and Field Theory � 663

configuration space. In particular, evaluated for the tangent vector of a curve in local coor-
dinates qa, this takes the form

L(γ̇) =
1

2
Mabq̇

aq̇b − V (γ(t)), (10.312)

which we again recognise from our earlier discussion.

Example 10.50 Looking at the spherical pendulum in a gravitational field, the Lagrangian
is given by

L =
mr2

0

2
(θ̇2 + sin2(θ)ϕ̇2)−mgr0 cos(θ) (10.313)

in spherical coordinates. In arbitrary coordinates, this becomes

L =
mr2

0

2
gabq̇

aq̇b −mgh(γ(t)), (10.314)

where h(p) is the height of the point p above the center of the sphere and gab are the
components of the metric tensor on the unit sphere. We note that the generalised inertia
tensor in this case is directly proportional to the metric

Mab = mr2
0gab. (10.315)

Note: Do not confuse the gravitational field strength g with the metric tensor here!

The above examples are very suggestive in terms of relating the generalised inertia tensor
to a metric. Let us examine the properties of the generalised inertia tensor to see if we can
extend this argument.

1. The generalised inertia tensor is symmetric. As the anti-symmetric part of M does
not contribute to the Lagrangian, we may as well just consider the symmetric part as
it contains all of the information about the physics.

2. The generalised inertia tensor is positive definite. If this would not be the case, there
would exist directions in which motion resulted from no applied force or where motion
was induced in the opposite direction of the applied force. In comparison to the special
case of a single particle, this would correspond to zero or negative masses.

These properties are exactly the properties required of a metric tensor and given a La-
grangian of the form in Eq. (10.311) we can identify the generalised inertia tensor as a
metric on configuration space. We then say that configuration space is endowed with the
kinematic metric.

As usual, we define the action S as the integral of the Lagrangian along the path γ with
respect to the curve parameter

S[γ] =

∫
L(γ̇)dt. (10.316)

In the case where there is no potential V , this functional exactly corresponds to the func-
tional sγ in Eq. (9.126) using the kinematic metric. We saw that this functional was precisely
the functional whose stationary curves were the geodesics with a constant magnitude tan-
gent vector. As a direct consequence, the solutions to the equations of motion in this case
satisfy

∇γ̇ γ̇ = 0, (10.317)
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i.e., the geodesic equations, where the connection is the Levi-Civita connection based on the
kinematic metric. In particular, since the magnitude of the tangent vector does not change
along these geodesics, we find that the kinetic energy

T =
1

2
M(γ̇(t), γ̇(t)) (10.318)

is constant. This is to be expected in the absence of a potential since the Lagrangian does
not depend explicitly on time and the kinetic energy is the total energy.

Example 10.51 If we remove the potential from the spherical pendulum in Example 10.50,
then the system will evolve along the geodesics of the sphere, since the kinematic metric is
proportional to the standard metric on the sphere, with constant speed. As we have seen
earlier, these geodesics are the great circles, see Problem 9.33.

When we add a potential V to our Lagrangian the situation changes slightly and we
have

L(γ̇) = Lkin(γ̇)− V (γ), (10.319)

where Lkin is the Lagrangian that we just discussed that contains only the kinetic energy.
The Euler–Lagrange equations now take the form

∂L
∂qa
− d

dt

∂L
∂q̇a

=
∂Lkin

∂qa
− d

dt

∂Lkin

∂q̇a
− ∂V

∂qa
= −Mab∇γ̇ q̇b − ∂aV = 0. (10.320)

This is the component version of the equality

M(∂a,∇γ̇ γ̇) = −dV (∂a). (10.321)

We now have a relation that on the left-hand side contains the generalised inertia tensor and
the change in the velocity, i.e., acceleration, and on the right-hand side has the differential
of the potential, i.e., the force. Defining F = −dV , we can write this as

Mab∇γ̇ q̇b = Fa, (10.322)

which is a generalisation of Newton’s second law .

Example 10.52 In the case of a particle of mass m moving in three dimensions with a
potential V (~x), the generalised inertia tensor is given by mδij in Cartesian coordinates.
This implies that the Christoffel symbols of the kinematic metric all vanish and ∇γ̇ ẋi = ẍi.
The generalisation of Newton’s second law now becomes

mδij ẍ
j = mẍi = Fi, (10.323)

which is just its usual form.

10.5.2 The Hamiltonian formalism revisited
The Lagrangian formalism expressed in terms of the calculus on manifolds was concerned
with the configuration space as a manifold M and the Lagrangian as a function on the
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Figure 10.27 The phase space flow of Fig. 10.24 represented on a cylinder, here seen from two
different perspectives, to illustrate the fact that the phase space itself is a cylinder, which is a
manifold that can be described using the methods developed in Chapter 9.

tangent bundle TM , let us now discuss the properties of the phase space coordinates and
the corresponding formulation of Hamiltonian mechanics. The first thing we need to do is
to identify the relation of the phase space to the configuration space M . If we assume that
configuration space is an N -dimensional manifold with local coordinates qa, we have seen
that the canonical momentum corresponding to qa is given by

pa =
∂L
∂q̇a

. (10.324)

Changing coordinates to Qa, we found that pa could be expressed in terms of the canonical
momenta of the new coordinates as

pa =
∂L
∂Q̇b

∂Q̇b

∂q̇a
= Pb

∂Qb

∂qa
, (10.325)

which is just the transformation rule for the components of a dual vector, cf. Eq. (9.27).
The phase space of a system is therefore equivalent to the cotangent bundle T ∗M of the
configuration space, i.e., the union of all cotangent spaces T ∗pM . An element of the cotangent
bundle is any cotangent vector in configuration space and just as for the tangent bundle
we can define a projection π such that π(ξ) = p if ξ is a dual vector in T ∗pM . As any
element in the cotangent bundle can be specified by N coordinates qa and N components
of the canonical momentum pa, it is in itself also a manifold of dimension 2N with the
coordinates yr that we have already introduced.

Example 10.53 The configuration space of a bead of mass m moving on a ring of radius
r0 in a gravitational field with strength g can be described as the circle S1 that may be
parametrised by an angle θ. The phase space is therefore the cotangent bundle of the circle
on which we can use the angle θ and the component p of the dual vector p dθ as coordinates.
Since −∞ < p <∞, the phase space of the pendulum is a cylinder, see Fig. 10.27.
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The Poisson bracket has been seen to determine the flows in phase space according to

ẏr = {yr, G} = ωrs
∂G

∂ys
, (10.326)

where G is the generator of the flow. The left-hand side of this relation are the components of
the tangent vector of the phase space flow and the right-hand side contains the components
of the differential of G and the coefficients ωrs, which are anti-symmetric. We first note that
the anti-symmetry of ω is something that we recognise from our discussion on differential
forms although the indices here are those of a type (2, 0) tensor and not a differential form.
We will deal with this in time, but for now we define a one-form ξ on the cotangent bundle
according to

ξ = padq
a. (10.327a)

This one-form has the exterior derivative

ω = dξ = dpa ∧ dqa (10.327b)

and furthermore

ω

(
∂

∂qa
,
∂

∂pb

)
= −δba. (10.327c)

This is exactly the Poisson bracket relation between qa and pb up to a sign and in general
we define

ωrs = ω(∂r, ∂s). (10.328)

In what follows, we will consider ω as a map from the tangent space of phase space to
its cotangent space. Whenever we give only one argument, what is intended will be the
one-form

ω(X) = ωrsX
sdyr, (10.329)

where X is a phase space tangent vector. We now introduce the type (2, 0) tensor Ω on
phase space that is the inverse of ω(X), i.e.,

Ω(dyr, ω(∂s)) = δrs (10.330)

for all ∂s and dyr. By construction, we also have the relation

ω

(
∂

∂qa

)
=

(
∂qb

∂qa

)
dpb −

(
∂pb
∂qa

)
dqb = dpa (10.331)

and therefore

Ω(dqa, dpb) = Ω

(
dqa, ω

(
∂

∂qb

))
= δab . (10.332)

This is exactly the relation imposed by the Poisson bracket and the tensor Ω is a map from
one-forms on phase space to tangent vectors on phase space with components given by

Ω(dyr, dys) = δr+N,s − δr,s+N = ωrs, (10.333)

where the ωrs are the same coefficients as those introduced in Section 10.4. The definition
of the flow tangent vector in Eq. (10.326) now takes the form

ẏr = {yr, G} = Ω(dyr, dG). (10.334a)
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Alternatively, this can be written in terms of the two-form ω as

ω(γ̇) = dG, (10.334b)

where γ is a flow line of the phase space flow generated by G and γ̇ its tangent vector. As
before, the time evolution of a physical system in phase space is by definition given by the
phase space flow generated by the Hamiltonian H, which is given by

H(q, p) = paq̇
a − L, (10.335)

where a q̇a is everywhere replaced using the inverse of

pa =
∂L
∂q̇a

, (10.336)

which is an invertible map from the tangent space to the cotangent space.

Example 10.54 For the bead on the sphere discussed in Example 10.53, the two-form ω
is given by

ω = d(p dθ) = dp ∧ dθ. (10.337)

With the Hamiltonian

H =
p2

2mr2
0

−mr0g cos(θ), (10.338)

where r0 is the radius of the sphere, the exterior derivative of the Hamiltonian is given by

dH =
p

mr2
0

dp+mr0g sin(θ)dθ. (10.339)

For the phase space flow generated by the Hamiltonian, we therefore find that

ω(γ̇) = ω(θ̇∂θ + ṗ∂p) = θ̇ dp− ṗ dθ = dH. (10.340)

Identification with the exterior derivative of H gives Hamilton’s equations of motion

θ̇ =
p

mr2
0

and ṗ = −mr0g sin(θ). (10.341)

The set of canonical transformations is a particular set of coordinate transformations on
phase space that leaves the components of the two-form ω invariant. In a way, such coor-
dinate transformations are similar to Cartesian coordinate transformations in a Euclidean
space that leave the metric components on the form δij . In a more general setting, we can
allow any coordinate transformations as long as we transform the components of ω in a
proper fashion, i.e., they transform as the components of a type (0, 2) tensor

ωr′s′ =
∂yr

∂y′r′
∂ys

∂y′s′
ωrs. (10.342)

The only requirements on ω in a general coordinate system is that it is anti-symmetric,
has zero exterior derivative, and is non-degenerate, i.e., that ω(X) = 0 only if X = 0, such
that the inverse Ω exists. A two-form that satisfies these conditions is called a symplectic
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form and a manifold along with the specification of such a two-form is called a symplectic
manifold . Many of the properties and theorems of Hamiltonian mechanics can be described
more succinctly in terms of the corresponding statements for symplectic manifolds and,
just as a system in Lagrangian mechanics is specified by the configuration space and a
function on its tangent bundle, a general system in Hamiltonian mechanics is described by
a symplectic manifold and a function on it.

Let us consider the phase space flow yr(τ) that is generated by the function G such that
yr(0) = yr0. Since both yr(τ) and yr0 are coordinates describing a point in phase space, this
flow can be considered as a one-parameter family of maps gτ (y) from phase space to itself,
which is invertible since gτ (g−τ (y)) = y. The pullback g∗τω of the symplectic form ω under
this map satisfies

g∗τωrs =
∂yt

∂yr0

∂yu

∂ys0
ωtu|y ' ωrs + τ

(
∂ẏt

∂yr0
ωts +

∂ẏt

∂ys0
ωrt + ẏt∂tωrs

)
(10.343)

to linear order in τ . Before continuing with this expression, let us derive a few useful
relations. Writing Eq. (10.334b) on coordinate form, we find that

ωrtẏ
t = ∂rG =⇒ ∂sωrtẏ

t = ωrt∂sẏ
t + ẏt∂sωrt = ∂s∂rG. (10.344a)

Reshuffling now results in
ωrt∂sẏ

t = ∂s∂rG− ẏt∂sωrt. (10.344b)

Furthermore, we have assumed that the exterior derivative of the symplectic form vanishes,
which implies that

dω =
1

2
(∂rωst)dy

r ∧ dys ∧ dyt =
1

2
(∂[rωst])dy

r ∧ dys ∧ dyt = 0 (10.345)

and therefore
3∂[rωst] = −∂rωts − ∂sωrt + ∂tωrs = 0. (10.346)

Returning to the pullback g∗τω, we find that

d

dτ
g∗τωrs = ωts∂rẏ

t + ωrt∂sẏ
t + ẏt∂tωrs = ẏt(−∂rωts − ∂sωrt + ∂tωrs) = 0, (10.347)

where we have used both of the relations that were just derived. Since the derivative of g∗τω
is zero and g∗0ω = ω, it follows that

g∗τω = ω, (10.348)

i.e., the pullback of the symplectic form under the phase space flow is equal to the symplectic
form itself and we say that the flow preserves the symplectic structure of the manifold.

We are now ready to frame Liouville’s theorem in a different manner. The first thing
we must do is to define what is meant by the phase space volume. After all, our previous
discussion on Liouville’s theorem essentially regarded all phase space variables yr as coordi-
nates in a Euclidean space when equating an incompressible flow with the divergence of the
flow field. If the phase space is 2N -dimensional (to show that a symplectic manifold must
be of even dimension is left as Problem 10.54), then we can define the phase space volume
form η as

η = ωN , (10.349)

where ωN denotes the wedge product of N copies of the symplectic form. The volume of
the phase space region P is now given by

V (P ) =

∫
P

ωN . (10.350)



Classical Mechanics and Field Theory � 669

We now let gτ (P ) be the phase space region which P is mapped to under the phase space
flow and its volume is given by (see Problem 9.54)

V (gτ (P )) =

∫
gτ (P )

ωN =

∫
P

g∗τω
N =

∫
P

ωN = V (P ) (10.351)

and therefore this flow preserves the phase space volume, which is just the statement of
Liouville’s theorem. In fact, the above argumentation can be made more general by letting
P be a 2k-dimensional submanifold in phase space and relating the integral of ωk over P
and its phase space flow gτ (P ) according to (see Problem 9.54)∫

gτ (P )

ωk =

∫
P

g∗τω
k =

∫
P

ωk. (10.352)

Thus, any integral of ωk over a 2k-dimensional submanifold, and not only volumes in the
phase space, is preserved under generated phase space flows.

10.6 FIELD THEORY
The discussion in this chapter has been mainly focused on the situations where the config-
uration space is finite dimensional and can be described by a set of coordinates qa. As we
mentioned when introducing the configuration space, this will not always be the case and
we may instead have to consider a more general configuration space with an infinite number
of degrees of freedom that may be denoted as q(a, t), where a belongs to some indexing set.
When the indexing set can be thought of as a manifold, the degrees of freedom form a field
on that manifold and we are then dealing with a field theory . In general, we may also have a
theory involving several fields on the same manifold and we can then add additional indices
to denote which field we are referring to, e.g., qi(a, t). In what follows, we will assume that
we are dealing with a field theory and work exclusively in the Lagrangian formalism.

Example 10.55 We have seen an example of a field theory already in Example 10.11, where
we discussed that the configuration space of an oscillating string was given by functions
u(x, t) that describe the transversal displacement of the string as a function of the position
x on the string. In this case, the index set is the interval 0 < x < `, where ` is the length
of the string. This is an elementary example of a manifold with x as a global coordinate
chart. A fact we have many times ignored is that there are two directions in which the
string can oscillate, mainly because the oscillations in different directions decouple to first
approximation, but we can include this in the description by using two fields u1(x, t) and
u2(x, t) that describe the displacement in the different directions, see Fig. 10.28. We can
also extend this description to an infinite or half-infinite string by extending the allowed
range of values for x.

In a similar fashion, the transversal displacement of a membrane can be described by a
field u(~x, t), where ~x is a two-dimensional vector describing the position on the membrane.
The index set in this case is a manifold describing the shape of the membrane itself.

It is not necessary for a field to be a scalar field. In fact, there are many situations where
this is not the case. Instead, we will often encounter situations where the fields themselves
are assumed to have certain transformation properties when the coordinates on the index
set are changed.
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x1

u2(x1)

u2(x2)

x2

u1(x1)

u1(x2)

Figure 10.28 The transversal displacements u1 and u2 of an oscillating string (solid curve) are
functions of the point on the string and are therefore fields on the manifold describing the position
on the string (dashed line), i.e., an interval on the real line. For each value of the coordinate x, the
fields u1 and u2 take the values u1(x) and u2(x), respectively.

Example 10.56 The configuration space of electromagnetic theory will turn out not to
be the electromagnetic fields themselves, but rather the scalar φ(~x, t) and vector ~A(~x, t)
potentials modulo gauge transformations. While the scalar potential is a scalar field, the
vector potential transforms as a vector under coordinate changes.

When dealing with Lagrangian field theory, we will generally write down a Lagrangian as
a function of the configuration space for a fixed time t as usual. However, as we are dealing
with fields on a manifold, the Lagrangian may depend not only on the fields themselves,
but also on their derivatives on the manifold. We will consider Lagrangians of the form

L =

∫
K

L(q, ∂aq, t) dK, (10.353)

where K is the index set, dK the volume element on the index set, and L generally is a
function of q and its derivatives as well as time t called the Lagrangian density . We also
assume that the derivatives ∂aq can be derivatives with respect to any variable that q
depends on, including the time t. The action is now given by

S =

∫ t2

t1

L dt =

∫ t2

t1

∫
K

L(q, ∂aq, t) dK dt. (10.354)

In order to put the time variable t and the index set K on a more equal footing, we can
construct a generalised space-time manifold K where we use one set of coordinates from K
and time t as coordinates. The volume element in the space-time is given by dK = dK dt
and the action can now be written as

S =

∫
K
LdK. (10.355)

From this expression, we may use the Euler–Lagrange equations to find the equations of
motion for the fields. Since the action is an integral over several variables, these equations
of motion will generally be in the form of a set of partial differential equations.
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Example 10.57 Consider the example of transversal displacements of a string with tension
S and linear density ρ`. We have already expressed the Lagrangian density for this situation
in Example 8.25 as

L =
ρ`
2
ut(x, t)

2 − S

2
ux(x, t)2 − f(x, t)u(x, t), (10.356)

where f(x, t) is an external force density acting on the string. A point in the generalised
space-time manifold in this case is specified by giving a position x on the string and a time
t and we saw that the equation of motion resulting from the Lagrangian density is the
sourced wave equation

utt(x, t)− c2uxx(x, t) =
f(x, t)

ρ`
, (10.357)

where c2 = S/ρ`.

The above example is a special case of a Klein–Gordon field , which is one of the most
common examples used in both classical field theory as well as in quantum field theory.
With a space-time using a position ~x and a time t, the free Klein–Gordon field φ(~x, t) has
the Lagrangian density

L0 =
1

2

[
φ2
t − c2(∇φ)2 −m2c4φ2

]
. (10.358a)

Note that this, depending on the dimensions of φ, could be multiplied by a dimensionful
constant in order for the dimensions to match without altering the equations of motion. In
the case of an interacting Klein–Gordon field, we add a source term

L = L0 + φJ, (10.358b)

where J is a function describing the source. The source may be modelled as a known source,
depend on other fields, or on φ itself. In the case when the source depends on φ, the field
is said to be self-interacting . In the case where the field is not self-interacting, the equation
of motion for the Klein–Gordon field is given by

∂a
∂L

∂(∂aφ)
− ∂L

∂φ
= φtt − c2∇2φ+m2c4φ− J = 0, (10.359)

which is an inhomogeneous partial differential equation of the same type that we have en-
countered in the earlier chapters. In fact, this differential equation, known as the sourced
Klein–Gordon equation, has exactly the same structure as the differential equation describ-
ing the motion of a string with a restoring force proportional to the displacement, see
Problem 3.24.

10.6.1 Noether’s theorem revisited
In Section 10.2.4, we discussed the relation between quasi-symmetries and constants of mo-
tion in the case of a finite-dimensional phase space. When the action is an integral in several
variables, the situation changes slightly and instead of constants of motion, we will be deal-
ing with conserved currents, of which we have already seen some examples in Section 8.6.1.
In order to generalise to field theory, we consider an infinitesimal transformation

Y a = ya + ε δya and Qi(Y ) = qi(y) + ε δqi, (10.360)
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where ya denotes the set of space-time coordinates, i.e., t and the coordinates on the index
set. We have also assumed that there are a number of fields qi indexed by i. The variation
of the action in a space-time region P under this transformation is given by

S ′ − S =

∫
P

[L(Qi(y), ∂Qi(y), y)− L(qi, ∂qi, y) + ∂a(Lδya)]︸ ︷︷ ︸
≡εδL

dK, (10.361)

where we have also defined the variation δL of the Lagrangian density. By definition, this
transformation is a quasi-symmetry of the Lagrangian density if

δL = ∂aF
a, (10.362)

where F a is a set of functions. Expressing δL in terms of the infinitesimal transformation,
we find that

δL =
∂L

∂qi
δ̄qi +

∂L

∂(∂aqi)
∂aδ̄qi + ∂a(Lδya), (10.363)

where we have introduced the field difference

εδ̄qi = Qi(y)− qi(y), (10.364a)

which describes the change in the field at y. By definition, we find that

ε δqi = Qi(y + ε δy)− qi(y) = ε(δya∂aqi + δ̄qi). (10.364b)

Example 10.58 Looking back at our original version of Noether’s theorem, our space-time
only contains a time t and no spatial coordinates and the Lagrangian L coincides with the
Lagrangian density L. For any transformation that has a δt that does not depend on t, we
find that

δL =
∂L

∂qi
(δqi − q̇iδt) +

∂L

∂q̇i
(δq̇i − q̈iδt) +

dL

dt
δt

=
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i +

(
dL

dt
− ∂L

∂qi
q̇i −

∂L

∂q̇i
q̈i

)
δt

=
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i +

∂L

∂t
δt. (10.365)

This is exactly the form of Eq. (10.97) and the type of transformations we considered in
Section 10.2.4.

Using the equations of motion to rewrite Eq. (10.363), we find that

δL = ∂a

(
∂L

∂(∂aqi)
δ̄qi + Lδya

)
(10.366)

is always satisfied on-shell. It follows that we have the on-shell relation

δL = ∂a

[
∂L

∂(∂aqi)
δqi −

(
∂L

∂(∂aqi)
(∂bqi)− δabL

)
δyb
]
. (10.367)

If the transformation is a quasi-symmetry of the Lagrangian density, we therefore find that

∂aJ
a = 0, (10.368a)
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where we have defined the conserved current

Ja =

(
∂L

∂(∂aqi)
(∂bqi)− δabL

)
δyb − ∂L

∂(∂aqi)
δqi + F a. (10.368b)

As discussed in Example 8.19, this is the continuity equation with the time-component of
Ja as the density and the spatial components as the currents. Thus, the continuity equation
for a density and current given by the transformation is the field theory version of Noether’s
theorem. In some more generality, if the transformation is not a quasi-symmetry and we
instead have

δL = ∂aF
a − κ, (10.369)

then the function κ is a source term for the corresponding current as we would find ∂aJ
a = κ.

Example 10.59 Consider the situation where the Lagrangian density does not depend
explicitly on time. In this situation, the transformation given by δt = 1 and all other δya

and δqi equal to zero is a symmetry of the Lagrangian density. The conserved current
corresponding to this situation is given by

Ja =
∂L

∂(∂aqi)
q̇i − δat L, (10.370)

where q̇i = ∂tqi. The time-component of this current is given by

J t =
∂L

∂q̇i
q̇i − L = H, (10.371)

where H is the Hamiltonian density . For many situations, this can be interpreted as the
energy density and the spatial components of the current

~J =
∂L

∂(∇qi)
q̇i (10.372)

can then be interpreted as the energy current.

Example 10.60 For an infinite string with tension S and linear density ρ`, we can consider
transversal oscillations in two orthogonal directions. This is described by the amplitudes
u1(x, t) and u2(x, t) in the different directions. The resulting Lagrangian density

L =
ρ`
2

[(∂tu1)2 + (∂tu2)2]− S

2
[(∂xu1)2 + (∂xu2)2] (10.373)

is invariant under the transformation

δu1 = u2 and δu2 = −u1, (10.374)

with all other variations equal to zero. The corresponding conserved current is given by

Ja = − ∂L

∂(∂aui)
δui = − ∂L

∂(∂au1)
u2 +

∂L

∂(∂au2)
u1. (10.375)
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The time-component of this current is

J t = ρ`(u̇2u1 − u̇1u2), (10.376)

which is the angular momentum density of the string with respect to its equilibrium position.
The spatial component

Jx = S[u2(∂xu1)− u1(∂xu2)] (10.377)

at position x describes the corresponding torque on the string to the right of x from the
string to the left of x. If we introduce an external gravitational field g in the u2 direction
such that the Lagrangian density is instead given by

Lgrav = L− ρ`gu2, (10.378)

then the transformation is no longer a symmetry of the Lagrangian density. Instead we find
that

δLgrav = ρ`gu1 (10.379)

and the continuity equation for the angular momentum of the string is instead given by

∂aJ
a = −ρ`gu1, (10.380)

where the right-hand side represents the external torque density provided by the gravita-
tional field. Note that this is exactly what we expect, since the force density due to the
gravitational field is ρ`g and its perpendicular distance to the equilibrium position is u1.

10.6.2 Symmetries of the wave equation
We will end by looking at the symmetries of the Lagrangian density

L =
1

2
(ρ`q

2
t − Sq2

x) =
ρ`
2

(q2
t − c2q2

x), (10.381)

which is the Lagrangian density of the Klein–Gordon field with m = 0 and φ =
√
ρ`q. As

we have already seen, this Lagrangian density results in the equations of motion

qtt − c2qxx = 0, (10.382)

i.e., the wave equation for the field q(x, t). The invariance of this Lagrangian density under
space-time translations δya = ka for constant ka was discussed already in Example 8.26,
where we found the conserved current

T tt =
ρ`
2

(
q2
t + c2q2

x

)
, T xt = −ρ`c2qtqx (10.383a)

corresponding to time-translational invariance and

T tx = ρ`qtqx, T xx = −ρ`
2

(
q2
t + c2q2

x

)
(10.383b)

corresponding to invariance under spatial translations. The first of these equations was
identified with the continuity equation for energy with E = T tt being the energy density
and jE = T xt being the energy current, while the second was interpreted as the continuity
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equation for momentum with the momentum density p = −T tx and momentum current
jp = −T xx . Integrating over all of space and assuming that the field q goes to zero sufficiently
fast as x→ ±∞, we find that the total energy and momentum

E =

∫
E dx and P =

∫
p dx (10.384)

are conserved quantities.

Example 10.61 We have already seen that any function on the form q(x, t) = f(x − ct)
is a solution to the wave equation in the form of a wave moving to larger values of x as t
increases. For such a wave, we find that the energy and momentum densities are given by

E = ρ`c
2f ′2 and p = ρ`cf

′2, (10.385)

respectively. As a result, it holds that E = cp in this scenario. The total energy and momenta
are given by the integrals of these expressions and hence E = cP .

The Lagrangian density in Eq. (10.381) has one more important symmetry that is given
by (see Problem 10.57)

δt = −x
c
, δx = −ct, and δq = 0. (10.386)

The conserved current corresponding to this transformation has the components

Ja =

(
∂L

∂qa
qb − δabL

)
δyb = T ab δy

b (10.387a)

or, explicitly,

J t = −x
c
E + ctp and Jx = −x

c
jE + ctjp. (10.387b)

So what does this conserved current tell us? Integrating cJ t over all of space and again
assuming that the field q vanishes sufficiently fast as x→ ±∞, we find that∫

cJ tdx = c2tP − ExE (10.388a)

is a conserved quantity, where we have defined the center of energy

xE =
1

E

∫
xE dx. (10.388b)

Denoting the conserved quantity as −Ex0, we now find that

xE = x0 + ct
cP

E
. (10.389)

In other words, the center of energy moves at a constant speed determined by the ratio
c2P/E.
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Example 10.62 The wave q(x, t) = f(x − ct) discussed in Example 10.61 is moving at
speed c towards larger x values. We found that the relation between the total energy and
momenta was given by E = cP and can therefore conclude that the center of energy moves
according to

xE = x0 + ct. (10.390)

As might be expected, the center of energy therefore also moves towards larger x values
with the wave speed c.

Having found the conserved quantity related to the transformation defined by
Eq. (10.386), it is natural to ask what kind of continuous transformation it corresponds
to. We can do so by calling the continuous transformation parameter θ and solving the
coupled differential equations

dt

dθ
= δt = −x

c
and

dx

dθ
= δx = −ct (10.391)

with the initial condition t(0) = t0 and x(0) = x0. Solving this system results in

t(θ) = t0 cosh(θ)− x0

c
sinh(θ) and x(θ) = x0 cosh(θ)− ct0 sinh(θ). (10.392)

The continuous parameter θ is known as the rapidity of the transformation. There is also
an alternative form for this transformation using a different parameter v that is defined as

v = c tanh(θ). (10.393)

Using the relation cosh2(θ)− sinh2(θ) = 1, we can solve for cosh(θ) and find that

cosh(θ) =
1√

1− v2

c2

≡ γ (10.394a)

and, consequently,

sinh(θ) =
v

c
cosh(θ) = γ

v

c
. (10.394b)

Insertion into Eq. (10.392) now provides the result

t = γ
(
t0 −

v

c2
x0

)
and x = γ (x0 − vt0) . (10.395)

Even if we have not covered special relativity in this book, you might recognise this as the
Lorentz transformations. The invariance under Lorentz transformations will be of particular
importance in the study of special relativity, where c will be taken to be the speed of light
in vacuum.

10.7 PROBLEMS
Problem 10.1. One end of a rigid homogeneous rod of length ` is moving according to

~x0(t) =
~at2

2
. (10.396)

Determine the motion of the other end if its displacement from the first at time t = 0 is
given by ~ξ − ~ξ0 = ~d0 and the rod is rotating with constant angular velocity ~ω.
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Problem 10.2. Verify that the center of mass motion ~xcm(t) that was defined in Eq. (10.11)

coincides with the motion of the original center of mass ~ξcm defined by ~x(~ξcm, t).

Problem 10.3. A wheel of radius r0 is rolling without slipping on a road that can be
described as the x1-x2-plane. Using the wheel’s center as reference point and assuming that
it moves according to

~x0(t) = x1
0(t)~e1 + r0~e3, (10.397)

find the angular velocity ~ω(t) of the wheel and find the velocity ~v(t) of a point on the wheel
that is located at a radius r.

Problem 10.4. The parallel axis theorem for the moment of inertia tensor states that the
moment of inertia tensor Iij of a body relative to the point ~x0 can be written as

Iij = Icm
ij + Ipoint

ij , (10.398)

where Icm
ij is the moment of inertia relative to the center of mass and Ipoint

ij is the moment
of inertia relative to ~x0 for a point particle of mass M placed in the center of mass. Verify
that this relation is true starting from the definition of the moment of inertia tensor.

Problem 10.5. Compute the moment of inertia tensor for:

a) A homogeneous sphere of radius r0 with respect to its center.

b) A homogeneous sphere of radius r0 with respect to a point on its surface.

c) A homogeneous rod of length ` with respect to its center.

d) A homogeneous rod of length ` with respect to one of its ends.

e) A homogeneous cube of side length ` with respect to its center.

f) A homogeneous cube of side length ` with respect to one of its corners.

Assume that each object has a total mass M and express your results in terms of M and
the given lengths. Hint: You may find the parallel axis theorem (see Problem 10.4) and
various symmetry arguments useful.

Problem 10.6. Show that a rigid body does not allow any point in it to have zero velocity
unless ~ω is orthogonal to ~v0.

Problem 10.7. Find a general expression for the acceleration ~a(t) of a point in a rigid
body assuming that the reference point has velocity ~v0(t) and the body rotates with angular
velocity ~ω(t). Verify that you expression results in the relation

a =
v2

r
(10.399)

when the reference point is taken to be a fixed point and the angular velocity is constant,
where a and v are the magnitudes of ~a and ~v, respectively, and r is the length of the
component of the difference vector ~d(t) = ~x(t)− ~x0(t) that is orthogonal to ~ω.

Problem 10.8. Use the parallel axis theorem (see Problem 10.4) to verify that the total
kinetic energy of a rigid body may equally well be described as the rotational energy around
a fixed point or as the translational energy of the center of mass plus the rotational energy
with respect to the center of mass, i.e., that

1

2
Ifix
ij ω

iωj =
M

2
~v 2

cm +
1

2
Icm
ij ω

iωj . (10.400)
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Problem 10.9. A rigid body in two dimensions rotates around a fixed point. Its center of
mass is displaced by a vector ~δcm from the fixed point. There is no net external force on
the body, but the net torque on the body is τ . Assuming that the moment of inertia of the
body is I relative to the fixed point, express the force ~Ffix at the fixed point in terms of the
given quantities, the total mass M of the body, and its angular velocity ω.

Problem 10.10. A car travelling horizontally at speed v breaks with constant accelera-
tion a. Determine the apparent strength and direction of the gravitational field in the rest
frame of the car if the car stops in a distance `. Assume that the gravitational field in the
road’s rest frame has strength g.

Problem 10.11. Consider an object initially at rest but moving under the influence of
a gravitational field ~g = −g~e3. Write down the corresponding solution ~x(t) to Newton’s
equations in an inertial frame. Transform your solution to a frame whose origin coincides
with that of the original inertial frame, but that rotates with angular velocity ~ω = ω~e2.
Verify that the resulting motion in the rotating frame satisfies Newton’s equation in that
frame when including the Coriolis and centrifugal forces.

Problem 10.12. If the persons A and B on the carousel depicted in Fig. 10.8 wish to
throw balls to each other in such a way that they can be caught, then the Coriolis force
implies that they should not throw the balls directly at one another, as discussed in the
corresponding example. In which direction and with which speed should A throw the ball
(in the rotating frame) if it should reach B at time t = θ/ω? Assume that the persons are
located at the radii rA and rB , respectively.

Problem 10.13. Determine the external force necessary in order to keep an object of
mass m moving radially away from the origin in a frame that rotates with constant angular
velocity ω. You may restrict your treatment to the two spatial dimensions in which the
frame rotates.

Problem 10.14. By definition, there is no net force on an object which is at rest in
an inertial frame. If this object is described from a frame rotating with constant angular
velocity ~ω, there will appear to be a centrifugal force acting on the object that would make
it accelerate away from the axis of rotation. However, in the rotating frame, the object
appears to undergo uniform circular motion, for which the net force should be directed
towards the axis of rotation. Verify that the Coriolis force provides exactly the right force
in order for this to occur.

Problem 10.15. Identify the configuration space and the corresponding indexing set of
the following physical systems:

a) A particle constrained to move along the parabolic surface `0x
3 = (x1)2 + (x2)2.

b) The transversal movement of a circular drum skin of radius r0 fixed at the borders.

c) The half-infinite chain of masses connected by springs shown in Fig. 10.29.

Problem 10.16. The configuration space of a system of k particles consists of the particle
positions ~xr(t) for each particle r. The Galilei transformation with velocity ~v = vi~ei = v~n
is given by

t→ t and ~xr → ~xr − ~vt. (10.401)

a) Determine δt and δ~xr for infinitesimal Galilei transformation in the direction ~n, where
the speed v is seen as the transformation parameter.
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m kk m

. . .

Figure 10.29 A half-infinite chain of masses m connected by springs of spring constant k.

b) Assuming that particle r has the mass mr and that the potential energy of the system
depends only on the particle separations ~xrs = ~xr−~xs, we have already seen that the
total momentum

~P =
∑
r

mr~̇xr (10.402)

is a constant of motion based on translational invariance. Using your result from (a),
show that the Galilei transformation is a quasi-symmetry of the Lagrangian and show
that the corresponding conserved quantity is

M ~X = ~Pt−M~xcm, (10.403)

where M is the sum of all the particle masses.

Note: The conserved quantity in (b) also follows directly from the fact that the expression

for ~P is a total derivative. However, here we wish to show it using Noether’s theorem instead.

Problem 10.17. Verify that the equations of motion for the generalised coordinates in the
effective Lagrangian in Eq. (10.149) are equivalent to those of the original Lagrangian of
Eq. (10.141).

Problem 10.18. Consider the mechanical system discussed in Problem 2.46, where you
were asked to determine the generalised inertia tensor for the system. By considering the
symmetries of the resulting Lagrangian, find two constants of motion and use them to show
that the system can never reach the point r = 0 if ϕ̇(0) 6= 0.

Problem 10.19. In Example 10.20, we studied a coordinate change for a bead on a rotating
ring, which could be regarded as motion on a sphere with a time-dependent holonomic
constraint. The original Lagrangian was given by

L =
mr2

0

2
[θ̇2 + sin2(θ)ϕ̇2]−mgr0 cos(θ) (10.404)

and the holonomic constraint by
ϕ = ωt. (10.405)

We implemented the parametrisation θ = θ and ϕ = ωt of the constraint surface and showed
that it resulted in an effective problem of the form

Leff =
I

2
q̇2 − Veff(q). (10.406)
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g
m

x

θ
`

M

Figure 10.30 A mass m attached to a pendulum of length ` with the other end attached to a
mass M moving without friction along a horizontal bar. The system is placed in a homogeneous
gravitational field ~g and may be described using the generalised coordinates x and θ.

Another parametrisation of the constraint surface is given by

α = θ − ω0t and ϕ = ωt. (10.407)

Verify that this parametrisation does not result in an effective Lagrangian on the form given
in Eq. (10.406) and that we instead get additional terms proportional to q̇.

Problem 10.20. A massM is allowed to slide without friction on a horizontal bar. Attached
to the mass is a pendulum with length ` and a mass m attached to its other end, see
Fig. 10.30, and there is an external gravitational field ~g. Using the generalised coordinates
x and θ described in the figure,

a) write down an expression for the Lagrangian of the system,

b) deduce the conserved quantities related to invariance under translations in time and
in the x-coordinate,

c) find the effective potential and the effective inertia for the θ-coordinate.

Problem 10.21. Consider a non-homogeneous circular wheel of radius r0, mass m, and
moment of inertia I relative to its center of mass. Its center of mass is displaced from its
geometrical center by a distance r1. The wheel rolls without slipping on a horizontal surface
in a gravitational field of strength g. Write down an expression for the Lagrangian of the
system and derive the corresponding equation of motion.

Problem 10.22. One end of a pendulum of length ` is forced to undergo harmonic motion
with angular frequency ω and amplitude a while a point mass m is attached to the other
end, see Fig. 10.31. Determine the equation of motion for the system when the strength of
the external gravitational field is g.

Problem 10.23. For the mass m moving freely on the surface of a sphere of radius r0 in an
external gravitational field of strength g discussed in Example 10.22, find the expressions for
the energy E and angular momentum L that result in a circular orbit at θ = θ0 and compute
the period of the orbit. Discuss the physical interpretation of the limiting behaviour when
θ0 → π/2 and θ0 → π, respectively.
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Figure 10.31 A pendulum of length ` with a mass m attached to one end and the other end
undergoing forced harmonic motion with angular frequency ω and amplitude a. The system is
placed in a gravitational field ~g and its configuration can be described by the angle θ.

Problem 10.24. Consider a particle of mass m moving in one dimension with a potential
that moves with velocity v0 such that

V (x, t) = V0(x− v0t). (10.408)

Show that the infinitesimal transformation given by δt = 1 and δx = v0 is a symmetry of
the Lagrangian for this system and determine the corresponding conserved quantity. Verify
that, up to an additive constant, the conserved quantity is equal to the total energy in a
reference frame that moves with velocity v0.

Problem 10.25. A particle of mass m is moving in two dimensions subject to a rotating
potential energy

V (~x, t) = V0(R−ωt~x), (10.409)

where R−ωt is a rotation by an angle −ωt. Derive the equations of motion and show that
the quantity

J = E − ωL (10.410)

is a constant of motion, where E is the total energy of the system and L = m(x1ẋ2−x2ẋ1)
is its angular momentum. Find the infinitesimal symmetry transformation related to this
conserved quantity.

Problem 10.26. A hollow pipe in a gravitational field ~g rotates with angular frequency
ω around an axis parallel to the field. The pipe makes a fixed angle θ with the axis and a
small ball of mass m is free to move within it, see Fig. 10.32.

a) Find the Lagrangian of the system.

b) Find the effective potential for the coordinate r and the constant of motion that follows
from the effective Lagrangian not being explicitly time-dependent. Differentiate the
constant of motion in order to find the equation of motion for r.

c) Verify that the special cases θ = 0 and θ = π/2 have the expected equations of motion

r̈ = −g and r̈ = rω2, (10.411)

respectively.
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Figure 10.32 A ball of mass m is free to move within a hollow pipe that rotates around an axis
parallel to the gravitational field ~g with angular frequency ω. The pipe makes a constant angle θ
with this axis and the displacement of the mass from the axis can be described by the coordinate
r.

~a

m

k

Figure 10.33 One end of a spring with spring constant k is being accelerated with acceleration ~a
while the other end is attached to a mass m. We wish to study the resulting motion of the mass.

d) The problem has an unstable equilibrium for any 0 < θ < π/2. Find an expression for
the r-coordinate in this equilibrium and interpret it in terms of a force sum.

Problem 10.27. An object with mass m moving in one dimension is attached to one end
of a spring with spring constant k. The other end of the spring starts out at rest and then
accelerates with constant acceleration a, see Fig. 10.33.

a) Determine the potential energy of the system as a function of the time t and the
displacement x from the minimum of the potential at time t = 0.

b) Using the Lagrangian formalism, show that the equations of motion for the mass are
equivalent to those that would be obtained if the other end was fixed, but an external
gravitational field of strength g = −a was applied.

c) Show that the Lagrangians of the two cases are different, but differ only by a total
derivative df/dt, where f is a function of t and x.

d) Show that the infinitesimal transformation given by δt = 1 and δx = at is a quasi-
symmetry of the system. Determine the corresponding conserved quantity.

Problem 10.28. A mechanical system consists of a rotationally symmetric wheel of radius
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Figure 10.34 A wheel of radius r0, mass M , and moment of inertia I is rolling without slipping
along a horizontal surface. A mass m is allowed to move freely along the perimeter of the wheel and
the system is placed in a gravitational field ~g. The configuration space of the system is parametrised
by the generalised coordinates x and θ.

r0 with mass M and moment of inertia I relative to its center and a bead of mass m that
can move freely along the wheel’s perimeter. The wheel is rolling without slipping on a
horizontal surface in a gravitational field of strength g, see Fig. 10.34.

a) Write down the Lagrangian of the system using the two configuration space coordi-
nates x and θ given in the figure.

b) Show that the system is invariant under the transformation x → x + s and find the
corresponding conserved quantity J .

c) Use your result from (b) to rewrite the problem as an effective one-dimensional prob-
lem for the angle θ. Identify the corresponding effective potential and effective gener-
alised inertia.

Problem 10.29. Consider the motion of a point particle of mass m in two-dimensions
constrained to be at a distance `(t) from the origin of a Cartesian coordinate system at
time t. Using polar coordinates, show that the angular momentum L = m`(t)2φ̇ is conserved
and that this implies that the particle must have a larger tangential velocity for smaller
`(t).

Problem 10.30. A double Atwood machine is shown in Fig. 10.35. Assume that the masses
are m1, m2, and m3, respectively, and that the pulleys are massless. Describe the config-
uration space of this system and find the generalised inertia tensor. Also write down the
potential energy and find the equations of motion. Determine the condition on the masses in
order for the infinitesimal transformation given by δx = 1 (with all other variations equal to
zero) to be a symmetry of the Lagrangian, determine the corresponding conserved quantity,
and give its physical interpretation. Repeat the discussion for the transformation δy = 1.

Problem 10.31. A particle of mass m moves freely on the paraboloid z = kρ2 given
in cylinder coordinates. An external gravitational field of strength g acts in the negative
z-direction. Using that the problem has a rotational symmetry, determine the effective
potential for the movement in the ρ-direction.

Problem 10.32. The motion of a charged particle with mass m and charge q in an elec-
tromagnetic field can be described by the Lagrangian

L =
m

2
~̇x 2 − qφ+ q ~A · ~̇x, (10.412)
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Figure 10.35 A double Atwood machine with two idealised pulleys and three masses m1, m2,
and m3. The system is placed in a gravitational field ~g and can be described by the two generalised
coordinates x and y.

where φ is the scalar potential and ~A the vector potential that appear in electrodynamics.
For a static electromagnetic field, the potentials do not depend explicitly on time.

a) Find the canonical momentum ~p = ∂L/∂~̇x and verify that it does not correspond to

the physical momentum m~̇x of the particle.

b) Verify that the equations of motion are given by the Lorentz force law

m~̈x = q( ~E + ~̇x× ~B), (10.413a)

where the electric and magnetic fields are

~E = −∇φ and ~B = ∇× ~A, (10.413b)

respectively.

c) Express the Hamiltonian of the system as a function of ~x and the canonical momen-
tum ~p.

Problem 10.33. Show that the unbound states of the Kepler problem, i.e., states with
E > 0, result in the trajectory of the particle being hyperbolic and compute the deflection
angle α, the distance of closest approach ρmin to the center, and the impact parameter
d, see Fig. 10.36, in terms of the constants E and L. Hint: Like an ellipse, a hyperbola
may be described by the relation ρ = ρ0/(1 + ε cos(φ)) in polar coordinates, where ε is the
eccentricity. Unlike an ellipse, the eccentricity for a hyperbola is ε > 1.

Problem 10.34. Find the period of oscillations in the radial direction for the harmonic
central potential V (r) = kr2/2 without solving the equation of motion or relying on knowl-
edge of its solution. Verify that the result does not depend on the angular momentum L or
the energy E.
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Figure 10.36 A hyperbola can be described by the same formula as an ellipse, but with an eccen-
tricity ε > 1. We define the deflection angle α as the angular difference in the asymptotic directions
of the trajectory, the distance of closest approach ρmin as the minimal distance between the tra-
jectory and the center of the potential, and the impact parameter d as the distance between the
asymptotes and the center.

Problem 10.35. By explicitly solving the problem of the harmonic central potential in
Cartesian coordinates, verify that the trajectories are ellipses also in this case, but now
with the center of the ellipse at the center of the potential instead of one of the foci.

Problem 10.36. For a bead of mass m moving on a rotating ring of radius r0 in a gravi-
tational field, we have seen that the effective Lagrangian is given by

L =
mr2

0

2
θ̇2 +

mr2
0ω

2

2
sin2(θ)−mgr0 cos(θ). (10.414)

Starting from this expression, find the canonical momentum pθ related to the coordinate θ
and express the Hamiltonian H in terms of θ and pθ. Verify that Hamilton’s equations of
motion for this system coincides with the equation of motion derived from the Lagrangian
in Lagrangian mechanics. Sketch the phase space flow for the cases g > r0ω

2, g < r0ω
2, and

g = r0ω
2.

Problem 10.37. For motion in a central potential, show that the total angular momentum
squared ~L2 is a constant of motion by computing its Poisson bracket with the Hamiltonian.
We have also seen that given two constants of motion, their Poisson bracket is a new
constant of motion. Verify that the Poisson bracket between ~L2 and the individual angular
momentum components does not lead to any new conserved quantity.

Problem 10.38. Consider a particle of mass m moving in a central potential

V (r) = − k

rn
. (10.415)
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We define the vector
~A = ~p× ~L− mk~x

rn
, (10.416)

where ~p is the momentum of the particle and and ~L its angular momentum relative to the
center point of the potential. Compute the Poisson bracket between ~A and the Hamilto-
nian H and verify that ~A is a constant of motion for the special case of the Kepler problem
(n = 1), in which ~A is known as the Runge–Lenz vector . Does the Poisson bracket between
the Runge–Lenz vector and the angular momentum components provide any additional
constants of motion in this case?

Problem 10.39. Imagine a situation where particles interact via harmonic potentials in-
stead of Kepler potentials, i.e., the potential between particles i and j is given by

Vij =
kmimj

2
r2
ij , (no sum) (10.417)

where rij is the distance between the particles. Discuss the constrained three-body system
for such potentials. In particular, determine whether it allows any Lagrange points and, if
so, find their location.

Problem 10.40. Write down the Hamiltonian for a particle of mass m falling in a homo-
geneous gravitational field g. Sketch the phase space flow lines in the resulting phase space
considering the motion to be one-dimensional in the direction of the gravitational field.

Problem 10.41. With the definition of the Poisson bracket in Eq. (10.238), show that it
satisfies the relations listed in Eqs. (10.239) to (10.241).

Problem 10.42. For a particle moving on the surface of a sphere (see Example 10.22), we
found that Noether’s theorem implied that the quantity

L = mr2
0 sin2(θ)ϕ̇ (10.418)

is a constant of motion. Verify that this can be derived also in the Hamiltonian formalism
by showing that {L,H} = 0. Find the corresponding phase space flow generated by L and
explicitly verify that the Hamiltonian is invariant under it.

Problem 10.43. A particle moving in a central potential an energy E < V (∞) and angular
momentum L > 0 and is therefore in a bound state. Since the angular momentum and
energy are conserved, the particle will always be contained in the phase space volume given
by Emin < E < Emax < V (∞) and 0 < Lmin < L < Lmax. Show that this phase space
volume is finite so that the Poincaré recurrence theorem applies, i.e., the particle will come
arbitrarily close to its initial state within a finite time.

Problem 10.44. Explicitly verify that the change from Cartesian to polar coordinates in
the two-dimensional plane along with the canonical momentum transformations defined in
Eqs. (10.290) define a canonical transformation.

Problem 10.45. Show that the Jacobian

J =

∣∣∣∣∣ ∂x∂x0

∂x
∂p0

∂p
∂x0

∂p
∂p0

∣∣∣∣∣ (10.419)

of the phase space flow defined in Example 10.37 is equal to one and the flow therefore
satisfies Liouville’s theorem.
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Problem 10.46. In a Maxwell–Boltzmann distribution, the phase space density is taken
to be

ρ = ρ0e
− HkT , (10.420)

where ρ0 is a normalising constant, T is the temperature, and k is Boltzmann’s constant.
Show that this is a stationary distribution according to Liouville’s equation. Note: This is
a special case of the Maxwell–Boltzmann distribution being a stationary state also in the
case of interacting systems. Indeed, for non-interacting systems, any ensemble with a phase
space density that is a function of H is a stationary distribution.

Problem 10.47. In a general phase space with coordinates qa and pa, determine the phase
space flow generated by the coordinates qa. Explicitly write down and physically interpret
these flows for

a) a particle of mass m moving in three dimensions described in Cartesian coordinates,

b) a particle of mass m moving in two dimensions described in polar coordinates, and

c) a rigid object with moment of inertia I with respect to the axis it is rotating around
described by the rotation angle θ.

Problem 10.48. For a particle moving in a central potential, we have seen that the angular
momentum ~L commutes with the HamiltonianH. As a result, the phase space flow generated
by any of the angular momentum components commutes with the time evolution of the
system. By considering the change in the angular momentum ~L under the flow generated
by ~n · ~L, where ~n is an arbitrary unit vector, show that the normal vector of the plane of
motion is invariant under this flow only if ~n × ~L = 0 and that it is otherwise results in a
rotation of that plane.

Problem 10.49. Consider a two-dimensional motion with generalised coordinates x1 and
x2 and corresponding canonical momenta p1 and p2 such that

{
xi, pj

}
= δij .

a) Let L = x1p2 − x2p1 and show that if L̇ = ṗ1 = 0, then also ṗ2 = 0.

b) Determine the flow generated by L in the phase space. Explicitly verify that this flow
defines a canonical transformation for every fixed value of the flow parameter.

c) Show that the quantity p2
1 + p2

2 is a constant of motion if the Hamiltonian is given by
H = L2.

Problem 10.50. A hollow pipe is allowed to rotate about its center of mass and its moment
of inertia about the center of mass is assumed to be I. A bead of mass m is allowed to move
without friction within the pipe. The resulting system can be described by the distance r
of the bead from the center of mass and the inclination of the pipe θ, see Fig. 10.37.

a) Determine the components of the generalised inertia tensor Mab in this coordinate
system.

b) Using the result from (a), determine the Christoffel symbols of the kinematic metric.

c) Placing the system in a gravitational field of strength g, write down the equations of
motion resulting from the generalisation of Newton’s second law.

Problem 10.51. Starting from the generalisation of Newton’s second law in Eq. (10.322)
and the Christoffel symbols of Euclidean space in spherical coordinates, write down the
equations of motion for a particle of mass m subjected to a force ~F in spherical coordinates.
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Figure 10.37 A hollow pipe with moment of inertia I rotating around its center of mass and a
bead of mass m allowed to move freely within it. The system can be described by the generalised
coordinates r and θ.
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Figure 10.38 A pendulum of length ` with a mass m at one end and the other end allowed to move
horizontally with a harmonic potential, which may be due to springs that act to restore it to the
equilibrium position. The system is placed in a gravitational field ~g. The system is described by
the generalised coordinates x and θ.

Problem 10.52. Consider the mechanical system shown in Fig. 10.38, where a pendulum
of length ` has a mass m attached at one of its ends and the other end is allowed to move
horizontally subject to a harmonic potential V (x) = kx2/2. The pendulum is placed in a
gravitational field of strength g.

a) Show that the configuration space of the system is a cylinder.

b) Write down the Lagrangian for the system and identify the components of the gener-
alised inertia tensor.

c) Due to the potential breaking translational invariance, the canonical momentum p
corresponding to the x-coordinate is not conserved. Show that the momentum transfer
to the system ṗ equals δL up to a total time derivative under the transformation with
δx = 1 and all other variations equal to zero and that δL = −kx in this particular
case.
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d) What is the physical interpretation of the result in (c)?

Problem 10.53. We introduced the symplectic form ω on phase space as the exterior
derivative of the one-form ξ = padq

a. Show that this definition is independent of the gener-
alised coordinates qa, i.e., if we instead use the coordinates Qa on the configuration space,
then PadQ

a = padq
a.

Problem 10.54. Starting from its definition, show that a symplectic form cannot exist in
a manifold with an odd number of dimensions.

Problem 10.55. In general, a manifold may admit several different symplectic forms,
resulting in different phase space flows for the same Hamiltonian function. Show that the
flow lines in a two-dimensional manifold are the same regardless of the symplectic form
imposed, but that the velocity with which they are being followed differs.

Problem 10.56. A common example of an interacting field theory is given by so called φ4

theory where the source J in Eq. (10.358b) is given by

J = − λ
4!
φ3 (10.421)

(the four in the name φ4 comes from the interaction term being φJ ∝ φ4). Determine
the equations of motion for classical φ4 theory. Assuming that λ is a small parameter and
perturbation theory can be used, write down an integral representation for the Green’s
function of the linearised problem and determine the Feynman rules for the equation of
motion.

Problem 10.57. Verify that the infinitesimal Lorentz transformation that was defined in
Eq. (10.386) is a symmetry of the Lagrangian density

L =
ρ`
2

(q2
t − c2q2

x). (10.422)

Problem 10.58. In a four-dimensional space-time where we use the coordinates x0 = ct
and xi for i = 1, 2, 3, we can introduce a one-form A with four components

A =
φ

c
dx0 −Aidxi. (10.423)

The exterior derivative F = dA then has the components

Fab = ∂aAb − ∂bAa. (10.424)

Raising and lowering indices with the pseudo-metric ηab that has the components

η00 = 1, η0i = ηi0 = 0, and ηij = −δij , (10.425)

we can define the Lagrangian density L as

L = − 1

4µ0
FabFab −AaJa, (10.426)

where Ja is a source term.

a) Taking the components Aa as independent fields, show that the equations of motion
for these fields can be written in the form

∂aFab = µ0J
b. (10.427)
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b) Writing out the components of the equations of motion derived in (a), show that the
equations of motion are equivalent to half of Maxwell’s equations, see Eqs. (2.198),
and identify the components of the source term Ja in terms of the charge density ρ
and the current density ~J .

c) Verify that the other half of Maxwell’s equations follow directly from dF = d2A = 0.

Note: The pseudo-metric η is central to the formulation of special relativity. In fact, elec-
tromagnetism in the form of Maxwell’s equations is a relativistic field theory, formulated
before Einstein developed special relativity. The inconsistencies between Maxwell’s theory
of electromagnetism and Galilei invariance played a central role in this development and
Einstein’s seminal paper was titled “On the electrodynamics of moving bodies” (or, in the
original German, “Zur Elektrodynamik bewegter körper”).

Problem 10.59. When discussing the symmetries of the wave equation, we found the
energy and momentum densities of a wave of the form q(x, t) = f(x− ct).

a) Repeat this computation for a wave of the form q(x, t) = h(x+ ct).

b) The general solution to the wave equation is a sum of waves in both directions q(x, t) =
f(x− ct) + h(x+ ct). Using this, show that c |P | ≤ E.

Problem 10.60. Starting from the Klein–Gordon Lagrangian density in one spatial di-
mension

a) show that it is symmetric under the general space-time translations and the Lorentz
transformation and

b) find the energy and momentum densities E and p of the Klein–Gordon field.

c) For a plane wave of the form φ(x, t) = sin(kx − ωt), determine the relation between
the averages of E and p over an entire wavelength.

Note: In (c) you will first need to determine the relation between ω and c that must be
satisfied for the Klein–Gordon equation to hold.
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Reference material

A.1 GROUPS AND CHARACTER TABLES
A small collection of groups with low order and their corresponding character tables.

A.1.1 Cyclic groups

A.1.1.1 C2

Order: 2
Generators: c

Defining relations: c2 = e
Conjugacy classes: e = {e}, C = {c}

Character table of irreps:
C2 e C

A 1 1
B 1 −1

A.1.1.2 C3

Order: 3
Generators: c

Defining relations: c3 = e
Conjugacy classes: e = {e}, C1 = {c}, C2 = {c2}

Character table of irreps:
C3 e C1 C2

A 1 1 1
E 1 e2πi/3 e−2πi/3

E∗ 1 e−2πi/3 e2πi/3

A.1.1.3 C2v

Order: 4
Generators: c, σ

Defining relations: c2 = e, σ2 = e, σcσc = e
Conjugacy classes: e = {e}, C = {c}, σ = {σ}, σ′ = {σc}

691
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Character table of irreps:
C2v e C σ σ′

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

A.1.2 Dihedral groups

A.1.2.1 D2

Isomorphic to C2v.

A.1.2.2 D3

Order: 6
Generators: c, σ

Defining relations: c3 = e, σ2 = e, cσcσ = e
Conjugacy classes: e = {e}, C = {c, c2}, σ = {σ, σc, σc2}

Character table of irreps:
D3 e 2C 3σ

A1 1 1 1
E 2 −1 0
A2 1 1 −1

A.1.2.3 D3h

Order: 12
Generators: c3, c2, σh

Defining relations: c33 = e, c22 = e, σ2
h = e

c3σh = σhc3, σhc2 = c2σh, c2c3c2c3 = e
Conjugacy classes: e = {e}, C3 = {c3, c23}, C2 = {c2, c2c3, c2c23},

σh = {σh}, S3 = {σhc3, σhc23},
σv = {σhc2, σhc2c3, σhc2c23}

Character table of irreps:
D3h e 2C3 3C2 σh 2S3 3σv

A′1 1 1 1 1 1 1
A′2 1 1 −1 1 1 −1
E′ 2 −1 0 2 −1 0
A′′1 1 1 1 −1 −1 −1
A′′2 1 1 −1 −1 −1 1
E′′ 2 −1 0 −2 1 0

A.1.3 Symmetric groups

A.1.3.1 S2

Isomorphic to C2.
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A.1.3.2 S3

Isomorphic to D3.

A.1.3.3 S4

Order: 24
Generators: c3, c2, σ

Defining relations: c33 = e, c22 = e, σ2 = e
c3σc3σ = e, σc2 = c2σ, (c2c3)3 = e

Conjugacy classes: e = {e}, C2 = {c2, c3c2c23, c23c2c3},
C3 = {c3, c23, c3c2, (c3c2)2, c2c3c2, c2c

2
3c2, c2c3, (c2c3)2},

S4 = {σc2c3, σ(c2c3)2, σc23c2c3, σc3c2c
2
3, σc3c2, σ(c3c2)2},

σd = {σ, σc3, σc23, σc2, σc2c3c2, σc2c23c2}
Character table of irreps:

S4 e 3C2 8C3 6S4 6σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 2 −1 0 0
T1 3 −1 0 1 −1
T2 3 −1 0 −1 1

A.2 DIFFERENTIAL OPERATORS IN ORTHOGONAL COORDINATES
A.2.1 General expressions
In a general orthogonal coordinate system in N dimensions, the scale factors are defined
according to

ha = | ~Ea| =
∣∣∣∣ ∂~x∂ya

∣∣∣∣ . (A.1)

The Jacobian determinant J is given by the product of the scale factors

J =
∏
a

ha. (A.2)

The gradient, divergence, curl, and Laplace operators in an orthogonal coordinate system
are given by

∇f =
∑
a

1

ha
~ea∂af, (A.3a)

∇ · ~v =
1

J
∑
a

∂a

(
ṽaJ
ha

)
, (A.3b)

∇× ~v =
1

J
∑
abc

~eaεabcha∂b(hcṽc), (A.3c)

∇2f =
1

J
∑
a

∂a

(
J
h2
a

∂af

)
. (A.3d)
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A.2.2 Cylinder coordinates
The scale factors in cylinder coordinates are given by

hρ = hz = 1 and hφ = ρ. (A.4)

The gradient, divergence, curl, and Laplace operators in cylinder coordinates are given by

∇f = ~eρ∂ρf + ~eφ
1

ρ
∂φf + ~ez∂zf, (A.5a)

∇ · ~v =
1

ρ
(∂ρρṽρ + ∂φṽφ) + ∂z ṽz, (A.5b)

∇× ~v = ~eρ

(
1

ρ
∂φṽz − ∂z ṽφ

)
+ ~eφ (∂z ṽρ − ∂ρṽz) +

1

ρ
~ez (∂ρρṽφ − ∂φṽρ) , (A.5c)

∇2f =
1

ρ
∂ρ(ρ∂ρf) +

1

ρ2
∂2
φf + ∂2

zf. (A.5d)

A.2.3 Spherical coordinates
The scale factors in spherical coordinates are given by

hr = 1, hθ = r, and hϕ = r sin(θ). (A.6)

The gradient, divergence, curl, and Laplace operators in spherical coordinates are given by

∇f = ~er∂rf +
1

r
~eθ∂θf +

1

r sin(θ)
~eϕ∂ϕf, (A.7a)

∇ · ~v =
1

r2
∂r(r

2ṽr) +
1

r sin(θ)
∂θ(sin(θ)ṽθ) +

1

r sin(θ)
∂ϕṽϕ, (A.7b)

∇× ~v =
1

r sin(θ)
~er(∂θ sin(θ)ṽϕ − ∂ϕṽθ) +

1

r
~eθ

(
1

sin(θ)
∂ϕṽr − ∂rrṽϕ

)
+

1

r
~eϕ(∂rrṽθ − ∂θṽr), (A.7c)

∇2f =
1

r2

[
∂r
(
r2∂rf

)
+

1

sin(θ)
∂θ (sin(θ)∂θf) +

1

sin2(θ)
∂2
ϕf

]
. (A.7d)

A.3 SPECIAL FUNCTIONS AND THEIR PROPERTIES
A.3.1 The Gamma function
The gamma function is defined as

Γ(x) =

∫ ∞
0

tx−1e−tdt. (A.8)

For all non-negative integers n, the gamma function satisfies:

Γ(n+ 1) = n! (A.9)

For any x, the gamma function satisfies

Γ(x+ 1) = xΓ(x). (A.10)
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A.3.2 Bessel functions

A.3.2.1 Bessel functions

The Bessel functions of the first kind Jν(ρ) and of the second kind Yν(ρ) are linearly
independent solutions to Bessel’s differential equation

ρ2f ′′(ρ) + ρf ′(ρ) + (ρ2 − ν2)f(ρ) = 0. (A.11)

A.3.2.2 Modified Bessel functions

The modified Bessel functions of the first kind Iν(ρ) and of the second kind Kν(ρ) are
linearly independent solutions to Bessel’s modified differential equation

ρ2f ′′(ρ) + ρf ′(ρ)− (ρ2 + ν2)f(ρ) = 0. (A.12)

Relation to the Bessel functions:

Iν(x) = i−νJν(ix) (A.13a)

Kν(x) =
π

2

I−ν(x)− Iν(x)

sin(πν)
(A.13b)

A.3.2.3 Integral representations

For integer values of m:

Jm(ρ) =
1

2π

∫ π

−π
ei(ρ sin(φ)−mφ)dφ =

1

π

∫ π

0

cos(ρ sin(φ)−mφ)dφ (A.14a)

Ym(ρ) =
1

π

∫ π

0

sin(ρ sin(φ)−mφ)dφ = − 1

π

∫ ∞
0

[emτ + (−1)me−mτ ]e−ρ sinh(τ)dτ (A.14b)

A.3.2.4 Asymptotic form

For small values of ρ (0 < ρ�
√
ν + 1) and non-negative ν:

Jν(ρ) ' 1

Γ(α+ 1)

zν

2ν
(A.15)

A.3.2.5 Relations among Bessel functions

For integer values of m:
J−m(ρ) = (−1)mJm(ρ) (A.16)

For Zν(ρ) = Jν(ρ) or Zν(ρ) = Yν(ρ):

Zν(ρ) =
ρ

2ν
[Zν−1(ρ) + Zν+1(ρ)] (A.17a)

Z ′ν(ρ) =
1

2
[Zν−1(ρ)− Zν+1(ρ)] (A.17b)(

1

ρ

d

dρ

)k
(ρνZν(ρ)) = ρν−kZν−k(ρ) (A.17c)(

1

ρ

d

dρ

)k (
Zν(ρ)

ρν

)
= (−1)k

Zν+k(ρ)

ρν+k
(A.17d)
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For Vν(ρ) = Iν(ρ) or Vν(ρ) = eiπνKν(ρ):

Vν(ρ) =
ρ

2ν
[Vν−1(ρ) + Vν+1(ρ)] (A.18a)

V ′ν(ρ) =
1

2
[Vν−1(ρ)− Vν+1(ρ)] (A.18b)

A.3.2.6 Expansions

Fourier expansions of eiρ sin(φ) and eıρ cos(φ):

eiρ sin(φ) =

∞∑
m=−∞

Jm(ρ)eimφ (A.19a)

eiρ cos(φ) =

∞∑
m=−∞

imJm(ρ)eimφ (A.19b)

A.3.2.7 Orthogonality relations

The Bessel functions satisfy the following orthogonality relations:∫ 1

0

Jν(ανkρ)Jν(αν`ρ)ρ dρ =
δk`
2
Jν+1(ανk)2 =

δk`
2
J ′ν(ανk)2 (A.20a)∫ ∞

0

Jν(αρ)Jν(βρ)ρ dρ =
1

α
δ(α− β) (A.20b)

The second relation is valid for ν > −1/2 and ανk is the kth zero of Jν(ρ).

A.3.2.8 Bessel function zeros

The first five zeroes of the first four Bessel functions Jm(ρ) are:

αmk m

k 0 1 2 3

1 2.40 3.83 5.14 6.38
2 5.52 7.02 8.42 9.76
3 8.65 10.17 11.62 13.02
4 11.79 13.32 14.80 16.22
5 14.93 16.47 17.96 19.41

The first five zeros of the derivatives J ′m(ρ) of the first four Bessel functions are:

α′mk m

k 0 1 2 3

1 0 1.84 3.05 4.20
2 3.83 5.33 6.71 8.02
3 7.02 8.54 9.97 11.36
4 10.17 11.71 13.17 14.59
5 13.32 14.86 16.35 17.79
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A.3.3 Spherical Bessel functions

A.3.3.1 Spherical Bessel functions

The spherical Bessel functions of the first kind jn(r) and of the second kind yn(r) are linearly
independent solutions to the differential equation

r2f ′′(r) + 2rf ′(r) + [r2 − n(n+ 1)]f(r) = 0. (A.21)

A.3.3.2 Relation to Bessel functions

The spherical Bessel functions are related to the Bessel functions as:

jn(r) =

√
π

2r
Jn+1/2(r) (A.22a)

yn(r) =

√
π

2r
Yn+1/2(r) = (−1)n+1

√
π

2r
J−n−1/2(r) (A.22b)

A.3.3.3 Explicit expressions

The first few spherical Bessel functions can be written as:

j0(r) =
sin(r)

r
(A.23a)

j1(r) =
sin(r)

r2
− cos(r)

r
(A.23b)

j2(r) =

(
3

r2
− 1

)
sin(r)

r
− 3 cos(r)

r
(A.23c)

j3(r) =

(
15

r3
− 6

r

)
sin(r)

r
−
(

15

r2
− 1

)
cos(r)

r
(A.23d)

y0(r) = −cos(r)

r
(A.24a)

y1(r) = −cos(r)

r2
− sin(r)

r
(A.24b)

y2(r) =

(
− 3

r2
+ 1

)
cos(r)

r
− 3 sin(r)

r
(A.24c)

y3(r) =

(
−15

r3
+

6

r

)
cos(r)

r
−
(

15

r2
− 1

)
sin(r)

r
(A.24d)

A.3.3.4 Rayleigh formulas

The spherical Bessel functions satisfy:

jn(r) = (−r)n
(

1

r

d

dr

)n
sin(r)

r
(A.25a)

yn(r) = −(−r)n
(

1

r

d

dr

)n
cos(r)

r
(A.25b)
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A.3.3.5 Relations among spherical Bessel functions

For fn(r) = jn(r) and fn(r) = yn(r):(
1

r

d

dr

)k
(rn+1fn(r)) = rn−k+1fn−k(r) (A.26a)(

1

r

d

dr

)k
(r−nfn(r)) = (−1)kr−n−kfn+k(r) (A.26b)

A.3.3.6 Orthogonality relations

The spherical Bessel functions satisfy the following orthogonality relations:∫ 1

0

jn(βnkr)jn(βn`r)r
2dr =

δk`
2
jn+1(βn`)

2 (A.27a)∫ ∞
0

jn(αr)jn(βr)r2dr =
π

2α2
δ(α− β) (A.27b)

The second relation is valid for n > −1 and βnk is the kth zero of jn(r).

A.3.3.7 Spherical Bessel function zeros

The first five zeroes of the first four spherical Bessel functions j`(r) are:

β`k `

k 0 1 2 3
1 π 4.49 5.76 6.99
2 2π 7.73 9.10 10.42
3 3π 10.90 12.32 13.70
4 4π 14.07 15.51 16.92
5 5π 17.22 18.69 20.12

The first five zeros of the derivatives j′`(r) of the first four spherical Bessel functions are:

β′`k `

k 0 1 2 3

1 0 2.08 3.34 4.51
2 4.49 5.94 7.29 8.58
3 7.73 9.21 10.61 11.97
4 10.90 12.40 13.85 15.24
5 14.07 15.58 17.04 18.47

A.3.4 Legendre functions

A.3.4.1 Legendre functions

The Legendre functions are the solutions to Legendre’s differential equation

d

dx
(1− x2)

d

dx
f`(x) + `(`+ 1)fn(x) = 0. (A.28)

The Legendre polynomials P`(x) are the Legendre functions for non-negative integer ` that
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are regular at x = ±1. The standard normalisation is such that P`(1) = 1. The second
independent solution to Legendre’s differential equation is usually denoted Q`(x) and is not
regular at x = ±1.

A.3.4.2 Rodrigues’ formula

The Legendre polynomials can be expressed as:

P`(x) =
1

2``!

d`

dx`
(x2 − 1)` (A.29)

A.3.4.3 Relation among Legendre polynomials

Bonnet’s recursion formula:

(`+ 1)P`+1(x) = (2`+ 1)xP`(x)− P`−1(x) (A.30)

A.3.4.4 Explicit expressions

The first few Legendre polynomials are:

P0(x) = 1 (A.31a)

P1(x) = x (A.31b)

P2(x) =
1

2
(3x2 − 1) (A.31c)

P3(x) =
1

2
(5x3 − 3x) (A.31d)

P4(x) =
1

8
(35x4 − 30x2 + 3) (A.31e)

P5(x) =
1

8
(63x5 − 70x3 + 15x) (A.31f)

A.3.4.5 Associated Legendre functions

The associated Legendre functions are the solutions to the general Legendre differential
equation

d

dx
(1− x2)

d

dx
fm` (x) +

[
`(`+ 1)− m2

1− x2

]
fm` (x) = 0. (A.32)

The Legendre functions are the special case m = 0.
The associated Legendre functions are related to the Legendre polynomials as:

Pm` (x) = (−1)m(1− x2)m/2
dm

dxm
P`(x) (A.33)

By construction, −` ≤ m ≤ `.

A.3.4.6 Orthogonality relations

For fixed m: ∫ 1

−1

Pm` (x)Pmk dx =
2(`+m)! δk`

(2`+ 1)(`−m)!
(A.34)
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For fixed `: ∫ 1

−1

Pm` (x)Pn` (x)

1− x2
dx =


0 (m 6= n)

(`+m)!
m(`−m)! (m = n 6= 0)

∞ (m = n = 0)

(A.35)

A.3.5 Spherical harmonics

A.3.5.1 Spherical harmonics

The spherical harmonics are the eigenfunctions of the Sturm–Liouville operator

Λ̂ =
1

sin(θ)
∂θ sin(θ)∂θ +

1

sin2(θ)
∂2
ϕ. (A.36)

This operator is equivalent to the generalised Laplace operator on the sphere where θ and
ϕ are the usual spherical coordinates.

A.3.5.2 Expression in terms of associated Legendre functions

The spherical harmonics are of the form:

Y m` (θ, ϕ) = (−1)m

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm` (cos(θ))eimϕ (A.37)

Y m` (θ, ϕ) is an eigenfunction of Λ̂ with eigenvalue −`(`+ 1). As for the associated Legendre
functions −` ≤ m ≤ `.
Note: The normalisation is conventional and may differ between different texts!

A.3.5.3 Orthogonality relation

The spherical harmonics satisfy the orthogonality relation:∫ π

θ=0

∫ 2π

ϕ=0

Y m` (θ, ϕ)Y nk (θ, ϕ)∗ sin(θ)dθ dϕ = δ`kδmn (A.38)

A.3.5.4 Parity

The spherical harmonics satisfy the relation:

Y m` (π − θ, π + ϕ) = (−1)`Y m` (θ, ϕ) (A.39)

A.3.6 Hermite polynomials

A.3.6.1 Hermite polynomials

The hermite polynomials Hn(x) are the solutions to the Sturm–Liouville problem

ex
2

∂xe
−x2

∂xH(x) + x2H(x) = (2E − 1)H(x) = 2λH(x). (A.40)

This is equivalent to the Hermite equation

−H ′′(x) + 2xH ′(x) = (2E − 1)H(x) = 2λH(x). (A.41)

The eigenvalues are given by λn = n and En = n+ 1/2.
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A.3.6.2 Explicit expressions

The first five Hermite polynomials are:

H0(x) = 1 (A.42a)

H1(x) = 2x (A.42b)

H2(x) = 4x2 − 2 (A.42c)

H3(x) = 8x3 − 12x (A.42d)

H4(x) = 16x4 − 48x2 + 12 (A.42e)

A.3.6.3 Creation operators

The creation operator â+ is defined as

â+ = (2x− ∂x). (A.43)

The Hermite polynomials satisfy

â+Hn(x) = Hn+1(x). (A.44)

The Hermite polynomials can be written

Hn(x) = ân+H0(x) = ân+1. (A.45)

A.3.6.4 Hermite functions

The Hermite functions are the solutions to the eigenvalue problem

−ψ′′(x) + x2ψ(x) = 2Eψ(x). (A.46)

The Hermite functions are given by

ψn(x) =
e−x

2/2√
2nn!
√
π
Hn(x). (A.47)

A.3.6.5 Orthogonality relations

The Hermite polynomials satisfy the orthogonality relation:∫ ∞
−∞

Hn(x)Hm(x)e−x
2

dx = 2nn!
√
πδnm (A.48)

The Hermite functions satisfy the orthogonality relation:∫ ∞
−∞

ψn(x)ψm(x)dx = δnm (A.49)

A.4 TRANSFORM TABLES
A.4.1 Fourier transform
The Fourier transform of a function f(x) is given by:

f̃(k) =

∫ ∞
−∞

f(x)e−ikxdx (A.50)
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The inverse Fourier transform is given by:

f(x) =
1

2π

∫ ∞
−∞

f̃(k)eikxdk (A.51)

We have adopted a definition where the factor of 2π appears in the inverse Fourier transform.
Another common definition is to include 1/

√
2π in both the transform and the inverse

transform.

A.4.1.1 Transform table

The following is a list of useful Fourier transform relations:

Function f(x) Fourier transform f̃(k)

f(x− x0) e−ikx0 f̃(k)

eik0xf(x) f̃(k − k0)

f(ax) f̃(k/a)/|a|
dn

dxn
f(x) (ik)nf̃(k)

xnf(x) in
dn

dkn
f̃(k)

1 2πδ(k)

δ(x) 1

cos(ax) π[δ(k − a) + δ(k + a)]

sin(ax) −πi[δ(k − a)− δ(k + a)]

e−axθ(x)
1

a+ ik

e−ax
2

√
π

a
e−k

2/4a

e−a|x|
2a

a2 + k2

Here, δ(x) is the delta distribution, θ(x) is the Heaviside function, and a > 0.

A.4.2 Laplace transform
The Laplace transform of a function f(t) defined for t > 0 is given by

F (s) =

∫ ∞
0

e−stf(t) dt. (A.52)

A.4.2.1 Transform table

The following is a list of useful Laplace transform relations:
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Function f(t) Fourier transform F (s)

θ(t− a)f(t− a) e−asF (s)

ebtf(t) F (s− b)

f(at)
1

a
F (s/a)

tf(t) −F ′(s)

f ′(t) sF (s)− f(0)

f ′′(t) s2F (s)− f ′(0)− sf(0)∫ t

0

f(x) dx
1

s
F (s)∫ t

0

f1(x)f2(t− x) dx F1(s)F2(s)

δ(t− a) e−as

1
1

s

tn
n!

sn+1

e−at
1

s+ a

sin(ωt)
ω

s2 + ω2

cos(ωt)
s

s2 + ω2
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ε-δ-relation, 10

Abelian group, see group, commutative
action, 505, 615
addition of vectors, 264
adiabatic gas law, 160
affine

connection, 551
coordinates, 35
parametrisation, 569
space, 11

angular momentum, 236, 608
barrier, 635

anharmonic oscillator, 449
anti-linear, 265
anti-symmetric

part of tensor, 77
tensor, 76

Archimedes’ principle, 101
area moment of inertia, 477
associated Legendre functions, 304
atlas, 536
Atwood machine, 532

double, 683
automorphism, 205
axial vector, 253

bac-cab rule, 10
base space, 10
base unit, 172
Beltrami identity, 482
Bernoulli’s principle, 160
Bessel functions

first kind, 292
modified, 298
second kind, 292
spherical, 310

Bessel’s differential equation, 290
modified, 298

Bianchi identities, 596
boost, 238
bound state, 387
boundary condition, 144

brachistochrone problem, 525
Brownian motion, 464
Buckingham π theorem, 175
bulk modulus, 110
bulk viscosity, 162

canonical commutation relations, 649
canonical momentum, 619
canonical transformation, 656
catenary, 492
Cauchy momentum equations, 158
Cauchy sequence, 267
Cauchy–Schwarz inequality, 267
Cayley table, see group table
center of energy, 675
center of mass, 508, 605
central potential, 530, 632
centrifugal force, 125, 615
character, 242

table, 243
chart, 536
Christoffel symbols, 83, 570

of the first and second kind, 572
circulation, 20
commutativity, 200
commuting flows, 549
complete basis, 279
complete space, 267
compliance tensor, 110
concentration, 129
conductivity tensor, 113
configuration space, 117, 616
conjugacy class, 201
connection coefficients, 552
conservative

force, 52
vector field, 24, 50

conserved current, 499, 673
constant of motion, 480

total energy, 509
total momentum, 509

continuity equation, 130, 132, 500
on a manifold, 585

705
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transversal momentum, 140
contracted product of tensors, 75
contraction, 74
contravariant

tensor, 73
vector components, 34

convection
current, 133
equation, 133

converging sequence, 267
coordinate, 32

change in configuration space, 617
function, 32
line, 34

Coriolis force, 615
cotangent bundle, 665
Coulomb law, 634
Coulomb’s constant, 20
covariant

derivative, 84
tensor, 73
vector components, 37

creation operator, 315
critical damping, 362
cross product, 2
curl, 20

orthogonal coordinates, 41
curl theorem, 29, 584
curvature tensor, 561
curved space, 562
cycles, 211
cyclic group, 207
cylinder coordinates, 42

d’Alembert’s formula, 425
delta

distribution, 320
function, 47, 179

density, 129
deviatoric strain tensor, see shear strain

tensor
Dido’s problem, 524
differential, 545
differential forms, 573
diffusion equation, 134
diffusivity tensor, 135
dihedral group, 208
dimension of manifold, 536
dimensional analysis, 170
direct product, 256

direct sum, 225
directed surface element, 15
directional derivative, 22
Dirichlet boundary condition, 145
displacement field, 107
distribution derivative, 323
distributions, 320
divergence, 19

orthogonal coordinates, 41
divergence theorem, 25, 584
dot product, 2
double pendulum, 117, 118
driven oscillations, 362
dual

basis, 35
space, 544

dual vector, 539
dummy indices, 6
dynamic viscosity, 162

effective
inertia tensor, 625
Lagrangian, 625
potential, 625

Einstein space, 573
Einstein summation convention, 6
electric displacement field, 185
electric field, 20

spherically symmetric, 48
electric susceptibility, 119
embedding, 589
endomorphism, 205
energy

functional, 150
methods, 150

equivalent representations, 227
Euler equations, 159
Euler–Lagrange equation, 473
event, 237
extensive property, 128
exterior derivative, 576

FEM, see finite element method
Fermat’s principle, 502
Feynman diagrams, 401, 453
Feynman rules, 454
Fick’s

first law, 135
second law, 135

fictitious force, see inertial force
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field, 10
self-interacting, 671

field theory, 669
finite element method, 519
first integral, 480
Flamm’s paraboloid, 601
flat space, 562
flow, 542

line, 543
fluid, 157
flux, 16
force density, 14
Fourier

series, 280
sine transform, 376
transform, 374

Fourier’s trick, 280
free charge, 185
free indices, 6
free state, 387
function space, 263, 268
functional, 321, 469

derivative, 478
fundamental frequency, 360
fundamental orthogonality theorem, 242
fundamental representation, 224
fundamental theorem of vector analysis, 57

Galilean group, 239
Galilei transformation, 238
Galilei transformations, 603
gamma function, 292
gauge transformation, 255
Gauss’s law, 20, 28, 53

on differential form, 28
Gauss’s theorem, see divergence theorem
general Legendre equation, 301
general linear group, 217
general vector space, 264
generalised coordinates, 616
generalised inertia tensor, 117, 619
generator

canonical transformation, 658
Lie group, 213

geodesic, 556
Gibbs’ phenomenon, 368
gradient, 18, 576

of tensor fields, 87
orthogonal coordinates, 41

gradient-index fibre, 529

gravitational
constant, 12
field, 12

spherical symmetry, 48
potential, 25, 401

great circle, 528
Green’s

formula, 29
identities, 28

Green’s function, 166, 401, 403
for Sturm–Liouville operators, 412
Poisson’s equation, 416
symmetry, 412

group, 198
action, 223
commutative, 200
discrete, 205
finite, 206
generator, 205
order, 206
table, 206

Hadamard’s method of descent, 418
Hamilton’s equations of motion, 647
Hamilton’s principle, 505, 615
Hamiltonian, 623, 646

density, 673
Hamiltonian mechanics, 506, 643
Hankel transform, 376
harmonic

oscillator, 404
potential, 634

heat, 136
conductivity, 136
transfer coefficient, 147

heat equation, 134
Heaviside function, 323
Helmholtz decomposition, 57
Helmholtz equation, 153
Helmholtz’s theorem, 57
Hermite equation, 314
Hermite functions, 316
Hermite polynomials, 315
Hermitian operator, 273
Hilbert space, 267
holonomic constraint, 485, 492
homogeneous differential equation, 155
homomorphism, 204
Hooke’s law, 109
Huygens–Fresnel principle, 502
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hyperbolic
coordinates, 66
space, 600

identity element, 198
immersion, 589
imperial units, 173
impulse response, see Green’s function
incompressible

flow, 164
fluid, 56, 160

induced metric, 590
inertial

force, 614
frame, 237, 603

inferior mirage, 529
initial condition, 144, 148
inner product, 2, 265

of characters, 245
on manifold, 566
space, 266

integrable function, 263
integral of p-form, 577
intensive property, 128
interior product, 586
invariant, 6, 195
inviscid fluid, 159
irreducible representations, see irreps
irreps, 239

decomposition into, 245
isentropic flow, 160
isomorphism, 205
isoperimetric constraint, 485, 490

Jacobi identity, 595
Jacobian determinant, 40

Kepler problem, see two-body problem
Kepler’s laws, 193, 639, 640
Killing vector field, 597
kinematic metric, 663
Klein–Gordon

equation, 190, 671
field, 671

Kronecker delta, 7
generalised, 93
tensor, 74

Lagrange multipliers, 486
Lagrange points, 642

Lagrangian, 505, 615
density, 510, 670

Lagrangian mechanics, 505, 615
Laplace operator, 22

generalised, 587
on tensors, 88
orthogonal coordinates, 41

Laplace’s equation, 58, 153
law of refraction, see Snell’s law
left-handed basis, 3
Legendre polynomial, 302
Legendre transform, 647
Legendre’s differential equation, 301
level surfaces, 18
Levi-Civita connection, 570
Levi-Civita symbol, see permutation symbol
Lie algebra, 213
Lie bracket, 214, 548
Lie derivative, 548
Lie groups, 213
line element, 82
line integral, 16
linear differential operator, 154
linear strain, 108
Liouville’s equation, 654
Liouville’s theorem, 653

on symplectic manifolds, 668
locality, 12
Lorentz

force, 63
force law, 684
transformation, 676

Möbius strip, 593
magnetic field tensor, 111
magnitude, 2
manifold, 536
material derivative, 158
matrix group, 217
matrix notation for tensors, 70
Maxwell stress tensor, 112
Maxwell’s equations, 28, 110
Maxwell–Boltzmann distribution, 687
method of images, 434
metric

compatible connection, 570
determinant, 91
tensor, 80, 565

inverse, 81
metric system, 173
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mixed tensor, 73
moment of inertia tensor, 70, 115, 609
momentum of rigid body, 606
multi-index, 154
multiplication, 264
multipoles, 307

natural boundary condition, 475
natural frequency, 359
Navier-Stokes equation, 162
Neumann boundary condition, 146
Neumann functions, see Bessel functions,

second kind
Newton’s

generalised second law, 664
law of cooling, 147
law of gravitation, 634
laws of mechanics, 505, 603

Newtonian mechanics, 505
no slip conditions, 163
Noether’s theorem, 253, 481, 622, 659, 671
non-conservative field, 21
non-inertial frame, 611
norm, 2, 266, 566
normal coordinates, 595

off-shell, 618
Ohm’s law, 113
on manifolds, 587
on-shell, 618
optical length, 503
orbital precession, 636
orthogonal

abstract vector spaces, 266
coordinate system, 38
group, 218

orthogonality relation, 372
orthonormal basis, 1

curvilinear coordinates, 38
cylinder coordinates, 43
spherical coordinates, 45

Ostogradsky’s theorem, see divergence
theorem

outer product, 71
tensors, 74

overdamped modes, 361
overtone, 360

p-form, 574
parabolic coordinates, 66

parallel
axis theorem, 677
tensor field, 554
transport, 556

parity, see spatial reflection
Pauli matrices, 223
permutation group, 211
permutation symbol, 7

as a pseudo-tensor, 236
perturbation theory, 448
phase space, 645

density, 654
flow, 658
volume form, 668

physical components, 38
physical dimension, see dimensional

analysis
physical unit, 172
plucked string, 360
Poincaré recurrence theorem, 655
point source, 46

heat production, 137
Poisson bracket, 649
Poisson commutation, 650
Poisson’s equation, 151, 335
Poisson’s ratio, 110
polar coordinates, 42

separation of variables, 289
position vector, 11

cylinder coordinates, 43
spherical coordinates, 46

potential, 24
potential energy, 52
pressure, 12, 159
principle of stationary action, see

Hamilton’s principle
product representation, see tensor product

representation
projection operator, 328
proper time, 522
pseudo force, see inertial force
pseudo metric, 565
pseudo-Riemannian metric, see pseudo

metric
pseudo-scalars, 235
pseudo-tensors, 236
pullback, 589
pushforward, 587
pyramidal symmetry, 210
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Pythagoras’ theorem, 267

quasi-symmetries, 623
quotient law, 78

raising operator, 315
rapidity, 676
Rayleigh quotient, 515
Rayleigh-Ritz method, 518
reduced mass, 638
reducible representation, 227
relative tensor, see tensor density
representation, 223
resistivity tensor, 115
resonant frequency, 363
restricted three-body problem, 641
Ricci

scalar, 573
tensor, 573

Riemann curvature tensor, see curvature
tensor

Riemannian metric, see metric tensor
right-handed basis, 3
rigid body, 604
Ritz method, 516
Robin boundary condition, 147
Rodrigues’ formula, 302
rotation, 195

group, 215
Runge–Lenz vector, 686

scalar
field, 11
potential, 49
product, 2

scale factor, 38
cylinder coordinates, 43
spherical coordinates, 45

scattering state, see free state
Schur’s lemmas, 240
second viscosity, 162
separable space, 268
shear

modulus, 110
strain rate, 157
strain tensor, 109

sink, 20
density, 131

Snell’s law, 503
sound waves, 161

source, 20
density, 130

space-time, 237, 670
spatial reflection, 234
special orthogonal group, 219
special unitary group, 222
spectrum, 282
spherical coordinates, 44
spherical harmonics, 307
spherical pendulum, 535
stationary solution, 151

stable, 356
stationary state, 144, 345
steady state, 153, 345
stereographic projection, 592
stiffness tensor, 109
Stokes’ theorem, see curl theorem

differential forms, 580
strain rate tensor, 161
strain tensor, 108
stress tensor, 79, 105
Sturm–Liouville’s theorem, 279
Sturm–Liouville operators, 276
Sturm–Liouville problem

periodic, 281
regular, 277
singular, 282

subgroup, 203
submanifold, 589
summation indices, 6
superior mirage, 529
superposition, 165
symmetric

group, 211
operator, 271, 273
part of tensor, 77
tensor, 75

symmetry, 195
breaking, 204, 249
Hamiltonian mechanics, 659
of Lagrangian, 623

symplectic
form, 668
manifold, 668

tangent bundle, 662
tangent vector, 34, 539

basis, 34, 540
space, 542

temperature field, 11
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tensor
component, 546
density, 90
field, 11, 79
product

of vectors, 71
representation, 225

rank, 71
type, 73, 546

tidal force, 126
time translations and reversal, 232
torque, 610
torsion tensor, 558
torus, 598
total derivative, 478
trace, 74
transform, 373
transformation coefficient, 5
translation group, 216
triangle inequality, 267
trivial group, 202
trivial homomorphism, 205
two-body problem, 638

underdamped modes, 361
unitary group, 222

variation, 473
variational principles, 469
vector

field, 11
potential, 49
product, 2

vielbein, 595
viscosity tensor, 161
volume element, 577

in general coordinates, 102
volumetric strain, 108

wave equation, 138
damped, 140, 361
electromagnetic fields, 143
on a string, 139

Weber functions, see Bessel functions,
second kind

wedge product, 574
weight function, 270
Wronskian, 328

Young’s modulus, 110, 477
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